Comparing temperaments

Images of tem­pered scales cre­at­ed by the Bol Processor

The fol­low­ing are Bol Processor + Csound inter­pre­ta­tions of J.-S. Bach's Prelude 1 in C major (1722) and François Couperin's Les Ombres Errantes (1730) — both near the end of the Baroque peri­od — using tem­pera­ment scales (Asselin 2000). The names and tun­ing pro­ce­dures fol­low Asselin's instruc­tions (p. 67-126). Images of the scales have been cre­at­ed using the Bol Processor.

The con­struc­tion of these scales with the Bol Processor is explained in detail on the Microtonality page. The com­plete set of scale images is avail­able on this page.

➡ We hope to be able to release bet­ter sound demos upon receipt of a set of well-designed C-sound instru­ments. ("orc" files). My apolo­gies to harp­si­chord play­ers, tuners and designers!

Bach's Prelude 1 in C major (1722)

This is the first pre­lude in a series called Well-Tempered Clavier by Johann Sebastian Bach. Well-tempered, ok… But which temperament?

Let us begin by lis­ten­ing to the piece in equal tem­pera­ment, the pop­u­lar tun­ing of instru­ments in the elec­tron­ic age. Unlearned musi­cians believe that "well-tempered" is the equiv­a­lent of "equal-tempered."

Equal tem­pera­ment (p. 123) ➡ Image

➡ Don't hes­i­tate to click on the "Image" links to see cir­cu­lar graph­i­cal rep­re­sen­ta­tions of scale inter­vals high­light­ing con­so­nance and dissonance.

The fol­low­ing are tra­di­tion­al tem­pera­ments, each of which was designed at a par­tic­u­lar time to meet the spe­cif­ic require­ments of the musi­cal reper­toire en vogue (Asselin 2000 p. 139-180).

H.A. Kellner's BACH in 1975 (p. 101) ➡ Image
Barca in 1786 (p. 106) ➡ Image
Bethisy in 1764 (p. 121) ➡ Image
Chaumont in 1696 (p. 109) ➡ Image
Corrette in 1753 (p. 111) ➡ Image
D'Alambert-Rousseau 1752-1767 (p. 119) ➡ Image
Kirnberger II in 1771 (p. 90) ➡ Image
Kirnberger III in 1779 (p. 93) ➡ Image
Marpurg in 1756 (p. 117) ➡ Image
Pure minor thirds in 16th cen­tu­ry (p. 82) ➡ Image
Rameau en do in 1726 (p. 113) ➡ Image
Rameau en sib in 1726 (p. 115) ➡ Image
Sauveur in 1701 (p. 80) ➡ Image
Tartini-Vallotti in mid. 18th cen­tu­ry (p. 104) ➡ Image
Werckmeister III in 1691 (p. 194) ➡ Image
Werckmeister IV in 1691 (p. 96) ➡ Image
Werckmeister V in 1691 (p. 199) ➡ Image
Zarlino in 1558 (p. 85) ➡ Image

The pre­vi­ous exam­ple was Zarlino's tem­pera­ment, not to be con­fused with the pop­u­lar "nat­ur­al scale" of Zarlino, an exam­ple of just into­na­tion:

Zarlino's “nat­ur­al scale” ➡ Image
J.S. Bach's dis­ci­ple Johann Kirnberg (1721-1783) - (source)

J.S. Bach's Well-Tempered Clavier (BWV 846–893) is a col­lec­tion of two sets of pre­ludes and fugues in all 24 major and minor keys, dat­ed 1722. To judge the valid­i­ty of a tun­ing scheme it would be nec­es­sary to lis­ten to all the pieces. Readers impa­tient to know more may be inter­est­ed in a "com­pu­ta­tion­al" approach to the sub­ject, read Bach well-tempered tonal analy­sis and lis­ten to the results on the page The Well-tempered Clavier.

Fortunately, there are his­tor­i­cal clues as to the opti­mal choice: Friedrich Wilhelm Marpurg received infor­ma­tion from Bach's sons and pupils and Johann Kirnberger, one of these pupils, designed tun­ings that he claimed rep­re­sent­ed his master's idea of "well-tempered".

On the page Tonal analy­sis of musi­cal items we show that the analy­sis of tonal inter­vals tends to sug­gest the choice of Kirnberger III rather than Kirnberger II. However, the tem­pera­ment devised by the French physi­cian Joseph Sauveur in 1701 also seemed to fit bet­ter in terms of melod­ic inter­vals — and indeed it sounds beau­ti­ful… This, in turn, can be chal­lenged by the sys­tem­at­ic match­ing of all the works in books I and II with the tun­ing schemes imple­ment­ed on the Bol Processor — see page Bach well-tempered tonal analy­sis.

François Couperin's Les Ombres Errantes (1730)

Again, my apolo­gies to harp­si­chord play­ers, tuners and manufacturers!

This piece is from François Couperin's Quatrième livre pub­lished in 1730 ➡ read the full score (Creative Commons licence CC0 1.0 Universal). We used it to illus­trate the inter­pre­ta­tion of mor­dents when import­ing MusicXML files.

First, lis­ten to an (excel­lent) inter­pre­ta­tion of this work by the harp­si­chord play­er Iddo Bar-Shaï (source: https://youtu.be/DCwkMSTFV_E).

Despite its artis­tic qual­i­ty, this per­for­mance has some dis­so­nant effects, which are part­ly masked by the abun­dance of melod­ic orna­men­ta­tion: mor­dents, trills, etc. Such a depar­ture from the theme of the 'Ombres errantes' can­not be attrib­uted to either the com­pos­er or the per­former. It is there­fore legit­i­mate to ques­tion the tun­ing of the instru­ment. To do this, we must focus our atten­tion on tonal­i­ty, even if the sound syn­the­sis seems arti­fi­cial to lis­ten­ers whose atten­tion is focused on tem­po­ral­i­ty, orna­men­ta­tion and sound quality.

As some of the fol­low­ing tem­pera­ments were invent­ed (or doc­u­ment­ed?) after 1730, it is unlike­ly that the com­pos­er used them. Let's try them all any­way, and find the winner!

Equal tem­pera­ment ➡ Image
H.A. Kellner's BACH (p. 101) ➡ Image
Barca in 1786 (p. 106) ➡ Image
Bethisy in 1764 (p. 121) ➡ Image
Chaumont in 1696 (p. 109) ➡ Image
Corrette in 1753 (p. 111) ➡ Image
D'Alambert-Rousseau 1752-1767 (p. 119) ➡ Image
Kirnberger II in 1771 (p. 90) ➡ Image
Kirnberger III in 1779 (p. 93) ➡ Image
Marpurg in 1756 (p. 117) ➡ Image
Pure minor thirds in 16th cen­tu­ry (p. 82) ➡ Image
Rameau en do in 1726 (p. 113) ➡ Image
Rameau en sib in 1726 (p. 115) ➡ Image
Sauveur in 1701 (p. 80) ➡ Image
Tartini-Vallotti in mid. 18th cen­tu­ry (p. 104) ➡ Image
Werckmeister III in 1691 (p. 194) ➡ Image
Werckmeister IV in 1691 (p. 96) ➡ Image
Werckmeister V in 1691 (p. 199) ➡ Image
Zarlino in 1558 (p. 85) ➡ Image
Zarlino's “nat­ur­al scale” ➡ Image
Matching har­mon­ic inter­vals of "Le Petit Rien" with “Rameau en do” tem­pera­ment
(see full image)

The best tem­pera­ment for this piece might be Rameau en sib, which was devised by Couperin's con­tem­po­rary Jean-Philippe Rameau for musi­cal works with flats in the key sig­na­ture (Asselin, 2000 p. 149) — such as the present one. See the Tonal analy­sis of musi­cal items page for a descrip­tion of a sys­tem­at­ic (auto­mat­ed) analy­sis that con­firms this choice.

We might end up with lis­ten­ing to François Couperin's Le Petit Rien (Ordre 14e de clavecin in D major, 1722), which has two sharps in the key sig­na­ture, sug­gest­ing the use of a Rameau en do temperament.

This choice is also con­firmed by the method described on the page Tonal analy­sis of musi­cal items.

François Couperin's “Le Petit Rien” (1722), mm = 80, with a “Rameau en do” tem­pera­ment ➡ Image
Source: MusicXML score by Yvan43

Bernard Bel — 2022

Work in progress

Chapter VIII of Pierre-Yves Asselin's book (2000 p. 139-180) con­tains exam­ples of musi­cal works that illus­trate the rel­e­vance of spe­cif­ic tem­pera­ments. As the scores of many baroque and clas­si­cal mas­ter­pieces are avail­able in the dig­i­tal for­mat MusicXML, we hope to use Bol Processor's Importing MusicXML scores to transcode them and play these frag­ments with the sug­gest­ed temperaments.

Despite the lim­i­ta­tions of com­par­ing tem­pera­ments on only two musi­cal exam­ples, the aim of this page is to illus­trate the notion of "per­fec­tion" in sets of tonal inter­vals — and in music in gen­er­al. Read the dis­cus­sion: Just into­na­tion: a gen­er­al frame­work. If noth­ing else, we hope to con­vince the read­er that "equal tem­pera­ment" is not the "per­fect" solution!

Musicians inter­est­ed in con­tin­u­ing this research and relat­ed devel­op­ment can use the beta ver­sion of the Bol Processor BP3 to process musi­cal works and cre­ate new tun­ing pro­ce­dures. Follow the instruc­tions on the Bol Processor ‘BP3’ and its PHP inter­face page to install BP3 and learn its basic oper­a­tion. Download and install Csound from its dis­tri­b­u­tion page.

References

Asselin, P.-Y. Musique et tem­péra­ment. Paris, 1985, repub­lished in 2000: Jobert. Soon avail­able in English.

Importing MusicXML scores

MusicXML is a very pop­u­lar XML-based file for­mat for rep­re­sent­ing west­ern musi­cal nota­tion. It is designed for the exchange of scores between music nota­tion soft­ware and oth­er musi­cal devices.

Inside a MusicXML file…

A MusicXML file con­tains all the infor­ma­tion need­ed to rep­re­sent a musi­cal score in west­ern music nota­tion. It also con­tains data that can be processed by a sound device to "play" the score. The basic rep­re­sen­ta­tion may sound mechan­i­cal, lack­ing con­trol over vol­ume, veloc­i­ty, tem­po, etc., which are not accu­rate­ly rep­re­sent­ed on print­ed scores. As such, it can be used as a tool for check­ing the rep­re­sen­ta­tion of a musi­cal work, or as a teach­ing aid for deci­pher­ing scores.

In addi­tion to its use as an exchange for­mat between score edi­tors, many MusicXML files are edit­ed by groups of musi­cians — such as the MuseScore com­mu­ni­ty — to embed inten­si­ty and tem­po infor­ma­tion. Sound exam­ples are giv­en below.

Importing scores from music archives into the Bol Processor makes it pos­si­ble to use them (or frag­ments of them) in gram­mars that pro­duce vari­a­tions, for exam­ple Mozart's musi­cal dice game. Thanks to the Csound inter­face, these musi­cal works can even be played with spe­cif­ic tun­ings, as explained on the Microtonality page. The lat­ter was an incen­tive to imple­ment the MusicXML con­ver­sion, which makes it pos­si­ble to com­pare works from the Baroque and Classical reper­toires with the vari­ety of mean­tone tem­pera­ments doc­u­ment­ed by historians.

The MusicXML to Bol Processor con­vert­er is ful­ly func­tion­al on the PHP inter­face of BP3. Follow the instruc­tions on the Bol Processor ‘BP3’ and its PHP inter­face page to install BP3 and learn its basic operation.

Bol Processor's data format

The Bol Processor has its own data for­mat for rep­re­sent­ing musi­cal items that are intend­ed to pro­duce sound via its MIDI or Csound inter­face. This for­mat is dis­played and stored as plain text.

The syn­tax of Bol Processor data is based on poly­met­ric struc­tures — read the tuto­r­i­al on Polymetric struc­tures. A few ele­men­tary exam­ples will illus­trate this concept:

  • {A4 B4 C5} is a sequence of three notes "A4", "B4", "C5" played at the metro­nom­ic tempo
  • {A4, C5, E5, A5} is a A minor chord
  • {la3, do4, mi4, la4} is the same chord in Italian/Spanish/French notation
  • {dha4, sa5, ga5, dha5} is the same chord in Indian notation
  • {C4 G4 E4, F3 C4} is a two-level struc­ture call­ing for the jux­ta­po­si­tion and time align­ment of sequences "C4 G4 E4" and "F3 C4", which yields a polyrhyth­mic struc­ture that may be expand­ed to {C4_ G4_ E4_, F3__ C4__} in which ‘_’ are pro­lon­ga­tions of the pre­ced­ing notes.
  • {5, A4 Bb4 C5} is sequence "A4 Bb4 C5", 3 note played over 5 beats. Their dura­tions are there­fore mul­ti­plied by 5/3.
  • {7/16, F#3 G3} is sequence "F#3 G3" played over 7/16 beats. The dura­tion of each note is mul­ti­plied by (7/16) / 2 = 7/32.

Unlike con­ven­tion­al west­ern musi­cal scores, poly­met­ric struc­tures can be recur­sive­ly embed­ded with no lim­it to their com­plex­i­ty (except the machine). Some com­plex struc­tures are dis­cussed on the page Harm Visser's exam­ples. All tim­ings cal­cu­la­tions are per­formed on inte­ger ratios to achieve the best accu­ra­cy com­pat­i­ble with the system.

Why do we need to import scores?

The Bol Processor's data for­mat is over­all com­pact, com­putable and human­ly com­pre­hen­si­ble. However, its com­pact­ness makes it dif­fi­cult to edit com­plex poly­met­ric struc­tures. In prac­tice, these are cre­at­ed by gen­er­a­tive grammars…

A gram­mar that pro­duces pieces of tonal music may require "build­ing blocks" extract­ed from exist­ing musi­cal works. So far (in Bol Processor BP1 and BP2) it has been pos­si­ble to map the com­put­er key­board to arbi­trary char­ac­ters rep­re­sent­ing drum strokes (see the ini­tial project), or to cap­ture notes using com­mon music nota­tion — three dif­fer­ent con­ven­tions: Italian/Spanish/French, English and Indian. Sound-objects can also con­tain Csound scores and/or sequences of instruc­tions import­ed from MIDI files.

Things get com­plex when deal­ing with poly­phon­ic tonal music. Work is in progress on a method of cap­tur­ing MIDI events in real time. Since musi­cal mate­r­i­al exists on scores in Western nota­tion, and these scores have been digi­tised in inter­change for­mats such as MusicXML, an import pro­ce­dure that cap­tures the full com­plex­i­ty of the score is a great asset. Mozart's Musical dice game is a good exam­ple of this need.

In prac­tice you can pick up and rework frag­ments of the very large musi­cal reper­toire avail­able in MusicXML for­mat, or cre­ate your own build­ing blocks with a score edi­tor such as Werner Schweer's MuseScore — a pub­lic domain pro­gram that works on Linux, Mac and Windows. MuseScore recog­nis­es many input/output for­mats and it can cap­ture music via MIDI or Open Sound Control.

👉  Exporting music pro­duced by the Bol Processor to MusicXML scores is not yet on our agen­da. The rea­son for this is that the mod­el for tim­ing musi­cal events in the Bol Processor (poly­met­ric struc­tures) is more sophis­ti­cat­ed (and com­pact) than that used by score rep­re­sen­ta­tions derived from Western frame­works. Charles Ames wrote (Exporting to External Formats, 2013):

Of the two for­mats, MIDI oper­ates at (or below) the lev­el of per­for­mance ges­tures while MusicXML oper­ates note-by-note. Accelerations and ritards, ramped dynam­ics, pitch bend, and oth­er con­tin­u­ous con­trols are musi­cal fea­tures that MIDI han­dles well. MusicXML han­dles these same fea­tures clum­si­ly or not at all. Such lim­i­ta­tions make it dif­fi­cult to con­sid­er MusicXML as a viable inter­me­di­ary for MIDI, at least for the fore­see­able future.

Importing and converting a MusicXML score

A few pub­lic domain MusicXML scores can be found in the "xml­sam­ples" of the bp3-ctests-main.zip sam­ple set shared on GitHub. Most of them are frag­ments used to illus­trate the for­mat. We start with a very short frag­ment of "MozartPianoSonata.musicxml", which also has a graph­i­cal score:

Mozart's piano sonata, an excerpt in com­mon west­ern music notation

First cre­ate a data file, for exam­ple "-da.musicXML". The default set­tings will suf­fice for this exam­ple, but a "-se.musicXML" file may be declared in the data win­dow and you will be prompt­ed to cre­ate it. Leave the default set­tings as they include the graph­ic display.

To import the MusicXML file, click the Choose File but­ton at the top of the edit­ing form, select the file and click IMPORT.

The machine dis­plays the list of "parts" con­tained in the score. Each part can be assigned to an instru­ment, includ­ing human voic­es. This score con­tains a unique part to be played on an Acoustic Grand Piano, which would be played on chan­nel 1 of a MIDI device. This MIDI chan­nel infor­ma­tion appears in the Bol Processor score and can lat­er be mapped to a Csound instrument.

Clicking on CONVERT THEM (or IT) is all that remains to be done!

This will cre­ate the fol­low­ing Bol Processor data:

// MusicXML file ‘MozartPianoSonata.musicxml’ con­vert­ed
// Score part ‘P1’: instru­ment = Acoustic Grand Piano — MIDI chan­nel 1

-se.musicXML

{_tempo(2) _chan(1){2,{2,C#6},{C#5,E5,A5}-,{1/4,A2 C#3 E3}{1/4,A3}{3/2,A3 A3 A3}}} {_tempo(2) _chan(1){2,{2,D6 C#6 B5 C#6 D6 C#6 B5 C#6},{1/4,A2 C#3 E3}{1/4,A3}{3/2,A3 A3 A3}}}{_tempo(2) _chan(1){2,{2,F#5,A5,D6},{1/4,D2 F#2 A2}{1/4,D3}{3/2,D3 D3 D3}}}{_tempo(2) _chan(1){2,{1/8,D6}{3/8,E5,A5,C#6}{1/8,D6}{3/8,E5,A5,C#6}{1/8,D6}{3/8,E5,A5,C#6}{1/8,D6}{3/8,E5,A5,C#6},{1/4,A2 C#3 E3}{1/4,A3}{3/2,A3 A3 A3}}}{_tempo(2) _chan(1){2,{3/2,B5}{1/2,E6},{2,E5,G#5},{1/4,E2 G#2 B2}{1/4,E3}{3/2,E3 E3 E3}}}

Imported scores can be played, expand­ed, explod­ed and imploded

This may look uncom­fort­able to read, but remem­ber that a lay­man would not even be able to make sense of scores in Western music nota­tion! Fortunately, there is now a PLAY but­ton to lis­ten to the piece. By default, it is also saved as a MIDI file, which can be inter­pret­ed by a MIDI soft syn­the­sis­er such as PianoTeq:

Excerpt of Mozart's piano sonata played by Bol Processor with PianoTeq

The same process can be invoked in the Csound envi­ron­ment. If Csound is installed and respon­sive, select­ing the Csound out­put for­mat will pro­duce a Csound score imme­di­ate­ly con­vert­ed to an AIFF sound file dis­played on the process window:

Playing the same piece via Csound. Note that the dura­tion is 12 sec­onds (instead of 10) because a silence of 2 sec­onds (by default) is append­ed at the end of the track.

Understanding the conversion process

Let us com­pare the score in com­mon Western nota­tion with its con­ver­sion to Bol Processor data. This may be help­ful in under­stand­ing the fea­tures and lim­i­ta­tions of MusicXML files. Remember that this for­mat is a com­plete descrip­tion of a graph­i­cal rep­re­sen­ta­tion of the musi­cal work. It is up to the musi­cian to add implic­it infor­ma­tion nec­es­sary for a cor­rect (and artis­tic) ren­der­ing of the piece…

Scores of clas­si­cal works are divid­ed into bars (mea­sures) marked by ver­ti­cal lines. This score con­tains 5 mea­sures of equal dura­tion. The MusicXML file con­tains data indi­cat­ing that the dura­tion of each mea­sure is 2 beats, i.e. 2 sec­onds, if the metronome is beat­ing at 60 beats per minute. However, the _tempo(2) dou­bles the speed, result­ing in mea­sures that last 1 sec­ond. The third mea­sure con­tains a chord {2, F#5, A5, D6} of half notes (min­ims) last­ing 2 beats.

The Bol Processor score also shows the five mea­sures, each of which is inter­pret­ed as a poly­met­ric struc­ture. At the begin­ning of each mea­sure, a MIDI chan­nel instruc­tion has been auto­mat­i­cal­ly insert­ed to indi­cate which part it belongs to.

Let us read the first mea­sure and com­pare it with its con­ver­sion on the score:

{2, {2, C#6} ,
{C#5, E5, A5} - ,
{1/4, A2 C#3 E3} {1/4, A3} {3/2, A3 A3 A3}}

The ‘2’ (green colour) is the total dura­tion of the poly­met­ric expres­sion (i.e. the mea­sure). The first two lines are the upper score (in the G key on the pic­ture) while the third line (in the F key on the pic­ture) is the low­er score. At the top of the upper score is a half note C#6 inter­pret­ed as {2, C#6}. A com­ma (in red colour) indi­cates a new field of the poly­met­ric struc­ture that needs to be super­im­posed on the first field. It con­tains a chord {C#5, E5, A5} of quar­ter notes (crotch­ets) of 1 beat, fol­lowed by a rest of 1 beat notat­ed "-".

➡ In the print­ed score there is an arpeg­gio on the chord which is ignored for the moment to make the expla­na­tions eas­i­er. Arpeggios will be con­sid­ered below.

To com­plete the field, we need a rest of 1 beat, which is not indi­cat­ed in the graph­i­cal score, although the gap is men­tioned in the MusicXML file. In Bol Processor nota­tion, rests can be writ­ten as '-' or as inte­ger numbers/ratios. For exam­ple, a rest of 3 beats could be notat­ed “---” or {3, -} or {3}, while a rest of 3/4 beats should be notat­ed {3/4, -} or {3/4}.

The low­er score con­tains a sequence that is dif­fi­cult for a machine to process: three grace notes "A2 C#3 E3". Grace notes have no explic­it dura­tion in MusicXML files, so we fol­low the prac­tice of giv­ing this sequence a dura­tion half that of the fol­low­ing main note, here the first occur­rence of "A3", which is declared as eight notes of 1/2 beat. Consequently, the stream of grace notes has a total dura­tion of 1/4 beat and is notat­ed {1/4, A2 C#3 E3}. This is fol­lowed by A3 whose length is reduced by one half, so {1/4, A3}. The fol­low­ing 3 occur­rences of A3 have a total dura­tion of 3/2 beats, so {3/2, A3 A3 A3}.

The struc­ture of this first mea­sure is made clear in the graph­ic dis­play. Note that, unlike the piano roll dis­play, this object dis­play does not posi­tion sound-objects ver­ti­cal­ly accord­ing to pitch values:

The first mea­sure of the Mozart sonata's sample

The rest of the score can be deci­phered and explained in the same way. Bol Processor nota­tion is based on very sim­ple (and mul­ti­cul­tur­al) prin­ci­ples, but it is dif­fi­cult to cre­ate by hand… So it is best cre­at­ed by gram­mars or extract­ed from MusicXML scores.

Note that it is easy to change the tem­po of this piece. For exam­ple, to slow it down, insert the instruc­tion _tempo(1/2) at the beginning:

Exploding scores

Clicking the EXPLODE but­ton seg­ments the musi­cal work into indi­vid­ual mea­sures, mak­ing it eas­i­er to analyse the con­ver­sion or reuse fragments:

The five mea­sures of Mozart's sonata explod­ed on the Data window

Each mea­sure can be played (or expand­ed) sep­a­rate­ly. Segments are labelled [item 1], [item 2] etc. for easy identification.

The IMPLODE but­ton recon­structs the orig­i­nal work from its fragments.

A more complex example

Let us try DichterLiebe (op. 48) Im wun­der­schö­nen Monat Mai by Robert Schumann. The MusicXML score is in the "xml­sam­ples" fold­er dis­trib­uted in the sam­ple set "bp3-ctests-main.zip", which is avail­able on GitHub, togeth­er with its graph­ic score (read the PDF file).

The Bol Processor score is more complex:

"Im wun­der­schö­nen Monat Mai" (Robert Schumann)

Im wun­der­schö­nen Monat Mai (Robert Schumann) inter­pret­ed by the Bol Processor on a PianoTeq vibrophone

The cor­rect ren­der­ing of this piece on the Bol Processor is obtained with its (default) quan­ti­za­tion set to 10 mil­lisec­onds. Quantization is a process of merg­ing the tim­ing of events when they are less than a cer­tain val­ue apart: a human would not notice a 10 mil­lisec­ond tim­ing error, but merg­ing "time streaks" is an effi­cient way of sav­ing mem­o­ry when build­ing a phase dia­gram of events. In this par­tic­u­lar piece, set­ting the quan­ti­za­tion to 30 ms would already pro­duce a notice­able error in syn­chro­ni­sa­tion. This gives an idea of the accu­ra­cy expect­ed from human per­form­ers, which their trained audi­to­ry and motor sys­tems can eas­i­ly handle.

Note that this MusicXML score has 2 parts, one for voice and the sec­ond one for piano. These are sent on MIDI chan­nels 1 and 2 respec­tive­ly. These chan­nels should in turn acti­vate dif­fer­ent Csound instru­ments. If sev­er­al instru­ments are not avail­able, it is pos­si­ble to lis­ten to their parts sep­a­rate­ly by import­ing select­ed parts of the score.

As the first mea­sure is incom­plete (1/4 beat), the piano roll is not aligned with the back­ground streaks (num­bered 0, 1, 2…):

This prob­lem can be solved by insert­ing a silence of 3/4 beats dura­tion before the score:

3/4 {_chan(1){1/4,{{1/4,-}}},_chan(2){1/4,{{1/4,C#5},{1/4,-}}}} … etc.

which yields:

Piano roll aligned to the time streaks

The musi­cal work can be inter­pret­ed at dif­fer­ent speeds after insert­ing a "_tempo()" instruc­tion in the begin­ning. For exam­ple, giv­en that the metronome is set to 60 beats per minute, insert­ing _tempo(3/4) would set the tem­po to 60 * 3 / 4 = 45 beats per minute. To pro­duce a sound ren­der­ing of this par­tic­u­lar piece we insert­ed a per­for­mance con­trol _legato(25), which extends the dura­tion of all notes by 25% with­out mod­i­fy­ing the score. We also added some rever­ber­a­tion on the PianoTeq vibro­phone. The result­ing piano roll was:

Same piece with _legato(25) extend­ing note dura­tions by 25%

Time-reversed Bach?

The _retro tool also pro­duces bizarre trans­for­ma­tions, most of which would sound "unmu­si­cal". In fact, some of them are quite inter­est­ing. Consider, for exam­ple, Bach's Goldberg Variation No. 5 played on Bol Processor + Csound with (Bach's pre­sum­ably favourite) Kirnberger II tem­pera­ment — see the page Comparing tem­pera­ments:

Bach's Goldberg Variation Nr. 5 (Kirnberger II tem­pera­ment) — MuseScore tran­scrip­tion by crashbangzoom808

Listen to the same piece after apply­ing the _retro tool:

Time-reversed ver­sion of Bach's Goldberg Variation Nr. 5 — Kirnberger II temperament

In Bol Processor scores cre­at­ed by import­ing MusicXML files, many (musi­cal­ly mean­ing­ful) mod­i­fi­ca­tions can be made, such as insert­ing vari­ables and send­ing the data to a gram­mar that will pro­duce com­plete­ly dif­fer­ent pieces. To achieve this, the gram­mar — for exam­ple "-gr.myTransformations" — must be declared above the data window.

The claim for "well-tempered tun­ing" for the inter­pre­ta­tion of Baroque music can be fur­ther assessed by com­par­ing the fol­low­ing ver­sions of J.-S. Bach's Brandenburg Concerto Nr 2 in F major (BWV1047) part 3:

J.-S. Bach's Brandenburg Concerto Nr 2 in F major (BWV1047) part 3 — Kirnberger II temperament
J.-S. Bach's Brandenburg Concerto Nr 2 in F major (BWV1047) part 3 — Equal-tempered tuning

Complex structures

At the time of writ­ing, BP3 was able to import and con­vert all the MusicXML files in the "xmlsamples" fold­er. However, it may not be pos­si­ble to play or expand pieces clas­si­fied as "too com­plex" due to over­flow. Since it is pos­si­ble to iso­late mea­sures after click­ing the EXPLODE but­ton, a PLAY safe but­ton has been cre­at­ed to pick up chunks and play them in a recon­struct­ed sequence. The only draw­back is that the graph­ics are dis­abled, but this is less impor­tant giv­en the com­plex­i­ty of the work.

For exam­ple, lis­ten to Lee Actor's Prelude to a Tragedy (2003), a musi­cal work con­sist­ing of 22 parts assigned to var­i­ous instru­ments via the 16 MIDI chan­nels — read the graph­ic score.

Lee Actor's "Prelude to a Tragedy" (2003) with incor­rect assign­ment of some instru­ments, played by the Bol Processor using its Javascript MIDIjs play­er

Instrument map­ping is incor­rect, with most chan­nels being played as piano instead of flute, oboe, English horn, trum­pet, vio­la, etc. Parts mapped to chan­nels 10 and 16 are fed with drum sounds. All these instru­ments were syn­the­sised by the Javascript MIDIjs play­er installed on the BP3's inter­face. A bet­ter solu­tion would be to feed the "prelude-to-a-tragedy.mid" MIDI file into a syn­the­sis­er capa­ble of imi­tat­ing the full set of instru­ments, such as MuseScore.

Score part ‘P1’: instru­ment = Picc. (V2k) — MIDI chan­nel 1
Score part ‘P2’: instru­ment = Fl. (V2k) — MIDI chan­nel 2
Score part ‘P3’: instru­ment = Ob. (V2k) — MIDI chan­nel 3
Score part ‘P4’: instru­ment = E.H. (V2k) — MIDI chan­nel 4
Score part ‘P5’: instru­ment = Clar. (V2k) — MIDI chan­nel 5
Score part ‘P6’: instru­ment = B. Cl. (V2k) — MIDI chan­nel 5
Score part ‘P7’: instru­ment = Bsn. (V2k) — MIDI chan­nel 7
Score part ‘P8’: instru­ment = Hn. (V2k) — MIDI chan­nel 8
Score part ‘P9’: instru­ment = Hn. 2 (V2k) — MIDI chan­nel 8
Score part ‘P10’: instru­ment = Tpt. (V2k) — MIDI chan­nel 9
Score part ‘P11’: instru­ment = Trb. (V2k) — MIDI chan­nel 11
Score part ‘P12’: instru­ment = B Trb. (V2k) — MIDI chan­nel 11
Score part ‘P13’: instru­ment = Tuba (V2k) — MIDI chan­nel 12
Score part ‘P14’: instru­ment = Timp. (V2k) — MIDI chan­nel 13
Score part ‘P15’: instru­ment = Splash Cymbal — MIDI chan­nel 10
Score part ‘P16’: instru­ment = Bass Drum — MIDI chan­nel 10
Score part ‘P17’: instru­ment = Harp (V2k) — MIDI chan­nel 6
Score part ‘P18’: instru­ment = Vln. (V2k) — MIDI chan­nel 14
Score part ‘P19’: instru­ment = Vln. 2 (V2k) — MIDI chan­nel 15
Score part ‘P20’: instru­ment = Va. (V2k) — MIDI chan­nel 16
Score part ‘P21’: instru­ment = Vc. (V2k) — MIDI chan­nel 16
Score part ‘P22’: instru­ment = Cb. (V2k) — MIDI chan­nel 16

Lee Actor's "Prelude to a Tragedy" (2003) inter­pret­ed by MuseScore

Remember, how­ev­er, that these are raw inter­pre­ta­tions of musi­cal scores based on a few quan­ti­fied para­me­ters. For a bet­ter rep­re­sen­ta­tion, you should add per­for­mance para­me­ters to the Bol Processor score to con­trol vol­ume, panoram­ic, etc. on a MIDI device, or an unlim­it­ed num­ber of para­me­ters with Csound.

Stylistic lim­i­ta­tions are evi­dent in tran­scrip­tions of jazz music, as opposed to musi­cal works orig­i­nal­ly com­posed in writ­ing. A tran­scrip­tion of impro­vised mate­r­i­al is only a fixed image of one of its myr­i­ad vari­a­tions. As a result, its score may con­vey a ped­a­gog­i­cal rather than an artis­tic vision of the piece. The fol­low­ing is a tran­scrip­tion of Oscar Peterson's Watch What Happens from a MusicXML score:

Oscar Peterson's "Watch What Happens" inter­pret­ed by Bol Processor on PianoTeq, mm = 136 bpm
Source: MusicXML score by jonas­gss in the MuseScore com­mu­ni­ty

The Bol Processor score of this tran­scrip­tion is as fol­lows. The metronome has been increased to 136 beats per minute — notat­ed _tempo(136/60) — to match an esti­mat­ed per­for­mance speed. This is easy with a machine! Below is an excerpt from the piano roll dis­play and the full Bol Processor score:

Excerpt of piano roll for Oscar Peterson's "Watch What Happens"

_tempo(136/60) {_vel(64) _chan(1){4,{--- 1/2 {1/2,C4 F4 C5}}},_vel(64) _chan(2){4,{ 4}}}{_vel(64) _chan(1){4,{Bb4 F4{3/2,Ab4}{1/2,Ab5 Gb5},- C4 --}},_vel(64) _chan(2){4,{- D3{2,Gb3}, 2 {2,Eb2,Bb2}}}}{_vel(64) _chan(1){4,{{2,F5 Bb4 C5 C4}{3/2,D4}{1/2,Eb4 Db4 D4},{F4,C5}{1/2,F4,G4}{1/2,F3,G3}{2,Gb3}}},_vel(64) _chan(2){4,{C4{1,Bb3 Bb2}{2,A2},{D3,A3}{1,Eb3 Eb2}{2,D2}}}}{_vel(64) _chan(1){4,{{2/3,Ab4&}{2/3,E4&,&Ab4}{2/3,&E4,G4} 1/2 {1/6,Db5}{1/3,Db6&}&Db6,-- Gb4 -, 2/3 {1/3,Cb4&}{1,&Cb4}{Bb3,Eb4}-}},_vel(64) _chan(2){4,{ 2/3 {1/3,F3&}&F3{2,E3}, 2/3 {1/3,G2&}{1,&G2}{2,C2,G2}}}}{_vel(64) _chan(1){4,{ 1/2 {1/6,F5}{1/3,F6&}&F6{2,A4 Cb7 G4},F4 -{3/2,- Cb6 -}{1/2,F4 E4 F4},{Ab3,Db4} 1 {C4,F4}-}},_vel(64) _chan(2){4,{{4,Eb3 Eb3},{2,F2}{2,Cb2,Gb2}}}}{_vel(64) _chan(1){4,{{3,D5&}{1,&D5 G5 Bb5 D6 C6 Bb5},{3/2,- F4 Gb4}{1/2,A4 Gb4}{2,G4}}},_vel(64) _chan(2){4,{{3/2,- F3 Gb3}{1/2,A3 Gb3}G3&{1,&G3 G3 Bb3 D4 C4 Bb3}, 1/2 {3/2,Bb2}--}}}{_vel(64) _chan(1){4,{D6 A4 A4{1/2,G5 Bb5}{1/2,D6 C6 Bb5}, 1 {Cb4,Eb4,F4,Ab4}{Bb3,D4,Gb4}-}},_vel(64) _chan(2){4,{D4 F3 E3{1/2,G3 Bb3}{1/2,D4 C4 Bb3}, 1 {Db2,Ab2}{C2,G2}-}}}{_vel(64) _chan(1){4,{D6{3/4,D4}{1/4,F4}{1/3,Eb4 G4 Bb4 D5}{2/3,F5 Eb5 G5 Bb5}{1/4,Cb6}{1/4,G4 Bb4}{1/2,D5 C5 Bb4}, 1 {3/4,F3,Ab3}{1/4,Ab3,Cb4} 1 {Cb5,Eb5,G5}}},_vel(64) _chan(2){4,{-{1/2,Cb3}{1/4,C3 Db3}{1/4,D3}{1/3,C3 Eb3 G3 Bb3}{1/3,D4 C4}{1/3,Eb4}A4,-- 1 {F3,Eb4}}}}{_vel(64) _chan(1){4,{D5 Eb5 E5 Eb5,{4,- A4 - Bb4 - Cb5 - Bb4},{3/2,- D4 -}{1/2,Eb4,Ab4} 1/2 {1/2,E4,A4} 1/2 {1/2,Eb4,Ab4}}},_vel(64) _chan(2){4,{{4,- A3 - Bb3 - Cb4 - Bb3},Bb2 Cb3 C3 Cb3,-{3,- Gb3 - G3 - Gb3}}}}{_tempo(41/30) _vel(64) _chan(1){1319/240,{D5{17/120,F2 F3} 17/1920 {119/1920,A3}{17/80,C4 D4 F4}103/40, 57/40 {17/240,A4}601/240, 359/240 4, 359/240 {17/120,C5 D5} 17/1920 {119/1920,F5}{17/80,A5 C6 D6}499/240, 461/240 {17/240,F6}Db6{1,A4 Ab4}1/120, 479/120 1/120,{D4,G4,A4}--{1,- F4}}},_vel(64) _chan(2){4,{A3 -{1,- A1}Db4,{Bb2,F3} 2 {G3,A3}}}}{_vel(64) _chan(1){2,{A4{1,- G5 Bb5 D6 C6 Bb5},{C4,D4}-}},_vel(64) _chan(2){2,{D3{1,- G3 Bb3 D4 C4 Bb3},{Bb1,F2}-}}}{_vel(64) _chan(1){4,{D6 A4 C5&{1,&C5 G5 Bb5 D6 C6 Bb5}, 1 {Cb4,Eb4,F4,Ab4}{2,Bb3,Eb4,Ab4}}},_vel(64) _chan(2){4,{D4 F3 E3&{1,&E3 G3 Bb3 D4 C4 Bb3}, 1 {Db2,Ab2}{2,C2,G2}}}}{_vel(64) _chan(1){3,{D6{1,Ab3 Cb4 D4 F4 Eb4 G4 Bb4 D5}{1,F5 Eb5 G5 Bb5}}},_vel(64) _chan(2){3,{D4{1,Cb3 C3 Db3 D3 C3 Eb3 G3 Bb3}{1,D4 C4 Eb4 G4}}}}{_tempo(7/4) _vel(64) _chan(1){671/96,{Cb6{17/80,A6 F6} 17/1280 {119/1280,G6}{17/160,G6} 17/1920 {119/1920,Eb6}601/240, 359/240 4, 359/240 1/16 {1/8,C6}{1/16,C6}{1/4,A5 F5}{53/240,G5 Eb5} 53/3840 {371/3840,C5}{53/80,C5 A4 F4 G4 Eb4 C4}97/96, 287/96 4, 287/96 {1/2,G3 A3 F3}{1/2,Eb3}1/96, 383/96 1/96,{Cb5,Eb5,G5} 1/4 1/12 {1/3,D6 -}{1/12,G5}{1/2,- D5} 1/12 {1/3,G4 -}{1/12,D4} 1/4 -}},_vel(64) _chan(2){4,{{2,A4}- 1/2 {1/2,- Cb2},{2,F3,Eb4}--}}}{_vel(64) _chan(1){3,{{2,- D5 A4 Eb5 Bb4 E5}-, 7/3 {2/3,F5 C5},{4/3,- A4 D4 -}{1/3,Eb4,Ab4} 1/3 {1/3,E4,A4} 1/3 {1/3,F4,Bb4}}},_vel(64) _chan(2){3,{{2/3,Bb1}{4/3,Bb2 Cb3 Bb3 C3}-, 7/3 {2/3,Db3 C4},-{2,- Gb3 - G3 - Ab3}}}}{_vel(64) _chan(1){4,{Gb5{1,Db4 Gb4 A4 D5 F6 A6 D7 Gb7 A6 D7 Gb7 A7}-{1,Db6 Bb5},{Gb4,Cb5,Db5} 2 {C5,F5}}},_vel(64) _chan(2){4,{{1/2,Db4}{1/2,D2 A2 Gb3&}&Gb3 A1 F4,{D3,A3} 2 {G3,Db4}}}}{_vel(64) _chan(1){2,{{1/2,A5}{1/2,A4 D5}{1,G5 - Gb5 - Eb5 D5},{A4,Db5,Eb5,Gb5}-}},_vel(64) _chan(2){2,{{1/2,Gb2}{1/2,A3 D4}{1,G4 - Gb4 - E4 D4},{D1,A1}-}}}{_vel(64) _chan(1){4,{{1,F5 Bb3}{1/2,G4 F4}{1/2,A4 C5 E5}Db5{1,Bb4 Ab4 -}, 2 {F4,Ab4}{1,G4 F4 -}}},_vel(64) _chan(2){4,{{1/2,F4}{1/2,Db3 D3 Eb3}{1/2,E3 D3}{1/2,- Cb4 C4}{1,Db4 G2 Eb4}{2/3,Eb4}{1/3,Ab2},-- 2/3 {1/3,F3,Cb4}{2/3,F3,Cb4}{1/3,Db2}}}}{_vel(64) _chan(1){3,{{1,- E6}{1/2,E6 G4}{1/2,E5}{1/2,Eb4 Bb4}{1/2,Ab4}, 1/2 {1/2,G5,Cb6,C6}{G5,Cb6,C6}{1/2,Cb4 G4}{1/2,F4}}},_vel(64) _chan(2){3,{E3{3/4,E4}{1/4,F3}{3/4,A2}{1/4,Ab2},{C2,G2}{G3,Cb4,C4} 1/2 {1/2,- Db2}}}}{_vel(64) _chan(1){4,{{1/2,G4}{1/2,G4 Cb5 D5}{1,Cb5 C5 E5 G5 Cb6}{3/2,D6}{1/2,C6 Cb6 A5 G5},{A3,D4}---}},_vel(64) _chan(2){4,{E3 ---,{C2,G2}---}}}{_vel(64) _chan(1){3,{Bb5 G4{1,Ab4 Gb4 Db4 Bb3}, 1 {Bb3,Eb4}-}},_vel(64) _chan(2){3,{- C3 -}}}{_vel(64) _chan(1){3,{{3,Eb4},- Bb3 Db4,{2,- Gb3}{Gb3,Bb3}}},_vel(64) _chan(2){3,{- Eb2 Ab2}}}{_vel(64) _chan(1){3,{{3,F4},{3,F3,Bb3,C4}}},_vel(64) _chan(2){3,{{3,Ab2},{3,Db2}}}}{_vel(64) _chan(1){3,{{3,F4},{3,G3,Bb3,Eb4}}},_vel(64) _chan(2){3,{{3,Eb3},{3,C2,G2}}}}{_vel(64) _chan(1){3,{{2,F4&}{1/2,&F4}{1/2,- F4},{3,Gb3,A3,Db4}}},_vel(64) _chan(2){3,{{3,Eb3},{3,Cb2,Gb2}}}}{_vel(64) _chan(1){3,{{3,D5},- F4 Gb4,- D4{1/2,D4}{1/2,G4 Gb4}}},_vel(64) _chan(2){3,{- F3{1/2,Gb3}{1/2,A3 Gb3},-{2,Bb2}}}}{_vel(64) _chan(1){2,{G4{1,G5 Bb5 D6 C6 Bb5}}},_vel(64) _chan(2){2,{G3{1,G3 Bb3 D4 C4 Bb3}}}}{_vel(64) _chan(1){4,{D6 A4 C5{1,G5 Bb5 D6 C6 Bb5}, 1 {Cb4,Eb4,Ab4}{Bb3,Eb4,Ab4}-}},_vel(64) _chan(2){4,{D4 F3 E3{1,G3 Bb3 D4 C4 Bb3}, 1 {Db2,Ab2}{C2,G2}-}}}{_vel(64) _chan(1){3,{D6{1,Ab3 Cb4 D4 F4 Eb4 G4 Bb4 D5}{1,F5 Eb5 G5 Bb5}}},_vel(64) _chan(2){3,{D4{1,Cb3 C3 Db3 D3 C3 Eb3 G3 Bb3}{1,D4 C4 Eb4 F4}}}}{_vel(64) _chan(1){3,{{3/2,Cb6}{1,G4 Bb4 D5 C5}{1/2,Bb4},-- 1/2 {1/2,- Bb4&},{2,Cb5,Eb5,G5}-}},_vel(64) _chan(2){3,{{2,A4}-,{2,F3,Eb4}-}}}{_vel(64) _chan(1){4,{ 1/2 {3/2,F4}{1/2,F4}Bb4{1/2,Bb4 Bb4},{3/2,&Bb4}{3/2,Bb4& &Bb4 -}-, 1/2 {1,C4}{1/2,Db4,Gb4}{1/2,Db4}{3/2,C4,F4}}},_vel(64) _chan(2){4,{ 1/2 Gb3{1,Ab3 Gb3}Gb3&{1/4,&Gb3}{1/4,- Ab2}, 1/2 {1,Ab2}{1/2,E2,Cb3}{1/2,Eb2,Bb2}{3/2,Ab2}}}}{_vel(64) _chan(1){3,{{1/2,Bb4 C5}{3/8,Ab4}{1/8,Ab4}{3/4,Ab4}{1/4,Bb4}{3/4,Gb4}{1/4,Gb4},{1/2,C4,F4}{1/2,Bb3,Eb4}{1,E4}{Ab3,Db4}}},_vel(64) _chan(2){3,{{1,Gb3 F3}E3 Eb3,{1/2,Ab2}{1/2,Db2,Ab2}{1,Gb2}{Cb2,Gb2}}}}{_vel(64) _chan(1){3,{{3/4,F4}{9/4,C4 Db4 Eb4 F4 Ab4 C5 Eb5 F5 Ab5}, 1/4 {3/4,G4}--,{1,- D4}--,{1/2,Bb3,Eb4}{1/2,A3}Ab3 Ab4}},_vel(64) _chan(2){3,{{1,G2 Eb3}F3 F4,{1,C2 F2}{1,Bb2}{Ab3,Db4}}}}{_vel(64) _chan(1){3,{ 1/8 {3/8,Db5&}{1/2,&Db5} 1/4 {1/4,- C4}{17/80,Db4 E4} 23/1280 {161/1280,G4}263/160 183/160, 89/48 {23/160,C5}{9/160,Db5}1/480 227/240,--- 1/480, 493/240 {1/6,E5}{53/160,G5 C6 D6} 1/480 {53/120,Eb6 G6 C7 D7}1/240, 719/240 1/240,A4 --, 1/3 {2/3,A5}--, 1/4 {3/4,E5}--}},_vel(64) _chan(2){3,{ 1/8 {3/8,G3&}{1/2,&G3}{17/80,Eb2 Bb2} 23/1280 {161/1280,G3}263/160, 65/48 {23/160,Db3&}{3/2,&Db3&}1/480, 719/480 3/2 1/480,Eb3 --, 1/3 {2/3,F4}--, 1/4 {3/4,Db4}--}}}{_vel(64) _chan(1){4,{{1/4,- G7}{3/4,C8&}{1/2,&C8 -} 1/2 --,Eb7 1/3 {8/3,- Eb4&},-- 2/3 {1/3,G3&,Ab3&,C4&}{&G3&,&Ab3&,&C4&}}},_vel(64) _chan(2){4,{&Db3 1/6 {1/2,Ab2}{1/3,Eb3&}{2,&Eb3&}}}}{_vel(64) _chan(1){4,{ 4,&Eb4 - 2/3 {1/3,Db4&}&Db4&,{&G3,&Ab3,&C4}- 2/3 {1/3,F3&,Ab3&,Bb3&}{&F3&,&Ab3&,&Bb3&}}},_vel(64) _chan(2){4,{{6/5,&Eb3 Eb3}{4/5,Ab2 Eb3&}{2,&Eb3&}}}}{_vel(64) _chan(1){4,{ 4,&Db4 - 2/3 {1/3,Eb4&}&Eb4&,{&F3,&Ab3,&Bb3}- 2/3 {1/3,G3&,Ab3&,C4&}{&G3&,&Ab3&,&C4&}}},_vel(64) _chan(2){4,{{6/5,&Eb3 Eb3}{4/5,Ab2 Eb3&}{2,&Eb3&}}}}{_vel(64) _chan(1){4,{ 4,{2,&Eb4}- 1/6 {1/2,F5}{1/3,Ab5&},{2,&G3,&Ab3,&C4}--}},_vel(64) _chan(2){4,{&Eb3&{2/3,&Eb3}{1/3,F4&}{2,&F4&},- 2/3 {1/3,Ab3&,C4&,Db4&}{2,&Ab3&,&C4&,&Db4&}}}}{_vel(64) _chan(1){4,{ 4,{1/6,&Ab5}{1/2,Bb5}{1/3,F5}Ab5&{1/3,&Ab5 -}{2/3,- Eb5} 1/2 1/8 {3/8,Ab4}}},_vel(64) _chan(2){4,{&F4 2/3 {1/3,G4&}{2,&G4&},{&Ab3,&C4,&Db4} 2/3 {1/3,Bb3&,C4&,Eb4&}{2,&Bb3&,&C4&,&Eb4&}}}}{_vel(64) _chan(1){4,{{1/4,Cb5 C5&}{3/4,&C5&}&C5&{1/6,&C5}{1/2,Bb4}{1/3,C5} 1/8 {3/8,Db5} 1/8 {3/8,Eb5}}},_vel(64) _chan(2){4,{&G4&{1,&G4 - F4&}{2,&F4&},{&Bb3&,&C4&,&Eb4&}{1/3,&Bb3,&C4,&Eb4} 1/3 {1/3,Ab3&,C4&,Db4&}{2,&Ab3&,&C4&,&Db4&}}}}{_vel(64) _chan(1){4,{{1/5,Cb5 Eb5&}{4/5,&Eb5 Bb4}{1/2,Eb5} 1/8 {3/8,Bb4} 1/6 {1/2,Eb5}{4/3,Bb4& &Bb4 - Eb4&},--- 1/8 {3/8,Ab4} 1/2,C5 - C5 -}},_vel(64) _chan(2){4,{&F4&{1,&F4 - G4&}{2,&G4&},{&Ab3&,&C4&,&Db4&}{1/3,&Ab3,&C4,&Db4} 1/3 {1/3,Bb3&,C4&,Eb4&}{2,&Bb3&,&C4&,&Eb4&}}}}{_vel(64) _chan(1){1921/480,{{1/6,&Eb4}{1/2,F4}{1/3,Eb4}- 23/160 {103/240,F5}343/240, 247/96 {137/240,Ab5} 1/480 {103/240,Bb5}41/96, 343/96 {103/240,C6} 0, 4 1/480}},_vel(64) _chan(2){4,{{2/3,&G4}{1/3,C4}{3,F4&},{2/3,&Bb3,&C4,&Eb4}{1/3,Bb3}{3,Ab3&,C4&,Db4&}}}}{_vel(64) _chan(1){4,{{137/120,Ab5 F5} 1/8 {117/160,Eb6}{137/160,- G5 Eb5&}{183/160,&Eb5&}}},_vel(64) _chan(2){4,{{2/3,&F4}{1/3,F4}{2,G4&}{2/3,&G4}{1/3,G4&},{2/3,&Ab3,&C4,&Db4}{1/3,Ab3,C4,Db4}{2,Bb3&,C4&,Eb4&}{2/3,&Bb3,&C4,&Eb4}{1/3,Bb3&,C4&,Eb4&}}}}{_vel(64) _chan(1){1921/480,{{1,&Eb5 - F5}- 23/160 {103/240,F5}343/240, 247/96 {137/240,Ab5} 1/480 {103/240,F5}41/96, 343/96 {103/240,Db5} 0, 4 1/480}},_vel(64) _chan(2){4,{&G4{3,F4&},{&Bb3,&C4,&Eb4}{3,Ab3&,C4&,Db4&}}}}{_vel(64) _chan(1){4,{{137/120,Bb4 G4} 1/8 {107/240,Ab4}{137/120,C5 - Eb5 Eb4&}{183/160,&Eb4&}}},_vel(64) _chan(2){4,{{2/3,&F4}{1/3,Eb4}G4&{2/3,&G4}{1/3,C4&}{1,&C4 G4&},{2/3,&Ab3,&C4,&Db4}{1/3,Bb3,C4}{Bb3&,C4&,Eb4&}{2/3,&Bb3,&C4,&Eb4}{1/3,Eb3&}{1/2,&Eb3}{1/2,Bb3&,C4&,Eb4&}}}}{_vel(64) _chan(1){4,{{6/5,&Eb4 F4}{4/5,Ab4 F4&}{4/5,&F4 Ab4& &Ab4 F4&}{4/5,&F4}{2/5,F6&},--- 2/3 {1/3,F5&,C6&}}},_vel(64) _chan(2){4,{&G4{2,Db4&}{2/3,&Db4}{1/3,F4&},{&Bb3,&C4,&Eb4}{2,Ab3&,C4&}{2/3,&Ab3,&C4}{1/3,G3&,Db4&}}}}{_vel(64) _chan(1){4,{{2/3,&F6}{1/3,Eb6}{1/4,Cb6 C6&}{3/4,&C6&}{2,&C6&},{1/2,&F5,&C6} 1/2 ---}},_vel(64) _chan(2){4,{&F4{3,G4&},{&G3,&Db4}{3,Bb3&,C4&,Eb4&}}}}{_vel(64) _chan(1){4,{{3/2,&C6}{1/2,F5&}{6/5,&F5 Ab5}{4/5,C6 C6&},- 2/3 {1/3,Ab4&}{1,&Ab4 -}{C5&,F5&}}},_vel(64) _chan(2){4,{&G4&{2/3,&G4}{1/3,E4&}&E4 G4&,{&Bb3&,&C4&,&Eb4&}{2/3,&Bb3,&C4,&Eb4}{1/3,C3&,Bb3&}{&C3,&Bb3}{Eb3&,A3&,Eb4&}}}}{_vel(64) _chan(1){1921/480,{{23/160,&C6}{103/240,Bb5}823/240, 55/96 {137/240,Ab5} 1/480 {103/240,C6}233/96, 151/96 {103/240,C6&}{1/2,&C6}3/2, 961/480 --, 1201/480 {1/4,Gb5 C6&}{1/4,&C6&}&C6& 0,{&C5&,&F5&}{1/6,&C5,&F5}{1/2,C5,E5}{1/3,C5&,E5&}{1/2,&C5,&E5}{3/2,C5&,G5&}1/480}},_vel(64) _chan(2){4,{&G4&{1/6,&G4}{1/2,G4}{1/3,Ab4&}{1/2,&Ab4}{3/2,G4&},{&Eb3&,&A3&,&Eb4&}{1/6,&Eb3,&A3,&Eb4}{1/2,Ab3,D4}{1/3,A3&,Eb4&}{1/2,&A3,&Eb4}{3/2,Ab3&,D4&}}}}{_vel(64) _chan(1){4,{{3/2,&C6}{1/2,F5&}{6/5,&F5 Ab5}{4/5,C6 C6},{&C5&,&G5&}{2/3,&C5,&G5}{1/3,Ab4&}{1,&Ab4 -}{C5&,F5&}}},_vel(64) _chan(2){4,{&G4&{2/3,&G4}{1/3,Eb4&}&Eb4 G4&,{&Ab3&,&D4&}{2/3,&Ab3,&D4}{1/3,Eb3&,A3&}{&Eb3,&A3}{Ab3&,D4&}}}}{_vel(64) _chan(1){4,{{137/120,Bb5 Ab5} 1/8 {107/240,C6}{137/120,Eb6 - C6 Ab5&}{183/160,&Ab5&}1/480, 1919/480 1/480,{&C5,&F5}---}},_vel(64) _chan(2){4,{&G4 F4&{2/3,&F4}{1/3,F4&}&F4&,{&Ab3,&D4}{Ab3&,C4&,Db4&}{2/3,&Ab3,&C4,&Db4}{1/3,Ab3&,C4&,Db4&}{&Ab3&,&C4&,&Db4&}}}}{_vel(64) _chan(1){4,{&Ab5{1,- F4&}{6/5,&F4 Ab4}{4/5,C5 C5&}}},_vel(64) _chan(2){4,{&F4&{2/3,&F4}{1/3,G4&}{2,&G4&},{&Ab3&,&C4&,&Db4&}{2/3,&Ab3,&C4,&Db4}{1/3,G3&,Db4&}{2,&G3&,&Db4&}}}}{_vel(64) _chan(1){1921/480,{{23/160,&C5}{103/240,Bb4}823/240, 55/96 {137/240,Ab4} 1/480 {103/240,C5&}233/96, 151/96 {103/240,G4,&C5&}&C5& 1, 961/480 --, 1441/480 {1/3,&C5 -}{2/3,- Ab4&} 0,-- 23/160 {103/240,Gb4}343/240, 247/96 {137/240,F4} 1/480 {103/240,Db5&}41/96, 343/96 {103/240,Db4&,&Db5&} 0,-{2,- C4& &C4 -}- 1/480}},_vel(64) _chan(2){4,{{2/3,&G4}{1/3,A2}{2,Ab2&}{1/3,&Ab2 -}{2/3,- Ab3&},{&G3,&Db4} 2/3 {1/3,G3&}{1/6,&G3}{1/2,Gb3}{1/3,F3}A2&}}}{_vel(64) _chan(1){4,{{6/5,&Ab4 Gb4}{2/5,D5&}{2/5,A4&,&D5&}{&A4,&D5} 1/8 {1/4,F5}{1/4,Eb5& &Eb5}{1/4,F5}{1/8,Eb5&}183/160,{1/2,&Db4,&Db5&}{1/2,&Db5&}{1/3,&Db5 -}{2/3,- D4&}&D4 - 1/480}},_vel(64) _chan(2){4,{{137/120,&Ab3 Gb3} 1/8 {107/240,Bb2&}{183/160,&Bb2&,A3&}183/160, 137/48 {137/480,&Bb2,&A3} 1/480 {137/160,Gb4&}1/480, 1919/480 1/480,{3,&A2 --}{G3&,Db4&}}}}{_vel(64) _chan(1){4,{{1/8,&Eb5}{1/4,F5}{1/4,Eb5& &Eb5}{3/8,F5} 1/6 {1/2,C5}{1/3,C6&}&C6{3/4,C6}{1/4,- Eb5}, 1/2 1/4 {1/2,- Eb5& &Eb5 -} 1/4 1/2 --}},_vel(64) _chan(2){4,{&Gb4&{1/3,&Gb4 -}{2/3,- F4&}{2,&F4},{&G3&,&Db4&}{1/6,&G3,&Db4} 1/6 1/3 {1/3,Gb3&,C4&}{2,&Gb3,&C4}}}}{_vel(64) _chan(1){1921/480,{{1/5,E5 F5&}{4/5,&F5 Ab5}Eb5&{23/160,&Eb5}{103/240,F5}343/240, 247/96 {137/240,Ab5} 1/480 {103/240,C6}41/96, 343/96 {103/240,C6&} 0, 4 1/480,-- 1 {C5&,F5&}1/480}},_vel(64) _chan(2){4,{ 4,Gb4 F4 Ab4 G4&,{G3,Db4}{Gb3,C4}{Bb3,Eb4,E4}{A3&,D4&,Eb4&}}}}{_vel(64) _chan(1){1921/480,{{23/160,&C6}{103/240,Bb5}823/240, 55/96 {137/240,Ab5} 1/480 {103/240,C6}233/96, 151/96 {103/240,C6&}{1/4,&C6}7/4, 961/480 --, 1081/480 {1/2,- F5 Gb5 C6&}{1/4,&C6&}{1,&C6 G5&} 0,-- 1/2 {3/2,G5}1/480,{&C5&,&F5&}{1/6,&C5,&F5}{1/2,C5,E5}{1/3,C5&,F5&}{&C5,&F5} 2/3 {1/3,Cb5&,Db5&}1/480}},_vel(64) _chan(2){4,{-- 1/2 {3/2,G4},&G4&{1/6,&G4}{1/2,G4}{1/3,Ab4&}{1,&Ab4 -} 2/3 {1/3,Ab4&},{&A3&,&D4&,&Eb4&}{1/6,&A3,&D4,&Eb4}{1/2,Ab3,D4}{1/3,A3&,Eb4&}{1/2,&A3,&Eb4} 1/2 2/3 {1/3,A3&,Eb4&},-- 1/2 {3/2,Ab3,D4}}}}{_vel(64) _chan(1){4,{{1/6,&G5}{1/2,Gb5}{1/3,F5}-{6/5,- F4 Ab4}{3/5,C5}{1/5,Bb4&},-{2,F5}-,{2/3,&Cb5,&Db5}{1/3,G4&,C5&,D5&}{2,&G4,&C5,&D5}F4&}},_vel(64) _chan(2){4,{-- 1/2 {1/2,- Eb4&}{1/4,&Eb4 -} 1/4 1/2, 15/4 1/4,{2/3,&Ab4}{1/3,D4&}{2,&D4}{3/4,D4}{1/4,Bb2&},{2/3,&A3,&Eb4}{1/3,Ab3&}{2,&Ab3}Ab3,-- 1/2 {1/2,- A3&}{1/4,&A3 -} 1/4 1/2}}}{_vel(64) _chan(1){4,{{1,&Bb4 Ab4}{2,C5&}{2/3,&C5}{1/3,F5},{1,&F4}{3,C4,F4,Ab4}}},_vel(64) _chan(2){4,{ 4, 11/3 1/3,{1,&Bb2 Bb2}{2,Db4&}{2/3,&Db4}{1/3,F4&}, 1 {2,Bb2&,Ab3&}{2/3,&Bb2,&Ab3}{1/3,Ab3&,C4&,Db4&}}}}{_vel(64) _chan(1){4,{--- 1/2 {1/2,- Ab4&},{137/120,Ab5 Eb6} 1/8 {107/240,C6&}{823/480,&C6}{137/240,F4}1/480, 1 {3,E5,A5}}},_vel(64) _chan(2){4,{ 4,&F4{2,Gb4}-,{&Ab3,&C4,&Db4}{2,G3,Db4}-}}}{_vel(64) _chan(1){4,{&Ab4 ---,{2/5,- C5}{6/5,Bb4 Ab4 C5&}{2/5,G4&,&C5&}{1/2,&G4,&C5&}{1/2,&C5&}{1/3,&C5 -}{2/3,- Ab4&},-{1,- C4&}{6/5,&C4 F4}{2/5,Db5&}{2/5,Db4&,&Db5&}}},_vel(64) _chan(2){4,{ 4,-{2,Ab2&}{1/3,&Ab2 -}{2/3,- Ab3&}, 8/5 {6/5,G3}{2/5,F3}{4/5,A2&}}}}{_vel(64) _chan(1){4,{ 4,{2/3,&Ab4}{71/80,Gb4 D5&} 107/3840 {749/3840,A4&,&D5&}1067/480, 71/40 {427/480,&A4,&D5&}{71/160,G4,&D5}{71/160,Eb5&} 1/480 {71/160,Bb4&,&Eb5&}1/480,{1/2,&Db4,&Db5&}{1/2,&Db5&}{1/3,&Db5 -}{2/3,- D4&}{1,&D4 -} 2/3 {1/3,Eb4&,Ab4&}}},_vel(64) _chan(2){4,{ 4,{2/3,&Ab3}{1/3,Gb3}{2,Bb2&}{1/3,&Bb2 -}{2/3,- Bb3&},{8/5,&A2}{6/5,A3}{2/5,G3}{4/5,Cb3&}}}}{_vel(64) _chan(1){4,{ 4,{2/3,&Bb4,&Eb5}{1/3,E5&}{1,&E5 E6&}&E6&{1/6,&E6}{1/2,E6}{1/3,G6&},{2/3,&Eb4,&Ab4}{1/3,E4&,A4&,Cb5&}{1/2,&E4,&A4,&Cb5}{1/2,E5&,A5&,Cb6&}{&E5&,&A5&,&Cb6&}{1/6,&E5,&A5,&Cb6}{1/2,E5,A5,Cb6}{1/3,G5&,Bb5&,Eb6&}}},_vel(64) _chan(2){4,{ 4, 3/2 5/2,{2/3,&Bb3}{1/3,Cb4&}{1,&Cb4 G4&}&G4&{1/6,&G4}{1/2,G4}{1/3,Eb4&},{2/3,&Cb3}{1/3,C3&,G3&}{1/2,&C3,&G3}{1/2,G3&,Cb4&,C4&,E4&}{&G3&,&Cb4&,&C4&,&E4&}{1/6,&G3,&Cb4,&C4,&E4}{1/2,G3,Cb4,C4,E4}{1/3,F3&,Cb4&}}}}{_vel(64) _chan(1){4,{-{2,E6}-,&G6 -{6/5,- G4 C5}{3/5,F5}{1/5,E5&},{&G5,&Bb5,&Eb6}{2,G5,A5,Cb6}{3/4,Ab4,Cb5,D5}{1/4,G4&,A4&,C5&}}},_vel(64) _chan(2){4,{-{2,E4}-,&Eb4 -{6/5,- G3 C4}{3/5,F4}{1/5,E4&},{&F3,&Cb4}{2,G3,Cb4,C4}{3/4,D4}{1/4,C4&}}}}{_vel(64) _chan(1){961/240,{--- 1/2 1/8 {3/8,Db6}1/240,{6/5,&E5 D5 C5}{4/5,Eb5}-{23/80,- Eb6}43/60, 263/80 {23/160,E6}{137/480,Eb6} 23/160 23/160, 1853/480 {23/160,C6},{1/2,&G4,&A4,&C5}{1/2,E4}{Eb4,G4,Bb4}-- 1/240}},_vel(64) _chan(2){4,{ 4,{1,&E4 Cb4}Bb3&{2/3,&Bb3}{1/3,G4&}&G4&,{1,&C4 -}C3&{2/3,&C3}{1/3,Bb3&,D4&,Eb4&}{&Bb3&,&D4&,&Eb4&}}}}{_vel(64) _chan(1){4,{ 4, 1/8 {1/4,Bb5}{1/4,Ab5& &Ab5}{1/4,E5}{1/4,Eb5& &Eb5}{1/4,Db5}{1/4,C5& &C5}{1/4,Bb4}{1/4,Ab4& &Ab4}{1/4,A4}{1/4,G5& &G5}{1/4,Eb5}{1/4,C5& &C5}{3/8,F5} 1/8 {1/4,Bb4}{1/8,G4&}}},_vel(64) _chan(2){4,{ 4,{1,&G4 - E4}{3,Eb4&},{1/3,&Bb3,&D4,&Eb4} 1/3 {1/3,Db3,Bb3}{3,C3&,A3&}}}}{_vel(64) _chan(1){4,{ 4,{1/8,&G4}{1/4,A4}{1/4,F5& &F5}{1/4,Eb5}{1/4,Db5& &Db5}{1/4,F5}{3/8,F4& &F4 G4}{1/4,A4}{1/8,C5}{3/8,A4} 1/2 1/8 {1/4,A4}{1/4,Bb4& &Bb4}{1/4,D5}{1/8,F5&},- 1/8 {3/8,D5} 1/2 --}},_vel(64) _chan(2){4,{ 4,{2/3,&Eb4}{1/3,F4}F4{2,F4},{2/3,&C3,&A3}{1/3,A3,D4}{A3,D4}{2,D4}}}}{_vel(64) _chan(1){4,{ 4,{1/8,&F5}{1/4,A5}{1/4,C6& &C6}{1/4,Cb6}{1/4,A5& &A5}{1/4,Bb5}{3/4,F5& &F5 G5 A5 G5 F5}{1/4,Eb5}{1/4,Db5& &Db5}{1/4,D5}{1/4,F4& &F4}{1/4,A4}{1/4,C5& &C5}{1/4,Cb5}{1/8,A4&}}},_vel(64) _chan(2){4,{{3,A3}-,{3,Bb2}-}}}{_vel(64) _chan(1){961/240,{- 1/2 1/8 {3/8,Cb6}-- 1/240,{1/8,&A4}{1/4,Bb4}{3/8,C5& &C5 Db5}{1/4,Eb5}{23/80,F5 Ab5}163/60, 103/80 {23/160,A5}{137/480,C6} 23/160 343/160, 893/480 {23/160,A5} 1/8 15/8, 481/240 1/8 {1/4,Bb5}{1/4,Ab5 Bb5}{1/4,Ab5}{1/4,F5& &F5}{1/4,Db5}{1/4,Bb4& &Bb4}{1/4,Eb5}{1/8,C5&}, 4 1/240}},_vel(64) _chan(2){4,{ 4, 2/3 {1/3,F4&}{3,&F4&}, 2/3 {1/3,Ab3&,C4&,Db4&}{3,&Ab3&,&C4&,&Db4&}}}}{_vel(64) _chan(1){4,{- 1/2 1/4 {1/2,- Gb4& &Gb4 -} 1/4 1/2 -,{1/8,&C5}{1/4,Db5}{1/4,F4& &F4}{1/4,Ab4}{1/4,C5& &C5}{1/4,Bb4}{1/4,F4& &F4}{3/8,Ab4}{2/5,- G4&}{4/5,&G4}{4/5,F5 Eb5}}},_vel(64) _chan(2){4,{ 4,{2/3,&F4}{1/3,F4&}{2,&F4&}{1/3,&F4 -}{2/3,- Gb4&},{2/3,&Ab3,&C4,&Db4}{1/3,G3&,C4&,Db4&}{2,&G3&,&C4&,&Db4&}{1/6,&G3,&C4,&Db4} 1/6 1/3 {1/3,G3&,Db4&}}}}{_vel(64) _chan(1){4,{ 4,{137/120,F5 Eb5} 1/8 {107/240,C5}{137/120,Eb5 - F5 Bb4&}{183/160,&Bb4&}}},_vel(64) _chan(2){4,{ 4,&Gb4{2,F4&}{2/3,&F4}{1/3,Gb4&},{&G3,&Db4}{2,Gb3&,C4&}{2/3,&Gb3,&C4}{1/3,G3&,Db4&}}}}{_vel(64) _chan(1){1921/480,{ 4 1/480,{2,&Bb4&}{23/160,&Bb4}{103/240,F5}343/240, 247/96 {137/240,Ab5} 1/480 {103/240,C6}41/96, 343/96 {103/240,C6&}, 4 1/480,-- 1 {C5&,F5&}1/480}},_vel(64) _chan(2){4,{ 4,{2/3,&Gb4}{1/3,F4&}&F4 Ab4 G4&,{2/3,&G3,&Db4}{1/3,Gb3&,C4&}{&Gb3,&C4}{Bb3,Eb4,E4}{A3&,D4&,Eb4&}}}}{_vel(64) _chan(1){1921/480,{ 4 1/480,{23/160,&C6}{103/240,Bb5}823/240, 55/96 {137/240,Ab5} 1/480 {103/240,C6}233/96, 151/96 {103/240,C6&}{1/2,&C6}3/2, 961/480 1/2 {1/4,Gb5 C6&}{1/4,&C6&}{1,&C6 G4&},-- 1/2 {3/2,C5,G5}1/480,{&C5&,&F5&}{1/6,&C5,&F5}{1/2,C5,E5}{1/3,C5&,E5&}{1/2,&C5,&E5} 1/2 2/3 {1/3,Cb4&,Db4&,Eb4&}1/480}},_vel(64) _chan(2){4,{-- 1/2 {3/2,G4},&G4&{1/6,&G4}{1/2,G4}{1/3,Ab4&}{1,&Ab4 -} 2/3 {1/3,A3&},{&A3&,&D4&,&Eb4&}{1/6,&A3,&D4,&Eb4}{1/2,Ab3,D4}{1/3,A3&,Eb4&}{1/2,&A3,&Eb4}{3/2,Ab3,D4}}}}{_vel(64) _chan(1){4,{ 4,{107/480,&G4}{71/160,Gb4}{107/480,F4&}{71/160,&F4&}{427/480,&F4}{213/160,F5 Ab5 C6} 1/8 {51/160,C6&}1/480,{2/3,&Cb4,&Db4,&Eb4}{1/3,G3&,C4&,D4&}{&G3,&C4,&D4} 1 {C5&,F5&}}},_vel(64) _chan(2){4,{ 4,{2/3,&A3}{1/3,Ab3&}&Ab3 Ab4 G4&, 2/3 {1/3,Bb2&,F3&}{&Bb2,&F3}{A3,Eb4}{Ab3&,D4&}}}}{_vel(64) _chan(1){1921/480,{ 4 1/480,{23/160,&C6}{103/240,Bb5}823/240, 55/96 {137/240,Ab5} 1/480 {103/240,C6}233/96, 151/96 {103/240,Eb6&}{1/5,&Eb6}9/5, 961/480 {4/5,- C6& &C6 Ab5&}{4/5,&Ab5}{2/5,F4&}, 4 1/480,{&C5,&F5}{F5,Ab5} 2/3 {1/3,Db5&,F5&}{1/2,&Db5,&F5} 1/2 1/480}},_vel(64) _chan(2){4,{ 4,&G4 F4&{2/3,&F4}{1/3,F4&}&F4&,{&Ab3,&D4}{Ab3&,C4&,Db4&}{2/3,&Ab3,&C4,&Db4}{1/3,Ab3&,C4&,Db4&}{&Ab3&,&C4&,&Db4&}}}}{_vel(64) _chan(1){4,{-- 1/2 {1/2,- Ab5&}{1/4,&Ab5 -} 1/4 1/2,{1/6,&F4}{1/2,Ab4}{1/3,Eb5}{1/4,Cb5 C5&}{3/4,&C5&}{1,&C5 F5}{3/4,C6}{1/4,Bb5&},--- C5&}},_vel(64) _chan(2){4,{ 4,&F4{2,Gb4}Gb4&,{&Ab3,&C4,&Db4}{2,G3,Db4}{G3&,Db4&}}}}{_vel(64) _chan(1){4,{ 4 2,{1,&Bb5 Ab5}{2,Ab5} 1/2 1/8 {1/4,F4}{1/8,A4&},&C5 ---}},_vel(64) _chan(2){4,{-- 2, 5/3 1/3 E4 -,&Gb4&{1/6,&Gb4}{1/2,F4}{1/3,Db3&}&Db3 Eb4&,{&G3,&Db4}{Gb3,C4}{1,Bb3}{C3&,A3&}}}}{_vel(64) _chan(1){4,{ 4,{1/8,&A4}{1/4,C5}{1/4,F5& &F5}{1/4,E5}{1/4,D5& &D5}{1/4,F5}{3/8,C5& &C5 Db5}{1/4,F5}{1/8,Ab5}{1/4,C6}{1/4,Cb6& &Cb6}{1/4,Bb5}{1/4,Ab5& &Ab5}{1/4,F5}{1/4,Db5& &Db5}{3/8,Bb4},-- 1/8 {3/8,C5} 1/2 -}},_vel(64) _chan(2){4,{ 4, 5/3 7/3,&Eb4&{1/3,&Eb4 -}{2/3,- Db4&}&Db4 1/2 1/4 {1/4,- F4&},{&C3&,&A3&}{1/6,&C3,&A3} 1/6 1/3 {1/3,Bb2&,Ab3&}{&Bb2,&Ab3} 1/2 1/4 1/8 {1/8,G3&,Db4&}}}}{_vel(64) _chan(1){4,{ 1/8 {3/8,F5} 1/8 {3/8,Db5} 1/8 {1/4,C5}{3/8,Ab5& &Ab5 -} 1/4 Ab5 -}},_vel(64) _chan(2){4,{ 4,{3/8,&F4}{3/4,F4& &F4 -- F4& &F4}{3/8,C4} 1/2 2/3 {1/3,Gb4}F4&,{3/8,&G3,&Db4}{1/8,G3&,Db4&}{1/8,&G3,&Db4} 1/4 {1/8,G3&,Db4&}{1/8,&G3,&Db4}{3/8,Gb3} 1/2 2/3 {1/3,G3,Db4}{Gb3&,C4&}}}}{_vel(64) _chan(1){4,{- 1/8 {3/8,F5} 1/2 --, 1/6 {1/2,F5}{4/3,Ab4& &Ab4 Cb5 F4}F5 1/2 {1/4,- C6}{1/4,A5},- 1/8 {3/8,Bb4} 1/2 Ab4 1/2 1/8 {3/8,G5}}},_vel(64) _chan(2){4,{ 4,{2/3,&F4}{1/3,Gb4}- 2/3 {1/3,E4}Eb4,{2/3,&Gb3,&C4}{1/3,G3,Db4}- 2/3 {1/3,Db3,Bb3}A3}}}{_vel(64) _chan(1){4,{{1/8,G5}{1/4,F5}{1/4,G5& &G5}{1/4,C5}{1/4,Db5& &Db5}{1/4,F5}{1/4,F4& &F4}{1/4,Ab4}{1/4,C5& &C5}{1/4,Bb4}{1/4,F4& &F4}{1/4,A4}{1/4,F4& &F4}{1/4,Ab4}{1/4,G5& &G5}{1/4,Gb5}{1/8,E5&}, 1/4 {1/2,- Eb5& &Eb5 -} 1/4 1/8 {3/8,D5} 1/2 --}},_vel(64) _chan(2){4,{ 1/4 {1,- Ab4& &Ab4 -- G4& &G4 -} 1/4 1/2 2/3 {1/3,Eb4}D4, 1/4 1/8 {1/8,A3&,Eb4&}{1/8,&A3,&Eb4} 1/4 {1/8,Ab3&,D4&}{1/8,&Ab3,&D4} 1/8 1/4 1/2 2/3 {1/3,A3}Ab3}}}{_vel(64) _chan(1){4,{{1/8,&E5}{1/4,F5}{1/4,G5& &G5}{1/4,Ab5}{1/4,Bb5& &Bb5}{1/4,C6}{1/4,Ab5& &Ab5}{1/4,G5}{1/4,F5& &F5}{1/4,E5}{1/4,G5& &G5}{1/4,Gb5}{1/4,E5& &E5}{1/4,F5}{3/8,C5& &C5 Db5}{1/4,Eb5}}},_vel(64) _chan(2){4,{ 2/3 {1/3,Ab4}G4 2/3 {1/3,Ab4}G4&, 2/3 {1/3,A3,Eb4}{Ab3,D4} 2/3 {1/3,A3,Eb4}{Ab3&,D4&}}}}{_vel(64) _chan(1){961/240,{- 1/2 1/8 {3/8,C6}-- 1/240,{1/4,F5 G5}{1/4,Ab5}{1/4,Bb5 C6}{1/4,Db6}{23/80,D6 Eb6}163/60, 103/80 {23/160,D6}{137/480,Db6} 23/160 343/160, 893/480 {23/160,Bb5} 1/8 15/8, 481/240 1/8 {1/4,Ab5}{1/4,F5& &F5}{1/4,Db5}{1/4,Bb4& &Bb4}{1/4,Eb5}{1/4,F4& &F4}{1/4,Ab4}{1/8,C5&}, 4 1/240}},_vel(64) _chan(2){4,{{2/3,&G4}{1/3,F4&}{2,&F4}-,{2/3,&Ab3,&D4}{1/3,Ab3&,Bb3&,Db4&}{2,&Ab3,&Bb3,&Db4}-}}}{_vel(64) _chan(1){4,{ 4,{1/8,&C5}{1/4,Bb4}{1/4,F4& &F4}{1/4,Ab4}{1/4,Gb4& &Gb4}{1/4,G4}{3/8,F5& &F5 C5}{1/4,Db5}{1/6,D5 Eb5&}{1/3,&Eb5&}{1/2,&Eb5}{3/4,Eb5}{1/4,- Cb6&}}},_vel(64) _chan(2){4,{- 2/3 {1/3,Gb4&}&Gb4 Gb4&,- 2/3 {1/3,G3&,Cb4&,Db4&}{&G3,&Cb4,&Db4}{G3&,Cb4&,Db4&}}}}{_vel(64) _chan(1){4,{- 1/2 1/4 {1/2,- Bb5& &Bb5 -} 1/4 1/2 -,{1/8,&Cb6}{1/4,Eb6}{1/4,Cb6& &Cb6}{1/4,G5}{1/4,Eb5& &Eb5}{1/4,Bb5}{1/4,G5& &G5}{3/8,Ab5} 1/12 {1/4,C6}{1/6,Ab5&}{1/2,&Ab5} 1/4 {1/2,- E6& &E6 Cb6}{1/4,A5}}},_vel(64) _chan(2){4,{{8/5,&Gb4}{6/5,G4}{2/5,G4}{4/5,Gb4&},{8/5,&G3,&Cb4,&Db4}{6/5,Bb3,C4,Eb4}{2/5,Bb3,C4,Eb4}{4/5,G3&,Cb4&,Db4&}}}}{_vel(64) _chan(1){1921/480,{{3/2,E5 E4 -} 1/4 {1/4,- F5}-- 1/480,{23/80,- Cb5}1783/480, 23/80 {137/160,A4 E5 G4} 1/480 {137/160,G5}2, 961/480 1/80 {7/80,C5}{1/5,Ab4&}{1/10,&Ab4 G4&}{1/10,&G4&}{1/2,&G4}-, 4 1/480}},_vel(64) _chan(2){4,{{1/2,&Gb4}{1/2,Db4 - G4&}&G4&{1,&G4 G4}Gb4&,{1/2,&G3,&Cb4,&Db4}{1/6,G3,Cb4} 1/6 {1/6,Ab3&,C4&,D4&}{&Ab3&,&C4&,&D4&}{1/2,&Ab3,&C4,&D4}{1/2,Ab3,C4,D4}{G3&,Cb4&,Db4&}}}}{_vel(64) _chan(1){4,{ 1/8 {1/4,G6}{1/4,Db6& &Db6}{1/4,Cb6}{1/4,G5& &G5}{1/4,G6}{1/4,F6& &F6}{1/4,G6}{1/4,F6& &F6}{1/4,Eb6}{1/4,C6& &C6}{1/4,Ab5}{1/4,F5& &F5}{1/4,Bb5}{1/4,G5& &G5}{1/4,Ab5}{1/8,C5&}, 1/8 {3/8,G5,Gb6} 1/2 ---}},_vel(64) _chan(2){4,{{2/3,&Gb4}{1/3,Gb4}F4&{2/3,&F4}{1/3,Gb4}F4,{2/3,&G3,&Cb4,&Db4}{1/3,G3,Cb4,Db4}{Gb3&,C4&}{2/3,&Gb3,&C4}{1/3,G3,Db4}{Gb3,C4}}}}{_vel(64) _chan(1){4,{{1/8,&C5}{1/4,Eb5}{1/4,G5& &G5}{1/4,Gb5}{1/4,E5& &E5}{1/4,F5}{3/8,D5& &D5 Eb5}{1/4,D5}{1/8,C5}{1/4,Bb4}{3/8,Ab4& &Ab4 A4}{1/4,C5}{1/8,Eb5}{1/4,G5}{1/4,Cb6& &Cb6}{1/4,D6}{1/8,Cb6&}}},_vel(64) _chan(2){4,{-- Ab4 G4&, 2 {Bb3,Eb4,E4}{A3&,D4&,Eb4&}}}}{_vel(64) _chan(1){4,{{1/8,&Cb6}{1/4,C6}{3/8,G5& &G5 Ab5}{1/4,G5}{1/8,F5}{1/4,E5}{1/4,G5& &G5}{1/4,Gb5}{1/4,E5& &E5}{1/4,F5}{3/8,G5& &G5 Eb5}{1/4,Db5}{1/8,C5}{1/4,Bb4}{1/4,A4& &A4}{1/4,Ab4}{1/8,C4&},-- 1/4 {1/2,- Db5& &Db5 -} 1/4 -}},_vel(64) _chan(2){4,{{2/3,&G4}{1/3,G4&}&G4&{1/4,&G4}{1,- Ab4& &Ab4 -- G4& &G4 -} 1/4 1/2,{2/3,&A3,&D4,&Eb4}{1/3,Ab3&,D4&}{&Ab3&,&D4&}{1/4,&Ab3,&D4} 1/8 {1/8,A3&,Eb4&}{1/8,&A3,&Eb4} 1/4 {1/8,Ab3&,D4&}{1/8,&Ab3,&D4} 1/8 1/4 1/2}}}{_vel(64) _chan(1){4,{{1/8,&C4}{1/4,Eb4}{1/4,G4& &G4}{1/4,Gb4}{1/4,E4& &E4}{1/4,F4}{1/4,Ab4& &Ab4}{1/4,C5}{1/4,Eb5& &Eb5}{1/4,G5}{1/4,Ab5& &Ab5}{1/4,E5}{1/4,G5& &G5}{1/4,F5}{1/4,C5& &C5}{1/4,Eb5}{1/8,Db5&}}},_vel(64) _chan(2){4,{ 1/2 1/8 {1/4,D4}{3/8,D4& &D4 -} 1/4 1/2 1/4 {1,- Ab4& &Ab4 -- G4& &G4 -} 1/4 1/2, 1/2 1/8 {1/4,Ab3}{3/8,Ab3& &Ab3 -} 1/4 1/2 1/4 1/8 {1/8,A3&,Eb4&}{1/8,&A3,&Eb4} 1/4 {1/8,Ab3&,D4&}{1/8,&Ab3,&D4} 1/8 1/4 1/2}}}{_vel(64) _chan(1){4,{{1/8,&Db5}{1/4,D5}{1/4,C6& &C6}{1/4,Cb6}{1/4,A5& &A5}{1/4,Bb5}{3/8,Ab5& &Ab5 Bb5}{1/4,Ab5}{1/8,F5}{1/4,Db5}{1/4,Bb4& &Bb4}{1/4,F5}{1/4,D5& &D5}{1/4,Eb5}{3/8,F4& &F4 Ab4}{1/4,A4}}},_vel(64) _chan(2){4,{- 1/3 {2/3,F4&}{2,&F4&},- 1/3 {2/3,Ab3&,Bb3&,Db4&}{2,&Ab3&,&Bb3&,&Db4&}}}}{_vel(64) _chan(1){4,{{1/8,C5}{1/4,Bb4}{1/4,F4& &F4}{1/4,Ab4}{1/4,Gb4& &Gb4}{1/4,G4}{1/4,F5& &F5}{1/4,Db5}{1/4,Bb4& &Bb4}{1/4,Eb5}{1/4,Eb4& &Eb4}{3/8,F4} 2/3 {1/3,Cb5&},-- 1/2 1/4 {3/8,- Ab4& &Ab4}{3/8,Cb5} 1/2,--- 2/3 {1/3,D4&},--- 1/8 {3/8,D4} 1/2}},_vel(64) _chan(2){4,{&F4{2,F4}{1/3,Db4}{2/3,Ab4},--- 1/2 1/4 {1/4,- Db4&},{&Ab3,&Bb3,&Db4}{2,G3,Bb3,Db4} 1/3 {2/3,Db4}}}}{_vel(64) _chan(1){4,{{1,&Cb5 - Bb4} 1/2 1/4 {1/2,- F4& &F4 Bb4}{1/4,C5}{1/4,F5 Bb5}{1/4,C6}{1/6,F6 Gb6&}{1/3,&Gb6&}{1/4,&Gb6}{1/4,- Cb6&}, 1/8 {3/8,Bb4} 1/2 ---,{1,&D4 - Db4}---, 1/8 {3/8,Db4} 1/2 ---}},_vel(64) _chan(2){4,{ 1/4 {1/2,- G3& &G3 -} 1/4 {2,C4}Db4&,&Db4 ---, 1 {2,Ab2,Eb3,F3}{A2&,E3&}}}}{_vel(64) _chan(1){961/240,{{1/8,&Cb6}{1/4,Gb5}{1/4,Db5& &Db5}{1/4,Cb5}{1/4,Gb4& &Gb4}{1/4,G5}{1/4,F5& &F5}{1/4,C5}{1/4,Ab4& &Ab4}{1/4,G5}{1/4,F5& &F5}{3/8,C5}{23/80,- Ab5}43/60, 263/80 {23/160,Eb5}{137/480,Db5} 23/160 23/160, 1853/480 {23/160,Ab4&} 0,-- 1/2 1/4 {1/2,- Ab4& &Ab4 -} 1/4 1/8 {3/8,A4}1/240,--- 1/8 {3/8,Db5} 1/2 1/240}},_vel(64) _chan(2){4,{&Db4 G4&{3/4,&G4}{1/4,Ab4&}{1,&Ab4 -},{&A2,&E3}{Ab3&,D4&}{3/4,&Ab3,&D4}{1/4,A3&,Eb4&}{1/2,&A3,&Eb4} 1/2}}}{_vel(64) _chan(1){961/240,{{1/6,&Ab4}{1/2,Gb4}{1/3,A5} 1/4 {1/2,- G4& &G4 C5}{1/4,E5}{23/80,G5 C6}103/60, 183/80 {23/160,E6}{103/480,G6}{17/120,F6& &F6}{103/480,Eb6}{23/160,E6}103/120, 721/240 -, 151/48 {23/80,C6 G5}{103/480,F5}{17/120,Eb5& &Eb5}{103/480,E5} 0, 2/3 {1/3,G5}--- 1/240}},_vel(64) _chan(2){4,{ 1/3 {2/3,G4}{3/4,E4}{1/2,- E4& &E4 -}{3/4,-- G4&}&G4, 1/3 {2/3,A3,Eb4}{3/4,C3,G3} 1/8 {1/8,Cb4&,C4&}{1/8,&Cb4,&C4} 1/8 1/4 1/2 -}}}{_vel(64) _chan(1){4,{{1/4,G5 C6}{1/4,C5}{1/4,F5 Eb5}{1/4,E5}{1,C5 F4 G4} 1/8 {1/4,C5}{1/4,C4& &C4}{3/8,A4} 1/12 {1/4,G4}{1/6,C4&}{1/2,&C4&},- 1/8 {3/4,G4 E4}{3/8,A4& &A4 -} 1/2 {1/2,- C4& &C4 -} 1/4 1/2,-- 1/2 1/8 {3/8,F4} 1/8 {3/8,E4} 1/2}},_vel(64) _chan(2){4,{{1/8,Cb4}{3/8,C4&}{1/2,&C4}{1/6,Gb3 G3&}{1/3,&G3&}{1/2,&G3}--}}}{_vel(64) _chan(1){1921/480,{{23/160,&C4}{103/240,G3}823/240, 55/96 137/240 1/480 {137/480,C4}{103/240,Eb4}257/120, 223/120 {23/160,G4&}{1/5,&G4}9/5, 961/480 --, 1057/480 {1/5,C5}{4/5,Eb5 G5}{4/5,C6 Eb6& &Eb6 G6&} 0,--- 1/2 _tempo(64/15){1/2,- G5&}1/480}},_vel(64) _chan(2){4,{ 1/12 {1/4,Cb3}{1/6,C3&}{1/4,&C3}{1/2,- Eb4& &Eb4 -} 1/4 1/2 2/3 {1/3,G4}-, 1/2 1/4 1/8 {1/8,Bb3&,C4&}{1/8,&Bb3,&C4} 1/8 1/4 1/2 2/3 {1/3,Bb3,C4,Eb4}-}}}{_vel(64) _chan(1){4,{{107/480,&G6}{213/160,Bb6 G6 Eb6} 1/8 {13/24,C6}{71/40,G5 Eb5 C5 A4&}1/240, 959/240 1/240,{1/6,&G5}{1/2,Bb5}{1/3,G5}Eb5 --}},_vel(64) _chan(2){4,{ 2/3 {1/3,G4}- 2/3 {4/3,G4& &G4 - Ab4&}, 2/3 {1/3,Bb3,C4,Eb4}- 2/3 {1/3,Bb3&,C4&,Eb4&}{1/3,&Bb3,&C4,&Eb4} 1/3 {1/3,Bb3&,Eb4&,E4&}}}}{_vel(64) _chan(1){1921/480,{{23/160,&A4}{103/240,G5}823/240, 55/96 {137/240,E5} 1/480 {103/240,F5}233/96, 151/96 {103/240,G5&}{1/5,&G5}9/5, 961/480 --, 1057/480 {1/5,Eb5}{8/5,D5 C5 G5 G4&} 0,- 2/3 {1/3,D5}- Cb5 1/480}},_vel(64) _chan(2){4,{{2/3,&Ab4}{1/3,G4&}{2,&G4}-,{2/3,&Bb3,&Eb4,&E4}{1/3,A3&,Eb4&}{2,&A3,&Eb4}-}}}{_vel(64) _chan(1){4,{{107/480,&G4}{213/160,G5 G4 Ab4} 1/8 {13/24,F5}{71/40,E5 D5 Eb5 F5&}1/240, 959/240 1/240,Bb4 ---}},_vel(64) _chan(2){4,{- 2/3 {1/3,G4&}{2,&G4&},- 2/3 {1/3,A3&,Eb4&}{2,&A3&,&Eb4&}}}}{_vel(64) _chan(1){4,{{107/480,&F5}{213/160,G5 Bb5 Db6} 1/8 {13/24,D6}{71/40,Bb5 G5 F5 G5&}1/240, 959/240 1/240,--- 2/3 {1/3,Eb5&}}},_vel(64) _chan(2){4,{{2/3,&G4}{1/3,F4}-- 2/3 {1/3,F4&},{2/3,&A3,&Eb4}{1/3,D4}-- 2/3 {1/3,A3,Bb3,D4}}}}{_vel(64) _chan(1){4,{{107/480,&G5}{213/160,C5 F5 F5} 1/8 {13/24,F4}{71/40,G4 Bb4 Db5 Bb4&}1/240, 959/240 1/240,{1,&Eb5 - Db5}D5 - E4}},_vel(64) _chan(2){4,{{1,&F4 - E4}F4 - 1/6 {1/2,F3}{1/3,F3}}}}{_vel(64) _chan(1){4,{{1/6,&Bb4}{1/2,C5}{1/3,Bb4&}&Bb4 G4{1/6,- F4&}{1/3,&F4&}{1/2,&F4},-- 1/2 1/4 {1/2,- Db4& &Db4 -} 1/4 1/2, 1/6 {1/2,Eb4}{1/3,D4&}&D4 Eb4 D4}},_vel(64) _chan(2){4,{F3 1/2 {1/6,- F3&}{1/3,&F3}--,- 1/4 {1/2,- E3& &E3 -} 1/4 --}}}{_vel(64) _chan(1){4,{{3,Bb3&}{1/3,&Bb3 -}{2/3,- F4&}}},_vel(64) _chan(2){4,{- 1/2 {1/4,- E3}{3/4,F3& &F3 E3}{1/2,F3}F2}}}{_vel(64) _chan(1){4,{{107/480,&F4}{213/160,Bb4 C5 Db5} 1/8 {13/24,Eb5}{71/40,F5 Ab5 C6 Ab5&}}},_vel(64) _chan(2){4,{ 2/3 {1/3,F4&}{3,&F4}, 2/3 {1/3,Ab3&,C4&,Db4&}{3,&Ab3,&C4,&Db4}}}}{_vel(64) _chan(1){1921/480,{{1/6,&Ab5}{1/2,F5}{1/3,Db5}Bb4 23/160 {103/240,F5}343/240, 247/96 {137/240,D5} 1/480 {103/240,Eb5}41/96, 343/96 {103/240,F4&} 0, 4 1/480}},_vel(64) _chan(2){4,{F4 - F4 F4&,{Ab3,C4,Db4} 1 {Ab3,C4,Db4}{Ab3&,C4&,Db4&}}}}{_vel(64) _chan(1){1921/480,{{23/160,&F4}{103/240,Ab4}823/240, 55/96 {137/240,F4} 1/480 {103/240,G4}233/96, 151/96 {103/240,Eb5}- 1, 961/480 --, 1441/480 Db5& 0, 4 1/480}},_vel(64) _chan(2){4,{&F4{2,F4&}{1/3,&F4 -}{2/3,- Gb4&},{&Ab3,&C4,&Db4}{2,G3&,Db4&}{1/6,&G3,&Db4} 1/6 1/3 {1/3,Ab3&,D4&}}}}{_vel(64) _chan(1){4,{&Db5 -{2,F6},-- 1/6 {1/2,Cb6}{1/3,C6&}&C6}},_vel(64) _chan(2){4,{&Gb4{2,F4&}{2/3,&F4}{1/3,F4&},{&Ab3,&D4}{2,G3&,Db4&}{2/3,&G3,&Db4}{1/3,G3&,Db4&}}}}{_vel(64) _chan(1){4,{ 4,- 1/2 1/4 {1/2,- Cb6& &Cb6 -} 1/4 1/2 -,F5 Ab5{1/6,- C6&}{1/3,&C6&}{1/2,&C6}Ab5}},_vel(64) _chan(2){4,{{1,&F4 -}{2,F4&}{2/3,&F4}{1/3,Gb4&},{1/2,&G3,&Db4} 1/2 {2,Gb3&,C4&}{2/3,&Gb3,&C4}{1/3,G3&,Db4&}}}}{_vel(64) _chan(1){4,{ 4,-- 2/5 1/5 {3/5,Eb5}{4/5,Ab5 C6&}}},_vel(64) _chan(2){4,{&Gb4{2,F4}Gb4&,{&G3,&Db4}{2,Gb3,C4}{G3&,Db4&}}}}{_vel(64) _chan(1){4,{ 4,- 1/2 1/8 {3/8,Bb5}--,{107/480,&C6}{71/80,Ab5 Eb5}{2/3,Ab5}{71/160,Ab5} 1/8 {51/160,G5}{213/160,F5 Eb5 Db5&}1/240, 959/240 1/240}},_vel(64) _chan(2){4,{{2/3,&Gb4}{1/3,F4&}&F4 - 2/3 {1/3,Ab4&},{2/3,&G3,&Db4}{1/3,Gb3&,C4&}{&Gb3,&C4}- 2/3 {1/3,Bb3&,E4&}}}}{_vel(64) _chan(1){4,{ 4,{107/480,&Db5}{213/160,C5 Bb4 A4} 1/8 {13/24,G5}{71/40,Eb5 C5 F5 C5&}}},_vel(64) _chan(2){4,{&Ab4{2,G4&}{2/3,&G4}{1/3,G4&},{&Bb3,&E4}{2,A3&,Eb4&}{2/3,&A3,&Eb4}{1/3,A3&,Eb4&}}}}{_vel(64) _chan(1){1921/480,{-- 1/2 1/4 {1/2,- Db6& &Db6 -} 1/4 1/2 1/480,- 2/3 {1/3,G5}{1/2,C6} 1/8 {3/8,C6}{1/6,- F6&}{1/3,&F6} 1/8 {1/4,C6}{1/8,Db6&}1/480, 4 1/480,{23/160,&C5}{103/240,Eb5}823/240, 55/96 {137/240,Db5} 1/480 {103/240,D5}233/96, 151/96 {103/240,F5}Cb6 1, 961/480 - D6 0}},_vel(64) _chan(2){4,{{2/3,&G4}{1/3,G4&}{2,&G4&}{1/3,&G4 -}{2/3,- Ab4&},{2/3,&A3,&Eb4}{1/3,Ab3&,D4&}{2,&Ab3&,&D4&}{1/6,&Ab3,&D4} 1/6 1/3 {1/3,A3&,Eb4&}}}}{_vel(64) _chan(1){4,{ 4,{107/240,&Db6 F6&}853/240, 107/240 {2/3,&F6}{71/160,Bb5} 1/480 {2/3,F5}{71/40,Eb5 Db5 D5 Bb4&},D6 ---}},_vel(64) _chan(2){4,{{2/3,&Ab4}{1/3,G4&}{2,&G4&}{1/3,&G4 -}{2/3,- Ab4&},{2/3,&A3,&Eb4}{1/3,Ab3&,D4&}{2,&Ab3&,&D4&}{1/6,&Ab3,&D4} 1/6 1/3 {1/3,A3&,Eb4&}}}}{_vel(64) _chan(1){4,{ 4,{107/480,&Bb4}{213/160,G4 F4 Bb4} 1/8 {13/24,C4}{71/80,Bb4 C4}{427/480,Bb4&}1/480,- E4 Eb4 D4&}},_vel(64) _chan(2){4,{{2/3,&Ab4}{1/3,D4}--{1,- E3 F3&},{2/3,&A3,&Eb4}{1/3,Ab3}---}}}{_vel(64) _chan(1){4,{ 4,&Bb4 ---,&D4 ---}},_vel(64) _chan(2){4,{&F3 ---}}}

In a very dif­fer­ent style, Tchaikovsky's famous June Barcarole in G minor (1875):

Tchaikovsky's “June Barcarole” in G minor inter­pret­ed by the Bol Processor with the Pianoteq physical-model synthesiser

Another com­plex exam­ple is Beethoven's Fugue in B flat major (opus 133). As we could not obtain the piano four hands tran­scrip­tion, we used the string quar­tet version.

Again, the Javascript MIDIjs play­er could not syn­the­sise the two vio­lins, vio­la and cel­lo tracks (MIDI chan­nels 1 to 4). So the MIDI file was sent to PianoTeq to get a fair piano ren­der­ing of the mixed channels.

Beethoven's Fugue in B flat major — a piano ver­sion inter­pret­ed by the Bol Processor with the Pianoteq physical-model synthesiser

Played as a sin­gle chunk (on MacOS), this piece takes no less than 372 sec­onds to cal­cu­late, where­as PLAY safe deliv­ers the same in 33 sec­onds. In addi­tion, sin­gle chunk play­back requires 30 ms quan­ti­za­tion on a machine with 16 GB of memory.

{_tempo(18/5) _vel(93) _chan(1){3,{{1,G3 G4}{2,G5&}}},_tempo(34/15) _vel(64) _chan(2){3,{3,G3&,G4&}},_tempo(34/15) _vel(93) _chan(3){3,{3,G3&,G4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,G2&,G3&}}} {_tempo(17/10) _vel(93) _chan(1){9/2,{{3,&G5}{3/2,G4&}}},_tempo(17/10) _vel(107) _chan(2){9/2,{{3,&G3,&G4}{3/2,G3&}}},_tempo(17/10) _vel(108) _chan(3){9/2,{{3,&G3,&G4}{3/2,G3&}}},_tempo(17/10) _vel(112) _chan(4){9/2,{{3,&G2,&G3}{3/2,G2&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&G4&}},_tempo(34/15) _vel(107) _chan(2){3,{3,&G3&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&G3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&G2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&G4}},_tempo(34/15) _vel(107) _chan(2){3,{3,&G3}},_tempo(34/15) _vel(93) _chan(3){3,{3,&G3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&G2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,G#4}},_tempo(34/15) _vel(107) _chan(2){3,{3,G#3}},_tempo(34/15) _vel(93) _chan(3){3,{3,G#3}},_tempo(34/15) _vel(93) _chan(4){3,{3,G#2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,F5}},_tempo(34/15) _vel(107) _chan(2){3,{3,F4}},_tempo(34/15) _vel(93) _chan(3){3,{3,F4}},_tempo(34/15) _vel(93) _chan(4){3,{3,F3}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,E5}},_tempo(34/15) _vel(107) _chan(2){3,{3,E4}},_tempo(34/15) _vel(93) _chan(3){3,{3,E4}},_tempo(5/3) _vel(93) _chan(4){3,{3,E3}}} {_tempo(5/3) _vel(93) _chan(1){3,{3,G#4}},_tempo(5/3) _vel(107) _chan(2){3,{3,G#3}},_tempo(5/3) _vel(93) _chan(3){3,{3,G#3}},_tempo(5/3) _vel(93) _chan(4){3,{3,G#2}}} {_tempo(5/3) _vel(93) _chan(1){3,{E5 1/2 C#6 1/2}},_tempo(5/3) _vel(107) _chan(2){3,{E4 1/2 C#5 1/2}},_tempo(5/3) _vel(93) _chan(3){3,{E4 1/2 C#5 1/2}},_tempo(5/3) _vel(93) _chan(4){3,{E3 1/2 C#4 1/2}}} {_tempo(4/3) _vel(93) _chan(1){4,{G5{1/4,F#5 G5}1/4 -- 1/2,{115/512,G5}{3/4,A5 G5 A5 G5 A5 G5}1/512 3/128 ---}},_tempo(4/3) _vel(107) _chan(2){4,{G4{1/4,F#4 G4}1/4 -- 1/2,{115/512,G4}{3/4,A4 G4 A4 G4 A4 G4}1/512 3/128 ---}},_tempo(4/3) _vel(93) _chan(3){4,{G4{1/4,F#4 G4}1/4 -- 1/2,{115/512,G4}{3/4,A4 G4 A4 G4 A4 G4}1/512 3/128 ---}},_tempo(4/3) _vel(93) _chan(4){4,{G3{1/4,F#3 G3}1/4 -- 1/2,{115/512,G3}{3/4,A3 G3 A3 G3 A3 G3}1/512 3/128 ---}}} {_tempo(5/3) _vel(93) _chan(1){3,{-{1/2,G4}G#4{1/2,F5}}},_tempo(5/3) _vel(107) _chan(2){3,{-{1/2,G3}G#3{1/2,F4}}},_tempo(5/3) _vel(95) _chan(3){3,{-{1/2,G3}G#3{1/2,F4}}},_tempo(5/3) _vel(93) _chan(4){3,{-{1/2,G2}G#2{1/2,F3}}}} {_tempo(5/3) _vel(93) _chan(1){3,{E5{1/2,G#4}A4{1/2,F#5}}},_tempo(5/3) _vel(107) _chan(2){3,{E4{1/2,G#3}A3{1/2,F#4}}},_tempo(5/3) _vel(93) _chan(3){3,{E4{1/2,G#3}A3{1/2,F#4}}},_tempo(5/3) _vel(93) _chan(4){3,{E3{1/2,G#2}A2{1/2,F#3}}}} {_tempo(4/3) _vel(93) _chan(1){4,{G5 1/2 -- 1/2}},_tempo(4/3) _vel(107) _chan(2){4,{G4 1/2 -- 1/2}},_tempo(4/3) _vel(93) _chan(3){4,{G4 1/2 -- 1/2}},_tempo(4/3) _vel(93) _chan(4){4,{G3 1/2 -- 1/2}}} {_tempo(5/3) _vel(93) _chan(1){3,{-{1/2,B3}C4{1/2,Bb4}}},_tempo(5/3) _vel(98) _chan(2){3,{-{1/2,B3}C4{1/2,Bb4}}},_tempo(5/3) _vel(93) _chan(3){3,{-{1/2,B3}C4{1/2,Bb4}}},_tempo(5/3) _vel(93) _chan(4){3,{-{1/2,B2}C3{1/2,Bb3}}}} {_tempo(5/3) _vel(93) _chan(1){3,{A4{1/2,C#4}D4{1/2,B4}}},_tempo(5/3) _vel(107) _chan(2){3,{A4{1/2,C#4}D4{1/2,B4}}},_tempo(5/3) _vel(93) _chan(3){3,{A4{1/2,C#3}D3{1/2,B3}}},_tempo(5/3) _vel(93) _chan(4){3,{A3{1/2,C#2}D2{1/2,B2}}}} {_tempo(4/3) _vel(93) _chan(1){4,{C5 1/2 -- 1/2}},_tempo(4/3) _vel(107) _chan(2){4,{C5 1/2 -- 1/2}},_tempo(4/3) _vel(93) _chan(3){4,{C4 1/2 -- 1/2}},_tempo(4/3) _vel(93) _chan(4){4,{C3 1/2 -- 1/2}}} {_tempo(5/3) _vel(52) _chan(1){2,{- F4}},_tempo(5/3) _vel(107) _chan(2) 2,_tempo(5/3) _vel(93) _chan(3) 2,_tempo(5/3) _vel(93) _chan(4) 2} {_tempo(5/3) _vel(93) _chan(1){2,{Gb4 Eb5}},_tempo(5/3) _vel(54) _chan(2){2,{- C4}},_tempo(5/3) _vel(52) _chan(3){2,{- A3}},_tempo(5/3) _vel(52) _chan(4){2,{- F3&}}} {_tempo(5/3) _vel(93) _chan(1){2,{Db5 E4}},_tempo(5/3) _vel(107) _chan(2){2,{2,Db4&}},_tempo(5/3) _vel(93) _chan(3){2,{2,Bb3&}},_tempo(5/3) _vel(93) _chan(4){2,{2,&F3&}}} {_tempo(5/3) _vel(93) _chan(1){2,{F4 E5}},_tempo(5/3) _vel(107) _chan(2){2,{{1,&Db4}{Bb3,G4}}},_tempo(5/3) _vel(93) _chan(3){2,{&Bb3 Db4}},_tempo(5/3) _vel(93) _chan(4){2,{2,&F3&}}} {_tempo(5/3) _vel(93) _chan(1){2,{F5 -}},_tempo(5/3) _vel(107) _chan(2){2,{{A3,A4}-}},_tempo(5/3) _vel(93) _chan(3){2,{C4 1/2{1/2,C4 Bb3}}},_tempo(5/3) _vel(93) _chan(4){2,{&F3 F2}}} {_tempo(5/3) _vel(93) _chan(1) 2,_tempo(5/3) _vel(107) _chan(2) 2,_tempo(5/3) _vel(93) _chan(3){2,{2,Bb3 A3 D4 C4 C4 Bb3 C4 A3}},_tempo(5/3) _vel(93) _chan(4){2,{F#2 Eb3}}} {_tempo(5/3) _vel(93) _chan(1) 2,_tempo(5/3) _vel(107) _chan(2){2,{ 1/2{3/2,D5 C5 C5 Bb4 C5 A4}}},_tempo(5/3) _vel(93) _chan(3){2,{{1,Bb3 -}-}},_tempo(5/3) _vel(93) _chan(4){2,{D3 F#2}}} {_tempo(5/3) _vel(93) _chan(1){2,{ 1/2{3/2,F4 E4 D4 C4 D4 Bb3}}},_tempo(5/3) _vel(107) _chan(2){2,{{1/2,A4 G4}1/2 -}},_tempo(5/3) _vel(93) _chan(3) 2,_tempo(5/3) _vel(93) _chan(4){2,{G2 E3}}} {_tempo(5/4) _vel(93) _chan(1){3,{A3 --}},_tempo(5/3) _vel(107) _chan(2) 3,_tempo(5/3) _vel(93) _chan(3) 3,_tempo(5/4) _vel(93) _chan(4){3,{F3 --}}} {_tempo(39/20) _vel(93) _chan(1){4,{- _tempo(136/117){1/2,Bb3&}_tempo(12/13){1/2,&Bb3}-{1,Bb3& &Bb3}}},_tempo(9/5) _vel(40) _chan(2){4},_tempo(9/5) _vel(93) _chan(3){4},_tempo(9/5) _vel(93) _chan(4){4}} {_tempo(34/15) _vel(93) _chan(1){4,{-{1,B3& &B3}-{1,Ab4& &Ab4}}},_tempo(34/15) _vel(107) _chan(2){4},_tempo(34/15) _vel(93) _chan(3){4},_tempo(34/15) _vel(93) _chan(4){4}} {_tempo(34/15) _vel(93) _chan(1){4,{-{1,G4& &G4}-{1,B3& &B3}}},_tempo(34/15) _vel(107) _chan(2){4},_tempo(34/15) _vel(93) _chan(3){4},_tempo(34/15) _vel(93) _chan(4){4}} {_tempo(34/15) _vel(93) _chan(1){4,{-{3,C4& &C4 A4 Bb4 Bb4& &Bb4}}},_tempo(34/15) _vel(107) _chan(2){4},_tempo(34/15) _vel(93) _chan(3){4},_tempo(34/15) _vel(93) _chan(4){4}} {_tempo(113/60) _vel(93) _chan(1){5,{{1,A4& &A4}-- 3/4{1/4,D4}{1/2,F5}{1/2,- F5}}},_tempo(34/15) _vel(112) _chan(2){5,{- 4}},_tempo(34/15) _vel(93) _chan(3){5,{- 4}},_tempo(34/15) _vel(93) _chan(4){5,{- 4}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,F5}{1/2,- D4}{1/2,F5}{1/2,- F5}{1/2,F5}{1/2,- D4}{1/2,Ab5}{1/2,- Ab5}}},_tempo(34/15) _vel(107) _chan(2){4},_tempo(34/15) _vel(107) _chan(3){4,{-{1,Bb3& &Bb3}-{1,Bb3& &Bb3}}},_tempo(34/15) _vel(93) _chan(4){4}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Ab5}{1/2,- G5}{1/2,G5}{1/2,- F5}{1/2,F5}{1/2,- Eb5}{1/2,Eb5}{1/2,- D5}}},_tempo(34/15) _vel(107) _chan(2){4},_tempo(34/15) _vel(93) _chan(3){4,{-{1,B3& &B3}-{1,Ab4& &Ab4}}},_tempo(34/15) _vel(93) _chan(4){4}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Eb5}{1/2,- Eb4}{1/2,Eb5}{1/2,- Eb5}{1/2,Eb5}{1/2,- Eb4}{1/2,G5}{1/2,- G5}}},_tempo(34/15) _vel(107) _chan(2){4},_tempo(34/15) _vel(93) _chan(3){4,{-{1,G4& &G4}-{1,B3& &B3}}},_tempo(34/15) _vel(93) _chan(4){4}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,G5}{1/2,- F5}{1/2,F5}{1/2,- Eb5}{1/2,Eb5}{1/2,- D5}{1/2,D5}{1/2,- E5}}},_tempo(34/15) _vel(107) _chan(2){4,{-- 3/4{1/4,Bb3}{1/2,C5}{1/2,- C5}}},_tempo(34/15) _vel(94) _chan(3){4,{-{3,C4& &C4 A4 Bb4 Bb4& &Bb4}}},_tempo(34/15) _vel(93) _chan(4){4}} {_tempo(34/15) _vel(93) _chan(1){4,{F5{1,A3& &A3}-{1,A3& &A3}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,C5}{1/2,- A3}{1/2,C5}{1/2,- C5}{1/2,C5}{1/2,- A3}{1/2,Eb5}{1/2,- Eb5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1,A4& &A4}---}},_tempo(34/15) _vel(107) _chan(4){4,{-{1,F3& &F3}-{1,F3& &F3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{-{1,A4& &A4}-{1,F#4& &F#4}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Eb5}{1/2,- D5}{1/2,D5}{1/2,- C5}{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- A4}}},_tempo(34/15) _vel(93) _chan(3){4},_tempo(34/15) _vel(93) _chan(4){4,{-{1,Gb3& &Gb3}-{1,Eb4& &Eb4}}}} {_tempo(34/15) _vel(98) _chan(1){4,{-{1,G4& &G4}-{1,Bb3& &Bb3}}},_tempo(34/15) _vel(98) _chan(2){4,{{1/2,Bb4}{1/2,- Bb3}{1/2,Bb4}{1/2,- Bb4}{1/2,Bb4}{1/2,- Bb3}{1/2,D5}{1/2,- D5}}},_tempo(34/15) _vel(93) _chan(3){4},_tempo(34/15) _vel(93) _chan(4){4,{-{1,D4& &D4}-{1,F#3 G3}}}} {_tempo(34/15) _vel(98) _chan(1){4,{-{3,D4 E4 G4 C4 C5& &C5}}},_tempo(34/15) _vel(95) _chan(2){4,{{1/2,D5}{1/2,- C5}{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- A4}{1/2,A4}{1/2,- C5}}},_tempo(34/15) _vel(107) _chan(3){4,{-- 3/4{1/4,C3}{1/2,F4}{1/2,- F4}}},_tempo(34/15) _vel(93) _chan(4){4,{-{3,G3& &G3 E4 F4 Eb4& &Eb4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,F5}{1/2,- F5}{1/2,D4}{1/2,- D4}{1/2,D4}{1/2,- Ab5}{1/2,F4}{1/2,- F4}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Bb4}{1/2,- Bb3}{1,Bb4& &Bb4}-{1,Bb4& &Bb4}}},_tempo(34/15) _vel(107) _chan(3){4,{{1/2,F4}{1/2,- D3}{1/2,F4}{1/2,- F4}{1/2,F4}{1/2,- D3}{1/2,Ab4}{1/2,- Ab4}}},_tempo(34/15) _vel(95) _chan(4){4,{{1,D4& &D4}-{1,Bb3& &Bb3}-}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,F4}{1/2,- E4}{1/2,D4}{1/2,- B4}{1/2,C5}{1/2,- C4}{1/2,F4}{1/2,- B3}}},_tempo(34/15) _vel(93) _chan(2){4,{-{1,B4& &B4}-{1,Ab5& &Ab5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Ab4}{1/2,- G4}{1/2,G4}{1/2,- F4}{1/2,F4}{1/2,- Eb4}{1/2,Eb4}{1/2,- D4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1,G4& &G4}-{1,G3& &G3}-}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,C4}{1/2,- G5}{1/2,C4}{1/2,- C4}{1/2,C4}{1/2,- G5}{1/2,Eb4}{1/2,- Eb4}}},_tempo(34/15) _vel(93) _chan(2){4,{-{1,G5& &G5}-{1,B4 C5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Eb4}{1/2,- Eb3}{1/2,Eb4}{1/2,- Eb4}{1/2,Eb4}{1/2,- Eb3}{1/2,G4}{1/2,- G4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1,C4& &C4}-{1,Bb3& &Bb3}-}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Eb4}{1/2,- C6}{1/2,D6}{1/2,- C5}{1/2,C6}{1/2,- Bb4}{1/2,F4}{1/2,- G4}}},_tempo(34/15) _vel(94) _chan(2){4,{-{3,C5& &C5 A5 Bb5 Bb5& &Bb5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,G4}{1/2,- F4}{1/2,F4}{1/2,- Eb4}{1/2,Eb4}{1/2,- D4}{1/2,D4}{1/2,- E4}}},_tempo(34/15) _vel(98) _chan(4){4,{{2,A3& &A3 F3& &F3}3/4{1/4,Bb2}{1/2,C4}{1/2,- C4}}}} {_tempo(34/15) _vel(112) _chan(1){4,{{1/2,A4}{1/2,- C4}{1,F4& &F4}-{1,F4& &F4}}},_tempo(34/15) _vel(107) _chan(2){4,{{1,A5& &A5}-{1,F5& &F5}-}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,F4}{1/2,- C5}{1/2,A3}{1/2,- A3}{1/2,A3}{1/2,- C5}{1/2,C4}{1/2,- C4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,C4}{1/2,- A2}{1/2,C4}{1/2,- C4}{1/2,C4}{1/2,- A2}{1/2,Eb4}{1/2,- Eb4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{-{1,F#4& &F#4}-{1,Eb5& &Eb5}}},_tempo(34/15) _vel(95) _chan(2){4,{{1,C6& &C6}-{1,F#5& &F#5}-}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,C4}{1/2,- Bb4}{1/2,Bb4}{1/2,- A4}{1/2,Eb4}{1/2,- D4}{1/2,D4}{1/2,- C4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Eb4}{1/2,- D4}{1/2,D4}{1/2,- C4}{1/2,C4}{1/2,- Bb3}{1/2,Bb3}{1/2,- A3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{-{1,D5& &D5}-{1,F#4 G4}}},_tempo(34/15) _vel(93) _chan(2){4,{{1,G5& &G5}-{1,D6& &D6}-}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,D4}{1/2,- D3}{1/2,D5}{1/2,- D5}{1/2,G4}{1/2,- D3}{1/2,Bb4}{1/2,- Bb4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Bb3}{1/2,- Bb2}{1/2,Bb3}{1/2,- Bb3}{1/2,Bb3}{1/2,- Bb2}{1/2,D4}{1/2,- D4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{-{3,G4& &G4 E5 F5 Eb5 Eb6}}},_tempo(34/15) _vel(93) _chan(2){4,{4,E5& &E5 C6& &C6 C6& &C6 F5& &F5}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Bb4}{1/2,- A4}{1/2,A4}{1/2,- G4}{1/2,G4}{1/2,- F4}{1/2,F4}{1/2,- A4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,D4}{1/2,- C4}{1/2,C4}{1/2,- Bb3}{1/2,Bb3}{1/2,- A3}{1/2,A3}{1/2,- C4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{4,D6& &D6 Eb6& &Eb6 D6& &D6 C6& &C6}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,F5}{1/2,- A5}{1/2,A5}{1/2,- C6}{1/2,Bb5}{1/2,- F#5}{1/2,F#5}{1/2,- A5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Bb4}{1/2,- C5}{1/2,C5}{1/2,- A4}{1/2,F4}{1/2,- A4}{1/2,A4}{1/2,- F#4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Bb3}{1/2,- F3}{1/2,F3}{1/2,- F3}{1/2,Bb3}{1/2,- D3}{1/2,D3}{1/2,- D3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{4,B5& &B5 Bb5& &Bb5 A5& &A5 Ab5& &Ab5}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,G5}{1/2,- D4}{3,Db4 C4 C4 C5 Cb5& &Cb5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,G4}{1/2,- F4}{1/2,E4}{1/2,- F4}{1,E4 -}-}},_tempo(34/15) _vel(93) _chan(4){4,{{1,G3 -}- 3/4{1/4,Eb3}{1/2,D3}{1/2,- F3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{5/2,G5& &G5 Gb5& &Gb5 F5}{1/2,- D4}{1/2,F5}{1/2,- F5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Bb4}{1/2,- Bb4}{1/2,A4}{1/2,- C5}{1/2,F4}{1/2,- F5}{1/2,Eb5}{1/2,- C5}}},_tempo(34/15) _vel(93) _chan(3){4,{ 3/4{1/4,Eb4}{1/2,C4}{1/2,- Eb4}{1/2,D4}{1/2,- D5}{1/2,C5}{1/2,- A4}}},_tempo(34/15) _vel(93) _chan(4){4,{Eb3 ---}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,F5}{1/2,- D4}{1/2,F5}{1/2,- F5}{1/2,F5}{1/2,- D4}{1/2,Ab5}{1/2,- Ab5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,D5}{1/2,- D5}{1/2,C5}{1/2,- Bb4}{1/2,F4}{1/2,- F4}{1/2,Eb4}{1/2,- D4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Bb4}{1/2,- F4}{1/2,Eb4}{1/2,- D4}{1/2,D4}{1/2,- D4}{1/2,C4}{1/2,- F3}}},_tempo(34/15) _vel(107) _chan(4){4,{-{1,Bb2& &Bb2}-{1,Bb2& &Bb2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Ab5}{1/2,- G5}{1/2,G5}{1/2,- F5}{1/2,F5}{1/2,- Eb5}{1/2,Eb5}{1/2,- D5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,D4}{1/2,- Eb4}{1/2,Eb4}{1/2,- F4}{1/2,B4}{1/2,- C5}{1/2,C5}{1/2,- D5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,F3}{1/2,- Eb3}{1/2,Eb3}{1/2,- D3}{1/2,D4}{1/2,- C4}{1/2,C4}{1/2,- B3}}},_tempo(34/15) _vel(93) _chan(4){4,{-{1,B2& &B2}-{1,Ab3& &Ab3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Eb5}{1/2,- Eb4}{1/2,Eb5}{1/2,- Eb5}{1/2,Eb5}{1/2,- Eb4}{1/2,G5}{1/2,- Gb5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,G4}{1/2,- Eb5}{1/2,F5}{1/2,- G5}{1/2,G5}{1/2,- C5}{1/2,Eb5}{1/2,- Eb5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,C4}{1/2,- C4}{1/2,C4}{1/2,- C4}{1/2,C4}{1/2,- G4}{1/2,Eb4}{1/2,- Eb4}}},_tempo(34/15) _vel(93) _chan(4){4,{-{1,G3& &G3}-{1,B2 C3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Gb5}{1/2,- F5}{1/2,F5}{1/2,- Eb5}{1/2,Eb5}{1/2,- D5}{1/2,D5}{1/2,- E5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,A4}{1/2,- Bb4}{1/2,B4}{1/2,- C5}{1/2,Gb4}{1/2,- F4}{1/2,F4}{1/2,- G4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Eb4}{1/2,- D4}{1/2,D4}{1/2,- C4}{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- C4}}},_tempo(34/15) _vel(93) _chan(4){4,{-{3,C3& &C3 A3 Bb3 Bb3& &Bb3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,E5}{1/2,- F5}{1/2,Bb5}{1/2,- Bb5}{1/2,Bb5}{1/2,- Bb4}{1/2,Bb4}{1/2,- C5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,G4}{1/2,- F4}{1/2,F4}{1/2,- F5}{1/2,D5}{1/2,- Eb5}{1/2,Eb4}{1/2,- Bb3}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,C4}{1/2,- C4}{1/2,Eb4}{1/2,- D4}{1/2,F4}{1/2,- G4}{1/2,Bb3}{1/2,- Bb4}}},_tempo(34/15) _vel(93) _chan(4){4,{4,A3& &A3 Ab3& &Ab3 G3& &G3 Gb3& &Gb3}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,C#5}{1/2,- D5}{1/2,D5}{1/2,- Eb5}{1/2,E5}{1/2,- F5}-}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Ab3}{1/2,- Ab4}{1/2,G4}{1/2,- G4}{1/2,F4}{1/2,- F4}{1/2,F5}{1/2,- F#5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Bb4}{1/2,- Bb3}{1/2,Bb3}{1/2,- Bb3}{1/2,Bb3}{1/2,- Bb3}{1/2,D4}{1/2,- D4}}},_tempo(34/15) _vel(93) _chan(4){4,{4,F3& &F3 Eb3& &Eb3 D3& &D3 C4& &C4}}} {_tempo(34/15) _vel(93) _chan(1){4,{ 3/4{1/4,Bb4}{1/2,G5}{1/2,- Ab5}{1/2,A5}{1/2,- Bb5}{1/2,Bb5}{1/2,- B5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,F#5}{1/2,- G5}{1/2,Bb4}{1/2,- Bb4}{1/2,Bb4}{1/2,- Bb4}{1/2,G5}{1/2,- F5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,D4}{1/2,- Eb4}{1/2,E4}{1/2,- F4}{1/2,F4}{1/2,- Eb4}{1/2,Eb5}{1/2,- D5}}},_tempo(34/15) _vel(93) _chan(4){4,{4,Bb3& &Bb3 Ab3& &Ab3 G3& &G3 G2& &G2}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,B5}{1/2,- C6}{1/2,D6}{1/2,- Eb6}{1/2,G5}{1/2,- Eb6}{1/2,D4}{1/2,- F6}}},_tempo(34/15) _vel(107) _chan(2){4,{Eb5 - 3/4{1/4,G3}{1/2,Bb4}{1/2,- Bb4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,C5}{1/2,- C4}{1/2,F3}{1/2,- F3}{1/2,Eb3}3/2}},_tempo(34/15) _vel(93) _chan(4){4,{4,Ab2& &Ab2 A2& &A2 Bb2& &Bb2 Bb3& &Bb3}}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,G6}{171/512,Eb4}{341/512,D4 C4}{171/512,Bb3}{341/512,Ab3 G3}{171/512,Db5}{341/512,C5 Bb4}{171/512,Ab4}{341/1024,G4}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Bb4}{1/2,- G3}{1/2,Bb4}{1/2,- Bb4}{1/2,Bb4}{1/2,- G3}{1/2,Db5}{1/2,- Db5}}},_tempo(34/15) _vel(112) _chan(3){4,{-{1,Eb4& &Eb4}-{1,Eb4& &Eb4}}},_tempo(34/15) _vel(93) _chan(4){4,{Eb4 ---}}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,G4}{171/512,G3}{341/512,G4 G4}{171/512,B3}{341/512,C4 G4}{171/512,C4}{341/512,F4 F4}{171/512,Bb3}{341/1024,E4}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Db5}{1/2,- C5}{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- Ab4}{1/2,Ab4}{1/2,- G4}}},_tempo(34/15) _vel(93) _chan(3){4,{-{1,E4& &E4}-{1,Db5& &Db5}}},_tempo(34/15) _vel(93) _chan(4){4}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,F4}{171/512,C4}{341/512,B3 C4}{171/512,E4}{341/512,F4 C4}{171/512,F4}{341/512,G4 A4}{171/512,G4}{341/1024,A4}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Ab4}{1/2,- Ab3}{1/2,Ab4}{1/2,- Ab4}{1/2,A4}{1/2,- A3}{1/2,C5}{1/2,- C5}}},_tempo(34/15) _vel(93) _chan(3){4,{-{1,C5& &C5}-{1,E4 F4}}},_tempo(34/15) _vel(93) _chan(4){4}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,Ab4}{171/512,C4}{341/512,D4 Eb4}{171/512,C4}{341/512,D4 F4}{171/512,Bb3}{341/512,G4 Bb3}{171/512,B3}{341/1024,C4}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- Ab4}{1/2,Ab4}{1/2,- G4}{1/2,G4}{1/2,- A4}}},_tempo(34/15) _vel(93) _chan(3){4,{-{3,F4& &F4 D5 Eb5 Eb5& &Eb5}}},_tempo(34/15) _vel(93) _chan(4){4,{-- 3/4{1/4,Eb2}{1/2,F3}{1/2,- F3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,C4}{171/512,D4}{341/1024,Bb4}{1,Bb3& &Bb3}-{1,Bb3& &Bb3}}},_tempo(34/15) _vel(112) _chan(2){4,{{341/1024,A4}{171/512,Bb4}{341/512,F4 D5}{171/512,C5}{341/512,Bb4 Ab5}{171/512,G5}{341/512,F5 Eb5}{171/512,D5}{341/1024,F5}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,D5}{171/512,D3}{341/512,F3 Bb3}{171/512,C4}{341/512,D4 D4}{171/512,Eb4}{341/512,F4 G4}{171/512,F4}{341/1024,D4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,F3}{1/2,- D2}{1/2,F3}{1/2,- F3}{1/2,F3}{1/2,- D2}{1/2,Ab3}{1/2,- Ab3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{-{1,B3& &B3}-{1,Ab4& &Ab4}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,F5}{171/512,F4}{341/512,Eb5 Eb5}{171/512,D4}{341/512,D5 D5}{171/512,C4}{341/512,C5 C5}{171/512,F4}{341/1024,B4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Bb4}{1/2,- Bb4}{1/2,Ab4}{1/2,- Ab4}{1/2,G4}{1/2,- G4}{1/2,G4}{1/2,- F4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Ab3}{1/2,- G3}{1/2,G3}{1/2,- F3}{1/2,F3}{1/2,- Eb3}{1/2,Eb3}{1/2,- D3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{-{1,G4& &G4}-{1,B3 C4}}},_tempo(34/15) _vel(93) _chan(2){4,{{341/1024,B4}{171/512,G3}{341/512,C5 Ab5}{171/512,G5}{341/512,F5 F5}{171/512,Eb5}{341/512,D5 D5}{171/512,Eb5}{341/1024,Eb4}}},_tempo(34/15) _vel(93) _chan(3){4,{G4 ---}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Eb3}{1/2,- Eb2}{1/2,Eb3}{1/2,- Eb3}{1/2,Eb3}{1/2,- Eb2}{1/2,G3}{1/2,- Gb3}}}} {_tempo(34/15) _vel(95) _chan(1){4,{-{3,C4& &C4 A4 Bb4 Bb4& &Bb4}}},_tempo(34/15) _vel(98) _chan(2){4,{{341/1024,Eb5}{171/512,Ab4}{341/512,D5 D5}{171/512,G4}{341/512,C5 C5}{171/512,F4}{341/512,F5 F5}{171/512,F4}{341/1024,G5}}},_tempo(34/15) _vel(93) _chan(3){4},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,G3}{1/2,- F3}{1/2,F3}{1/2,- Eb3}{1/2,Eb3}{1/2,- D3}{1/2,D3}{1/2,- E3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{4,Bb4 C5 C5& &C5 C5 Bb4 Eb5& &Eb5}},_tempo(34/15) _vel(93) _chan(2){4,{{341/1024,G5}{171/512,C5}{341/512,G5 G5}{171/512,A4}{341/512,A5 A5}{171/512,Bb4}{341/512,Bb5 Bb5}{171/512,C5}{341/1024,C6}}},_tempo(34/15) _vel(93) _chan(3){4},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,F3}{1/2,- E3}{1/2,E3}{1/2,- F#3}{1/2,F#3}{1/2,- G3}{1/2,G3}{1/2,- A3}}}} {_tempo(34/15) _vel(97) _chan(1){4,{{2,D5 G5 G5& &G5}3/4{1/4,D4}{1/2,D6}{1/2,- D6}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,D6}{171/512,G4}{341/512,D5 D5}{171/512,G4}{341/512,Eb5 Eb5}{171/512,C4}{341/512,A4 A4}{171/512,A3}{341/1024,F#4}}},_tempo(34/15) _vel(93) _chan(3){4},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,A3}{1/2,- Bb3}{1/2,B3}{1/2,- C4}{1/2,C4}{1/2,- D4}{1/2,D4}{1/2,- C4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,D6}{1/2,- G3}{1/2,D6}{1/2,- D6}{1/2,D6}{1/2,- G3}{1/2,F6}{1/2,- F6}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,G4}{171/512,G3}{341/1024,F5}{1,G4& &G4}-{1,G4& &G4}}},_tempo(34/15) _vel(93) _chan(3){4,{-- 3/4{1/4,G3}{1/2,D5}{1/2,- D5}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,B3}{171/512,D4}{341/512,C4 C4}{171/512,B3}{341/512,Ab4 G4}{171/512,F4}{341/512,Eb4 D4}{171/512,C4}{341/1024,B3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,F6}{1/2,- Eb6}{1/2,Eb6}{1/2,- Db6}{1/2,Db6}{1/2,- C6}{1/2,C6}{1/2,- Bb5}}},_tempo(34/15) _vel(93) _chan(2){4,{-{1,Ab4& &Ab4}-{1,G5& &G5}}},_tempo(34/15) _vel(93) _chan(3){4,{C5 - 3/4{1/4,C3}{1/2,C4}{1/2,- C4}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,C4}{171/512,C3}{341/512,Db3 C3}{171/512,Ab2}{341/512,Bb2 Bb2}{171/512,G2}{341/512,Ab2 Ab2}{171/512,F2}{341/1024,G2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Bb5}{1/2,- D4}{1/2,A5}{1/2,- A5}{1/2,A5}{1/2,- D4}{1/2,Eb6}{1/2,- Eb6}}},_tempo(34/15) _vel(93) _chan(2){4,{-{1,F#5& &F#5}-{1,F#4& &F#4}}},_tempo(34/15) _vel(93) _chan(3){4,{D4 - 3/4{1/4,Gb3}{1/2,C5}{1/2,- C5}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,G2}{171/512,E2}{341/512,Gb2 Eb3}{171/512,C#3}{341/512,D3 D3}{171/512,B2}{341/512,C3 D4}{171/512,B3}{341/1024,C4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Eb6}{1/2,- D6}{1/2,D6}{1/2,- C6}{1/2,C6}{1/2,- B5}{1/2,B5}{1/2,- D6}}},_tempo(34/15) _vel(93) _chan(2){4,{-{1,F4& &F4}-{1,F5& &F5}}},_tempo(34/15) _vel(93) _chan(3){4,{D5 - 3/4{1/4,D4}{1/2,D4}{1/2,- F4}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,C4}{171/512,A3}{341/512,Bb3 Bb3}{171/512,G3}{341/512,Ab3 Ab3}{171/512,D3}{341/512,G3 G3}{171/512,G2}{341/1024,G3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{C6 - 3/4{1/4,D5}{1/2,D5}{1/2,- F5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,G5}{1/2,- C4}{1/2,C4}{1/2,- Eb4}D4 -}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Eb4}{1/2,- Eb4}{1/2,Eb4}{1/2,- C5}{1/2,D5}{1/2,- G3}{1/2,G3}{1/2,- D4}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,G3}{171/512,Eb3}{341/512,G3 D3}{171/512,C3}{341/512,G3 C3}{171/512,B2}{341/512,G3 Ab2}{171/512,G2}{341/1024,B2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,F5}{1/2,- Eb5}{1/2,E5}{1/2,- G5}{1/2,G5}{1/2,- F#5}{1/2,G5}{1/2,- Bb5}}},_tempo(34/15) _vel(107) _chan(2){4,{ 3/4{1/4,G4}{1/2,G4}{1/2,- C5}C5 -}},_tempo(34/15) _vel(93) _chan(3){4,{C4 - 3/4{1/4,D4}{1/2,D4}{1/2,- G4}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,C3}{171/512,B3}{341/512,C4 C4}{171/512,A3}{341/512,Bb3 Bb3}{171/512,G3}{341/512,A3 A3}{171/512,F#3}{341/1024,G3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Bb5}{1/2,- A5}{1/2,B5}{1/2,- D6}{1/2,D6}{1/2,- C#6}{1/2,D6}{1/2,- F6}}},_tempo(34/15) _vel(107) _chan(2){4,{ 3/4{1/4,D5}{1/2,D5}{1/2,- G5}G5 -}},_tempo(34/15) _vel(93) _chan(3){4,{A4 - 3/4{1/4,G4}{1/2,G4}{1/2,- D5}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,G3}{171/512,E3}{341/512,F#3 G3}{171/512,D2}{341/512,F2 F2}{171/512,D2}{341/512,E2 E2}{171/512,C#2}{341/1024,D2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,E6}{1/2,- E5}{1/2,E5}{1/2,- G5}{2,F5 - F#5 -}}},_tempo(34/15) _vel(107) _chan(2){4,{ 3/4{1/4,C#4}{1/2,C#4}{1/2,- E4}{2,D4 - D5 -}}},_tempo(34/15) _vel(93) _chan(3){4,{E5 - 3/4{1/4,A3}{1/2,A3}{1/2,- C4}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,D2}{171/512,C#2}{341/512,A2 C#3}{171/512,A2}{341/512,E3 E3}{171/512,C#3}{341/512,D3 D3}{171/512,C3}{341/1024,A2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{ 3/4{1/4,D4}{1/2,D4}{1/2,- F4}{2,Eb4 - E4 -}}},_tempo(34/15) _vel(107) _chan(2){4,{{2,D5 - G5 -}3/4{1/4,G4}{1/2,G4}{1/2,- Bb4}}},_tempo(34/15) _vel(93) _chan(3){4,{{5/2,Bb3 - B3 - C4}{1/2,- G3}{1/2,G3}{1/2,- E3}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,A2}{171/512,F#2}{341/512,G2 G2}{171/512,B2}{341/512,D3 D3}{171/512,B2}{341/512,C3 C3}{171/512,E3}{341/1024,G3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{ 3/4{1/4,F5}{1/2,F5}{1/2,- A5}{2,F#5 - G5 -}}},_tempo(34/15) _vel(107) _chan(2){4,{{2,Ab4 - A4 -}{341/1024,Bb4}{171/512,B3}{341/512,C4 C4}{171/512,G4}{341/1024,Bb4}}},_tempo(34/15) _vel(93) _chan(3){4,{{2,C4 - F3 -}3/4{1/4,Bb3}{1/2,Bb3}{1/2,- G3}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,G3}{171/512,E3}{341/512,F3 D3}{171/512,B2}{341/1024,C3}{1/2,C3}{1/2,- E2}{1/2,E2}{1/2,- G2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{4,G#5 - A5 - D#6 - E6 -}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,Bb4}{171/512,B3}{341/512,C4 C4}{171/512,F5}{341/512,C5 B4}{171/512,C5}{341/512,C6 A5}{171/512,C6}{341/1024,Bb5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,C3}{1/2,- A4}{1/2,A4}{1/2,- C5}{1/2,A4}{1/2,- Bb3}{1/2,C5}{1/2,- C5}}},_tempo(34/15) _vel(112) _chan(4){4,{4,E2 - F2 - F#2 - G2 -}}} {_tempo(34/15) _vel(107) _chan(1){4,{F6{1,F5& &F5}-{1,F5& &F5}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,B5}{171/512,D6}{341/512,C6 C6}{171/512,E6}{341/512,F6 E5}{171/512,G5}{341/512,F5 A5}{171/512,Bb5}{341/1024,C6}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,C5}{1/2,- A3}{1/2,C5}{1/2,- C5}{1/2,C5}{1/2,- A3}{1/2,Eb5}{1/2,- Eb5}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,A2}{1/2,- F3}{1/2,A4}{1/2,- A4}{1/2,A4}{1/2,- F3}{1/2,C5}{1/2,- C5}}}} {_tempo(34/15) _vel(93) _chan(1){4,{-{1,F#5& &F#5}-{1,Eb6& &Eb6}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,Gb5}{171/512,A5}{341/512,G5 C6}{171/512,D5}{341/512,Eb5 A5}{171/512,C6}{341/512,Bb5 B5}{171/512,D6}{341/1024,C6}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Eb5}{1/2,- D5}{1/2,D5}{1/2,- C5}{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- A4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- A4}{1/2,A4}{1/2,- G4}{1/2,G4}{1/2,- F#4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{-{1,D6& &D6}-{1,F#5 G5}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,A5}{171/512,C6}{341/512,Bb5 D5}{171/512,F#5}{341/512,G5 A5}{171/512,C6}{341/512,Bb5 D5}{171/512,D6}{341/1024,D6}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Bb4}{1/2,- Bb3}{1/2,Bb4}{1/2,- Bb4}{1/2,Bb4}{1/2,- Bb3}{1/2,D5}{1/2,- D5}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,G4}{1/2,- G3}{1/2,G4}{1/2,- G4}{1/2,G4}{1/2,- G3}{1/2,Bb4}{1/2,- Bb4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{-{3,G5& &G5 E6& &E6 F6& &F6}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,D4}{171/512,E5}{341/512,F5 D5}{171/512,F5}{341/512,E5 G5}{171/512,D6}{341/512,C6 C6}{171/512,F5}{341/1024,G5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,D5}{1/2,- C5}{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- A4}{1/2,A4}{1/2,- Bb4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Bb4}{1/2,- A2}{1/2,C4}{1/2,- C4}{1/2,C4}{1/2,- C3}{1/2,C4}{1/2,- C4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{3,F#6& &F#6 F#5& &F#5 F#4& &F#4}-}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,A5}{171/512,D6}{341/512,C6 B5}{171/512,D6}{341/512,C6 A5}{171/512,C6}{341/512,Bb5 G5}{171/512,Bb5}{341/1024,A5}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,Bb4}{171/512,B4}{341/512,C5 D5}{171/512,B4}{341/512,C5 C5}{171/512,A4}{341/512,Bb4 Bb4}{171/512,G4}{341/1024,A4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,C4}{1/2,- A2}{1/2,Eb4}{1/2,- Eb4}{1/2,Eb4}{1/2,- D4}{1/2,D4}{1/2,- C4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{3,G6& &G6 G5& &G5 G3& &G3}-}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,C6}{171/512,Eb6}{341/512,D6 Bb4}{171/512,D5}{341/512,C5 C5}{171/512,Eb5}{341/512,D5 F#5}{171/512,A5}{341/1024,G5}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,Eb4}{171/512,C4}{341/512,D4 D4}{171/512,B3}{341/512,C4 Eb4}{171/512,C4}{341/512,D4 Eb3}{171/512,C#3}{341/1024,D3}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,C4}{1/2,- Bb3}{1/2,Bb3}{1/2,- A3}{1/2,Bb3}{1/2,- Bb2}{1/2,Bb3}{1/2,- Bb3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{3,D6& &D6 Bb4& &Bb4 E4& &E4}-}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,F#4}{171/512,A4}{341/512,G4 A5}{171/512,C6}{341/512,Bb5 G5}{171/512,Bb5}{341/512,A5 F5}{171/512,A5}{341/1024,G5}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,C4}{171/512,A3}{341/512,Bb3 C5}{171/512,A4}{341/512,Bb4 Bb4}{171/512,G4}{341/512,A4 A4}{171/512,F4}{341/1024,G4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Bb3}{1/2,- Bb2}{1/2,D4}{1/2,- D4}{1/2,D4}{1/2,- C4}{1/2,C4}{1/2,- Bb3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{4,C6& &C6 F5& &F5 D6& &D6 G4& &G4}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,E5}{171/512,G5}{341/512,F5 C5}{171/512,Eb5}{341/512,D5 F5}{171/512,Ab5}{341/512,G5 D5}{171/512,F5}{341/1024,E5}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,G4}{171/512,C4}{341/512,F4 Eb4}{171/512,C4}{341/512,D4 F4}{171/512,D4}{341/512,G4 F4}{171/512,D3}{341/1024,E3}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Bb3}{1/2,- A3}{1/2,A3}{1/2,- Bb3}{1/2,Bb3}{1/2,- B3}{1/2,B3}{1/2,- C4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{4,D5& &D5 G5& &G5 E6& &E6 A4& &A4}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,F4}{171/512,Ab4}{341/512,G4 D5}{171/512,F5}{341/512,E5 E5}{171/512,G5}{341/512,E5 E5}{171/512,G5}{341/1024,F5}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,F4}{171/512,D4}{341/512,G4 F4}{171/512,D4}{341/512,E4 G4}{171/512,E4}{341/512,A4 G4}{171/512,E4}{341/1024,F4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,C4}{1/2,- B3}{1/2,B3}{1/2,- C4}{1/2,C4}{1/2,- C#4}{1/2,C#4}{1/2,- D4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{4,E5& &E5 A5& &A5 G6& &G6 G5 A5}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,Bb4}{171/512,G4}{341/1024,E4}F4 3/4{1/4,G4}{1/2,A5}{1/2,- A5}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,G4}{171/512,E4}{341/512,A4 G4}{171/512,E4}{341/512,F4 D5}{171/512,B4}{341/512,Db5 E5}{171/512,Db5}{341/1024,D5}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,D4}{1/2,- C#4}{1/2,C#4}{1/2,- D4}{1/2,D4}{1/2,- E4}{1/2,E4}{1/2,- F4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1,A6& &A6}{1/2,A3&,F#4&}{1/2,&A3,&F#4}3/4{1/4,A4}{1/2,Eb6}{1/2,- Eb6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,A5}{1/2,- F#4}{1/2,A5}{1/2,- A5}{1/2,A5}{1/2,- F#4}{1/2,C6}{1/2,- C6}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,Eb5}{171/512,C5}{341/512,A4 Eb4}{171/512,C4}{341/512,A3 B3}{171/512,D4}{341/512,C4 G3}{171/512,Bb3}{341/1024,A3}}},_tempo(34/15) _vel(107) _chan(4){4,{F#4{3,C2& &C2 F#3& &F#3 F#4& &F#4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Eb6}{1/2,- D6}{1/2,D6}{1/2,- F#6}{1/2,F#6}{1/2,- G6}{1/2,G6}{1/2,- A6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,C6}{1/2,- Bb5}{1/2,Bb5}{1/2,- A5}{1/2,A5}{1/2,- G5}{1/2,G5}{1/2,- F#5}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,Gb3}{171/512,A3}{341/512,Bb3 G3}{171/512,D4}{341/512,C4 C4}{171/512,C5}{341/512,Bb4 Bb4}{171/512,D5}{341/1024,C5}}},_tempo(34/15) _vel(94) _chan(4){4,{-{3,D2& &D2 D3& &D3 D4& &D4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{Bb6 - 3/4{1/4,G5}{1/2,G6}{1/2,- G6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,G5}{1/2,- E4}{1/2,G5}{1/2,- G5}{1/2,G5}{1/2,- E4}{1/2,Bb5}{1/2,- Bb5}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,A4}{171/512,C5}{341/512,Bb4 D3}{171/512,F3}{341/512,E3 A3}{171/512,C4}{341/512,Bb3 D4}{171/512,F4}{341/1024,E4}}},_tempo(34/15) _vel(93) _chan(4){4,{-{3,C#2& &C#2 C#3& &C#3 C#4& &C#4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,G6}{1/2,- C#6}{1/2,D6}{1/2,- E6}{1/2,E6}{1/2,- F6}{1/2,F6}{1/2,- E6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Bb5}{1/2,- A5}{1/2,A5}{1/2,- G5}{1/2,G5}{1/2,- F5}{1/2,F5}{1/2,- G5}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,D3}{171/512,F3}{341/512,E3 B3}{171/512,D4}{341/512,C#4 B4}{171/512,D5}{341/512,C#5 C#5}{171/512,E5}{341/1024,D5}}},_tempo(34/15) _vel(93) _chan(4){4,{-{3,A2& &A2 A4& &A4 Bb4& &Bb4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,E6}{1/2,- E6}{1/2,E6}{1/2,- F#6}G6 -}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,G5}{1/2,- A5}{1/2,A5}{1/2,- Bb5}{1/2,Bb5}{1/2,- D5}{1/2,D5}{1/2,- E5}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,B4}{171/512,D5}{341/512,C#5 B4}{171/512,D5}{341/512,C5 A4}{171/512,C5}{341/512,B4 A4}{171/512,C5}{341/1024,Bb4}}},_tempo(34/15) _vel(93) _chan(4){4,{4,A4& &A4 A4& &A4 G4& &G4 G4& &G4}}} {_tempo(34/15) _vel(93) _chan(1){4,{ 3/4{1/4,C#6}{1/2,C#6}{1/2,- D6}E6 -}},_tempo(34/15) _vel(107) _chan(2){4,{F5 -{1/2,A3}{1/2,- B4}{1/2,B4}{1/2,- C#5}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,A4}{171/512,Bb4}{341/512,G4 G4}{171/512,A4}{341/1024,F4}{1/2,E4}{1/2,- A4}{1/2,A4}{1/2,- G4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,F4}{1/2,- E4}{1/2,E4}{1/2,- D4}{1/2,C#4}{1/2,- F4}{1/2,F4}{1/2,- E4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{ 3/4{1/4,C#5}{1/2,C#5}{1/2,- D5}E5 -}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,D5}{1/2,- E5}{1/2,E5}{1/2,- F5}G5 -}},_tempo(34/15) _vel(93) _chan(3){4,{F4 -{1/2,E#4}{1/2,- Bb4}{1/2,Bb4}{1/2,- A4}}},_tempo(34/15) _vel(93) _chan(4){4,{D4 -{1/2,C#4}{1/2,- G4}{1/2,G4}{1/2,- F4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{ 3/4{1/4,E6}{1/2,E6}{1/2,- F6}{1/2,G6}{1/2,- E4}{1/2,Bb5}{1/2,- Bb5}}},_tempo(34/15) _vel(107) _chan(2){4,{ 3/4{1/4,G5}{1/2,G5}{1/2,- A5}Bb5 -}},_tempo(34/15) _vel(93) _chan(3){4,{4,G4& &G4 F4& &F4 E4& &E4 E4& &E4}},_tempo(34/15) _vel(93) _chan(4){4,{4,E4& &E4 D4& &D4 C#4& &C#4 C4& &C4}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Bb5}{1/2,- Ab5}{1/2,Ab5}{1/2,- G5}{1/2,G5}{1/2,- F5}{1/2,F5}{1/2,- E5}}},_tempo(34/15) _vel(107) _chan(2){4,{ 3/4{1/4,E4}{1/2,Bb5}{1/2,- Bb5}{1/2,Bb5}{1/2,- Ab5}{1/2,Ab5}{1/2,- G5}}},_tempo(34/15) _vel(93) _chan(3){4,{4,E5& &E5 E4& &E4 E3& &E3 Db4& &Db4}},_tempo(34/15) _vel(93) _chan(4){4,{{3,C2& &C2 C3& &C3 C4& &C4}-}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,E5}{1/2,- Ab4}{1/2,Ab4}{1/2,- G4}G4 -}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,G5}{1/2,- F5}{1/2,F5}{1/2,- E5}E5 -}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,C4}{1/2,- C3}{1/2,C4}{1/2,- C4}{1/2,C4}{1/2,- Bb3}{1/2,Bb3}{1/2,- Ab3}}},_tempo(34/15) _vel(93) _chan(4){4,{-{3/2,C2 C2 C3}{1/2,- C2}{1/2,C4}{1/2,- C4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{-- 3/4{1/4,C5}{1/2,C6}{1/2,- C6}}},_tempo(34/15) _vel(107) _chan(2){4,{ 3/4{1/4,C5}{1/2,C6}{1/2,- C6}{1/2,C6}{1/2,- Bb5}{1/2,Bb5}{1/2,- Ab5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Ab3}{1/2,- G3}{1/2,G3}{1/2,- F3}F3 -}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,C4}{1/2,- Bb3}{1/2,Bb3}{1/2,- Ab3}{1/2,Ab3}{1/2,- G3}{1/2,G3}{1/2,- F3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,C6}{1/2,- Bb5}{1/2,Bb5}{1/2,- Ab5}{1/2,Ab5}{1/2,- G5}{1/2,G5}{1/2,- F5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Ab5}{1/2,- G5}{1/2,G5}{1/2,- F5}{1/2,F5}{1/2,- E5}{1/2,E5}{1/2,- F4}}},_tempo(34/15) _vel(93) _chan(3){4,{-- 3/4{1/4,C4}{1/2,C5}{1/2,- C5}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,F3}{1/2,- C2}{1/2,C3}{1/2,- C3}{1/2,C3}{1/2,- Bb2}{1/2,Bb2}{1/2,- Ab2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{F5 - 3/4{1/4,E4}{1/2,Bb5}{1/2,- Bb5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,C4}{1/2,- C4}{1/2,C5}{1/2,- C5}{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- Ab4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- Ab4}{1/2,Ab4}{1/2,- G4}{1/2,G4}{1/2,- F4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Ab2}{1/2,- G2}{1/2,G2}{1/2,- F2}{1/2,F2}{1/2,- E4}{1/2,E4}{1/2,- F4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Bb5}{1/2,- E4}{1/2,Bb5}{1/2,- Bb5}{1/2,Bb5}{1/2,- E4}{1/2,Db6}{1/2,- C6}}},_tempo(34/15) _vel(107) _chan(2){4,{Bb4 -{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- Bb4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,E4}{1/2,- G3}{1/2,F3}{1/2,- E3}{1/2,E3}{1/2,- G4}{1/2,E4}{1/2,- F4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,G4}{1/2,- Db2}{1/2,Db2}{1/2,- C2}C2 -}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,C6}{1/2,- A4}{1/2,C6}{1/2,- C6}{1/2,C6}{1/2,- A4}{1/2,Eb6}{1/2,- D6}}},_tempo(34/15) _vel(107) _chan(2){4,{A4 -{1/2,A4}{1/2,- G4}{1/2,G4}{1/2,- F#4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,F4}{1/2,- C4}{1/2,A3}{1/2,- G3}{1/2,F#3}{1/2,- G3}{1/2,G3}{1/2,- A3}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,G3}{1/2,- F3}{1/2,F3}{1/2,- Eb3}D3 -}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,D6}{1/2,- D4}{1/2,D6}{1/2,- D6}{1/2,D6}{1/2,- D4}{1/2,F6}{1/2,- F6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Gb4}{1/2,- G4}{1/2,G4}{1/2,- A4}{1/2,B4}{1/2,- C5}{1/2,C5}{1/2,- D5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,A3}{1/2,- D4}{1/2,D4}{1/2,- C4}{1/2,B3}{1/2,- A3}{1/2,A3}{1/2,- Ab3}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,C4}{1/2,- Bb3}{1/2,Bb3}{1/2,- A3}G#3 -}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,F6}{1/2,- D4}{1/2,Gb6}{1/2,- Gb6}{1/2,Gb6}{1/2,- D4}{1/2,G6}{1/2,- G6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,A4}{1/2,- A4}{1/2,Eb4}{1/2,- D4}{1/2,D4}{1/2,- Gb4}{1/2,D4}{1/2,- D5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,A3}{1/2,- A3}{1/2,A4}{1/2,- D5}{1/2,C5}{1/2,- A3}{1/2,A3}{1/2,- G3}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,D4}{1/2,- C4}{1/2,C4}{1/2,- Bb3}{1/2,A3}{1/2,- C4}{1/2,C3}{1/2,- B2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,G6}{1/2,- D4}{1/2,G#6}{1/2,- G#6}{1/2,G#6}{1/2,- D4}{1/2,A6}{1/2,- A6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,D5}{1/2,- F4}{1/2,F4}{1/2,- E4}{1/2,E4}{1/2,- E4}{1/2,E4}{1/2,- Eb4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,D3}{1/2,- D4}{1/2,D4}{1/2,- D5}{1/2,D5}{1/2,- D5}{1/2,Db5}{1/2,- C5}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,B2}{1/2,- Bb2}{1/2,Bb2}{1/2,- Bb2}{1/2,Bb2}{1/2,- A2}{1/2,A2}{1/2,- G2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,A6}{1/2,- D4}{1/2,Bb6}{1/2,- G6}{1/2,F6}{1/2,- G6}{1/2,A6}{1/2,- A6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,C5}{1/2,- Bb4}{1/2,Eb5}{1/2,- D5}{1/2,D5}{1/2,- D5}{1/2,D5}{1/2,- Db5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,A3}{1/2,- G3}{1/2,G4}{1/2,- G4}{1/2,G4}{1/2,- F4}{1/2,E4}{1/2,- E4}}},_tempo(34/15) _vel(108) _chan(4){4,{{1/2,F#2}{1/2,- G2}{1/2,G2}{1/2,- Bb2}{1/2,Bb2}{1/2,- A2}{1/2,G2}{1/2,- G2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,A6}{1/2,- Eb6}{1/2,D6}{1/2,- D4}{1/2,D4}{1/2,- F6}{1/2,F6}{1/2,- E6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,C5}{1/2,- C5}{1/2,C5}{1/2,- Bb4}{1/2,F4}{1/2,- D5}{1/2,Db5}{1/2,- Db5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Eb4}{1/2,- A3}{1/2,F3}{1/2,- F3}{1/2,F3}{1/2,- F3}{1/2,A3}{1/2,- A3}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,F#2}{1/2,- F2}{1/2,Bb2}{1/2,- Bb2}{1/2,Bb2}{1/2,- A2}{1/2,A2}{1/2,- A2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{D6 ---}},_tempo(34/15) _vel(107) _chan(2){4,{D5 - 3/4{1/4,G3}{1/2,Bb3}{1/2,- Bb3}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,D3}{1/2,- D4}{1/2,F4}{1/2,- F4}{2,Eb4 - E4 -}}},_tempo(34/15) _vel(93) _chan(4){4,{D3 ---}}} {_tempo(34/15) _vel(93) _chan(1){4,{ 3/4{1/4,G4}{1/2,Bb4}{1/2,- Bb4}{2,Ab4 - A4 -}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,A3}{1/2,- Bb3}{1/2,D4}{1/2,- D4}{2,Cb4 - C4 -}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,F4}{1/2,- F3}{1/2,F3}{1/2,- E3}{2,F3 - Eb3 -}}},_tempo(34/15) _vel(93) _chan(4){4,{-- 3/4{1/4,D3}{1/2,F4}{1/2,- F4}}}} {_tempo(34/15) _vel(100) _chan(1){4,{4,Bb3 Bb4& &Bb4 -- Bb4& &Bb4 -}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Bb3}{1/2,F5 Eb5}{1/2,D5}{1/2,D5 C5}{1/2,Bb4}{1/2,Ab5 G5}{1/2,F5}{1/2,Eb5 D5}}},_tempo(34/15) _vel(93) _chan(3){4,{D3 ---}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,F4}{1/2,- D3}{1/2,F4}{1/2,- F4}{1/2,F4}{1/2,- D3}{1/2,Ab4}{1/2,- Ab4}}}} {_tempo(34/15) _vel(95) _chan(1){4,{4,- B4& &B4 -- G5& &G5 -}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,C5}{1/2,D5 Eb5}{1/2,D5}{1/2,Eb5 F5}{1/2,G5}{1/2,- C4}{1/2,Eb5}{1/2,- Eb5}}},_tempo(34/15) _vel(93) _chan(3){4,{-- 1/2{1/2,Ab4 G4}{1/2,F4}{1/2,Eb4 D4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Ab4}{1/2,- G4}{1/2,G4}{1/2,- F4}{1/2,Eb4}{1/2,F4 Eb4}{1/2,D4}{1/2,C4 B3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{4,- G5& &G5 -- B4& &B4 -}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Eb5}{1/2,- Eb4}{1/2,Eb5}{1/2,- Eb5}{1/2,E5}{1/2,- E4}{1/2,G5}{1/2,- G5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1,C4 - Ab3 G3}{1/2,F3}{1/2,Eb3 D3}{1/2,C3}{1/2,D3 E3}{1/2,D3}{1/2,E3 F3}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,C4}{1/2,F2 G2}{1/2,G2}{1/2,A2 B2}{1,C3 -}-}}} {_tempo(34/15) _vel(93) _chan(1){4,{{5/2,- C5& &C5 A5 Bb5}{1/2,- Bb4}{1/2,C6}{1/2,- C6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,G5}{1/2,- F5}{1/2,F5}{1/2,- Eb5}{1/2,D5}{1/2,C5 D5}{1/2,E5}{1/2,F5 G5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,E3}{1/2,F3 G3}{1/2,F3}{1/2,D4 C4}{1/2,Bb3}{1/2,E3 F3}{1/2,G3}{1/2,A3 Bb3}}},_tempo(34/15) _vel(93) _chan(4){4,{-- 1/2{1/2,Bb2 A2}{1/2,G2}{1/2,F2 E2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,C6}{1/2,- A4}{1/2,C6}{1/2,- C6}{1/2,C6}{1/2,- A4}{1/2,Eb6}{1/2,- Eb6}}},_tempo(34/15) _vel(107) _chan(2){4,{4,A5 F5& &F5 -- F5& &F5 -}},_tempo(34/15) _vel(93) _chan(3){4,{A3 ---}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,F2}{1/2,D3 C3}{1/2,Bb2}{1/2,A2 G2}{1/2,A2}{1/2,D4 C4}{1/2,Bb3}{1/2,A3 G3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Eb6}{1/2,- D6}{1/2,D6}{3/2,- C6 Bb5 - Eb5 D5}{1/2,C5}{1/2,Bb4 A4}}},_tempo(34/15) _vel(107) _chan(2){4,{4,- F#5& &F#5 -- D6& &D6 -}},_tempo(34/15) _vel(93) _chan(3){4,{-- 3/4{1/4,G3}{1/2,Bb4}{1/2,- Bb4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,F#3}{1/2,G3 A3}{1/2,D3}{1/2,E3 F#3}{2,G3 -- G4&}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,G4}{1/2,D5 C5}{1/2,Bb4}{1/2,G4 F4}{1/2,E4}{1/2,Db5 C5}{1/2,Bb4}{1/2,G4 F4}}},_tempo(34/15) _vel(107) _chan(2){4,{4,- D6 G5 -- G5& &G5 -}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Bb4}{1/2,- G3}{1/2,Bb4}{1/2,- Bb4}{1/2,Bb4}{1/2,- G3}{1/2,Db5}{1/2,- Db5}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,&G4}-{1,C4& &C4}-{1/2,C4&}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,E4}{1/2,Bb4 C5}{1/2,Db5}{1/2,D5 E5}{1/2,Gb5}{1/2,- F5}{1/2,F5}{1/2,- Eb5}}},_tempo(34/15) _vel(107) _chan(2){4,{4,- G5& &G5 C6& &C6 F5& &F5 -}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Db5}{1/2,- C5}{1/2,C5}{1/2,- Bb4}A4 -}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,&C4}-{1,F3& &F3}-{1/2,Bb3&}}}} {_tempo(34/15) _vel(93) _chan(1){4,{D5 -{1/2,F5}{1/2,- Eb5}{1/2,Eb5}{1/2,- Db5}}},_tempo(34/15) _vel(107) _chan(2){4,{4,- F5& &F5 Bb5& &Bb5 Eb5& &Eb5 Eb5&}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Cb5}{1/2,- Bb4}{1/2,Bb4}{1/2,- Ab4}G4 -}},_tempo(34/15) _vel(98) _chan(4){4,{{1/2,&Bb3}-{1,Eb3& &Eb3}-{1/2,Bb2&}}}} {_tempo(34/15) _vel(93) _chan(1){4,{C5 -{1/2,Eb6}{1/2,- Db6}{1/2,Db6}{1/2,- C6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,&Eb5}{1/2,F5 G5}{1/2,Ab5}{1/2,Bb5 C6}{1/2,Db6}{1/2,- F5}{1/2,F5}{1/2,- Eb5}}},_tempo(34/15) _vel(93) _chan(3){4,{ 3/4{1/4,C3}{1/2,Eb4}{1/2,- Eb4}{1/2,Ab3}{1/2,Bb3 C4}{1/2,Db4}{1/2,Db4 Eb4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,&Bb2}{1/2,- Ab2}{1/2,Ab2}{1/2,- Gb2}F2{1,- Ab2&}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,C6}{1/2,- Bb5}{1/2,Bb5}{1/2,- Ab5}{1/2,Ab5}{1/2,- G5}{1/2,G5}{1/2,- F5}}},_tempo(34/15) _vel(107) _chan(2){4,{{2,Db4 - D4 Eb4 F4 - G4 Ab4}{1/2,Bb4}{1/2,- Bb3}{1/2,Bb3}{1/2,- Ab3}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,F4}{1/2,Bb3 C4}{1/2,D4}{1/2,Eb4 F4}{1/2,G4}{1/2,Bb3 C4}{1/2,D4}{1/2,Eb4 F4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,&Ab2}{1/2,- G2}{1/2,G2}{1/2,- F2}{1/2,Eb2}{1/2,G2 Ab2}{1/2,Bb2}{1/2,C3 Db3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,F5}{1/2,- Eb5}{1/2,D5}{1/2,- Db5}{1/2,C5}{1/2,Eb5 F5}{1/2,G5}{1/2,Ab5 Bb5}}},_tempo(34/15) _vel(107) _chan(2){4,{G3 - 3/4{1/4,C4}{1/2,Eb5}{1/2,- Eb5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,G4}{1/2,G3 Ab3}{1/2,Bb3}{1/2,C4 Db4}{1/2,Eb4}{1/2,Ab3 G3}{1/2,F3}{1/2,Eb3 Db3}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Eb3}{1/2,Eb2 F2}{1/2,G2}{1/2,Ab2 Bb2}{1/2,Ab2}{1/2,F3 Eb3}{1/2,Db3}{1/2,C3 Bb2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,C6}{1/2,G5 Ab5}{1/2,Bb5}{1/2,C6 Db6}{1/2,Eb6}{1/2,Ab5 Bb5}{1/2,C6}{1/2,C6 Db6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Eb5}{1/2,- C4}{1/2,Eb5}{1/2,- Eb5}{1/2,Eb5}{1/2,- C4}{1/2,Gb5}{1/2,- Gb5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,C3}{1/2,C5 Bb4}{1/2,Ab4}{1/2,G4 F4}{1/2,Eb4}{1/2,Ab4 G4}{1/2,F4}{1/2,Eb4 Db4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Ab2}{1/2,Ab3 G3}{1/2,F3}{1/2,Eb3 Db3}{1/2,C3}{1/2,F3 Eb3}{1/2,Db3}{1/2,C3 Bb2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Eb6}{1/2,Eb6 F6}{1/2,Gb6}{1/2,- Gb6}F6 -}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Gb5}{1/2,- F5}{1/2,F5}{1/2,- Eb5}{1/2,Eb5}{1/2,- D5}{1/2,D5}{1/2,- C5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,C4}{1/2,- A3}{1/2,C5}{1/2,- C5}{1/2,C5}{1/2,- A3}{1/2,Eb5}{1/2,- Eb5}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,A2}{1/2,Bb2 C3}{1/2,F2}{1/2,G2 A2}{1/2,A2}{1/2,C3 F3}{1/2,F3}{1/2,G3 A3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{ 3/4{1/4,D4}{1/2,F5}{1/2,- F5}{1/2,F5}{1/2,- D4}{1/2,Ab5}{1/2,- Ab5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- A4}{1/2,F4}{1/2,G4 Ab4}{1/2,D4}{1/2,Eb4 F4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Eb5}{1/2,- D5}{1/2,D5}{1/2,- C5}{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- Bb4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Bb2}{1/2,F3 Bb3}{1/2,C4}{1/2,D4 Eb4}{1/2,D4}{1/2,Eb4 F4}{1/2,Bb2}{1/2,C3 D3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Ab5}{1/2,- G5}{1/2,G5}{1/2,- F5}{1/2,F5}{1/2,- Eb5}{1/2,Eb5}{1/2,- F5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Bb3}{1/2,Eb4 Bb4}{1/2,Bb3}{1/2,D4 Bb4}{1/2,G3}{1/2,Eb4 Bb4}{1/2,Bb4}{1/2,Bb3 C4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Bb4}{1/2,- Bb3}{1/2,Ab3}{5/2,- Ab4 Bb4 - Eb4 F4 G4 - G4 Ab4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Eb2}{1/2,- G2}{1/2,Bb3}{1/2,- Bb3}{1/2,Bb3}{1/2,- G2}{1/2,Db4}{1/2,- Db4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,G5}{1/2,- Ab5}{1/2,Ab5}{1/2,- Bb5}Bb5 -}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Bb3}{1/2,- Eb5}{1/2,Eb5}{1/2,- Db5}{1/2,Db5}{1/2,- C5}{1/2,C5}{1/2,- Bb4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/4,Bb4}1/2{1/4,Eb4}{1/2,Eb4}{1/2,- G4}{1/2,G4}{1/2,- Eb4}{1/2,D4}{1/2,- Eb4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Db4}{1/2,- C4}{1/2,C4}{1/2,- Bb3}{1/2,Bb3}{1/2,- Ab3}{1/2,Ab3}{1/2,- G3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Bb5}{1/2,- C6}{1/2,C6}{1/2,- Db6}{1/2,Db6}{1/2,- Db4}{1/2,C4}{1/2,- C4}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Bb4}{1/2,- Bb4}{1/2,Bb4}{1/2,- Bb4}{1/2,Bb4}{1/2,- Bb4}{1/2,Bb5}{1/2,- Bb5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Eb4}{1/2,- Ab3}{1/2,Ab3}{1/2,- G3}{1/2,G3}{1/2,- G4}{1/2,G4}{1/2,- G4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,G3}{1/2,- F3}{1/2,F3}{1/2,- Eb3}{1/2,Eb3}{1/2,- Eb2}{1/2,E2}{1/2,- E2}}}} {_tempo(34/15) _vel(107) _chan(1){4,{4,C4 E5& &E5 -- Db6& &Db6 -}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Bb5}{1/2,- Ab5}{1/2,Ab5}{1/2,- G5}{1/2,G5}{1/2,- F5}{1/2,F5}{1/2,- E5}}},_tempo(34/15) _vel(93) _chan(3){4,{4,F4 -- C3& &C3 -- Bb3&}},_tempo(34/15) _vel(108) _chan(4){4,{4,E3 C2& &C2 -- Bb2& &Bb2 -}}} {_tempo(34/15) _vel(93) _chan(1){4,{ 1/2{1/2,G5&,G6&}{1/2,&G5,&G6}{5/2,-- C6& &C6 -}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,E5}{1/2,- Db5}{1/2,Db5}{1/2,- C5}{1/2,C5}{1/2,- Bb4}{1/2,Bb4}{1/2,- A4}}},_tempo(34/15) _vel(98) _chan(3){4,{4,&Bb3 -- E3 F3 -- F3&}},_tempo(34/15) _vel(93) _chan(4){4,{{3,- E2& &E2 - F2& &F2}-}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,A5}{1/2,- Bb5}{1/2,Bb5}{1/2,- C6}{1/2,C6}{1/2,- D6}{1/2,D6}{1/2,- Eb6}}},_tempo(34/15) _vel(107) _chan(2){4,{4,F4 F5& &F5 - Eb6& &Eb6 --}},_tempo(34/15) _vel(93) _chan(3){4,{4,&F3 -- F4& &F4 -- C5&}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Eb4}{1/2,- D4}{1/2,D4}{1/2,- C4}{1/2,C4}{1/2,- Bb3}{1/2,Bb3}{1/2,- A3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Eb6}{1/2,- F6}{1/2,F6}{1/2,- F6}{1/2,F6}{1/2,- G6}{1/2,A6}{1/2,- Bb6}}},_tempo(34/15) _vel(107) _chan(2){4,{4,- A5& &A5 -- Bb5& &Bb5 -}},_tempo(34/15) _vel(93) _chan(3){4,{4,&C5 -- C4& &C4 -- F4&}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,A3}{1/2,- G3}{1/2,G3}{1/2,- F3}{1/2,F3}{1/2,- Eb3}{1/2,Eb3}{1/2,- D3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Ab6}{1/2,- G6}{1/2,G6}{1/2,- F6}{1/2,F6}{1/2,- Eb6}{1/2,Eb6}{1/2,- D6}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,D4}{1/2,- Eb4}{1/2,Eb4}{1/2,- F4}{1/2,F4}{1/2,- G4}{1/2,G4}{1/2,- Ab4}}},_tempo(34/15) _vel(107) _chan(3){4,{4,&F4 Bb3& &Bb3 -- Ab4& &Ab4 -}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,D3}-{1,Bb2& &Bb2}-{1/2,F3&}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,D6}{1/2,- C6}{1/2,C6}{1/2,- Bb5}{1/2,Bb5}{1/2,- Ab5}{1/2,Ab5}{1/2,- G5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Ab4}{1/2,- Bb4}{1/2,Bb4}{1/2,- C5}{1/2,C5}{1/2,- D5}{1/2,D5}{1/2,- Eb5}}},_tempo(34/15) _vel(93) _chan(3){4,{4,- D4& &D4 -- Eb4& &Eb4 -}},_tempo(34/15) _vel(93) _chan(4){4,{4,&F3 -- F2& &F2 -- Eb2}}} {_tempo(34/15) _vel(107) _chan(1){4,{4,G3 G5& &G5 -- F6& &F6 -}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,F5}-{1,G4& &G4}-{1/2,F5&}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,F4}{1/2,- Eb5}{1/2,Eb5}{1/2,- D5}{1/2,D5}{1/2,- C5}{1/2,C5}{1/2,- B4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,D2}{1/2,- C4}{1/2,C4}{1/2,- B3}{1/2,B3}{1/2,- Ab3}{1/2,Ab3}{1/2,- G3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{4,- B5& &B5 -- C6& &C6 -}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,&F5}-{1,C5& &C5}-{1/2,C5&}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,B4}{1/2,- Ab4}{1/2,Ab4}{1/2,- G4}{1/2,G4}{1/2,- F4}{1/2,F4}{1/2,- E4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,G3}{1/2,- F3}{1/2,F3}{1/2,- Eb3}{1/2,Eb3}{1/2,- D3}{1/2,Db3}{1/2,- C3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{4,- C6& &C6 -- D6& &D6 -}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,&C5}{1/2,- Eb5}{1/2,Eb5}{1/2,- F5}{1/2,Eb5}{1/2,- D5}{1/2,D5}{1/2,- Bb5}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,Eb4}{1/2,- Gb4}{1/2,F4}{1/2,- C5}{1/2,C5}{1/2,- Bb4}{1/2,Bb4}1/4{1/4,G4,Bb4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,C3}{1/2,- Bb2}{1/2,Bb2}{1/2,- A2}{1/2,Bb2}{1/2,- G3}{1/2,F3}{1/2,- Eb3}}}} {_tempo(34/15) _vel(107) _chan(1){4,{{2,- F6& &F6 A6}{341/1024,Bb6}{171/512,D4}{341/512,F5 F5}{171/512,D4}{341/1024,F5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1/2,Bb5}{1/2,- D6}{1/2,D6}{1/2,- F6}{1/2,F6}- 1/2}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,F4,Bb4}1/4{1/4,Eb4,Bb4}{1/2,D4,Bb4}1/4{1/4,C4,F4}{1/2,Bb3,F4}- 1/2}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,D3}{1/2,- C3}{1/2,Bb2}{1/2,- Eb2}{1/2,D2}- 1/2}}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,F5}{171/512,D4}{341/512,F5 F5}{171/512,D4}{341/512,Ab5 Ab5}{171/512,G5}{341/512,F5 F5}{171/512,Eb5}{341/1024,D5}}},_tempo(34/15) _vel(107) _chan(2){4},_tempo(34/15) _vel(100) _chan(3){4,{4,- Bb3& &Bb3 Bb3 B3 Ab4& &Ab4 G4&}},_tempo(34/15) _vel(93) _chan(4){4}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,Eb5}{171/512,Eb4}{341/512,Eb5 Eb5}{171/512,Eb4}{341/512,G5 G5}{171/512,F5}{341/512,Eb5 Eb5}{171/512,D5}{341/1024,E5}}},_tempo(34/15) _vel(107) _chan(2){4,{--- 341/1024{171/512,Bb3}{341/1024,C5}}},_tempo(34/15) _vel(93) _chan(3){4,{4,&G4 B3& &B3 C4 A4 Bb4& &Bb4 Bb4&}},_tempo(34/15) _vel(93) _chan(4){4}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,F5}{171/512,C5}{341/512,A5 A5}{171/512,C5}{341/512,C6 C6}{171/512,Bb5}{341/512,A5 A5}{171/512,G5}{341/1024,G#5}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,C5}{171/512,A3}{341/512,C5 C5}{171/512,A3}{341/512,Eb5 Eb5}{171/512,D5}{341/512,C5 C5}{171/512,Bb4}{341/1024,A4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1,A4 -}---}},_tempo(34/15) _vel(100) _chan(4){4,{4,- F3& &F3 F3 F#3 Eb4& &Eb4 D4&}}} {_tempo(34/15) _vel(93) _chan(1){3755/1024,{{341/1024,G5}{171/512,D5}{341/512,D6 D6}{171/512,D5}{341/512,Bb5 Bb5}{171/512,A5}{341/1024,G5}{57/256,G5}{227/1024,F5}{57/256,A5}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,Bb4}{171/512,Bb3}{341/512,Bb4 Bb4}{171/512,Bb3}{341/512,D5 D5}{171/512,C5}{341/512,Bb4 Bb4}{171/512,A4}{341/1024,C5}}},_tempo(34/15) _vel(93) _chan(3){4,{--- 341/1024{171/512,Eb3}{341/1024,F4}}},_tempo(34/15) _vel(93) _chan(4){4,{4,&D4 F#3& &F#3 G3& &G3 E4 Eb4 Eb4}}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,Bb5}{171/512,F5}{341/512,D5 Bb4}{171/512,F4}{341/512,D4 D4}{171/512,Eb4}{341/512,F4 F4}{171/512,G4}{341/1024,F4,B4}}},_tempo(34/15) _vel(107) _chan(2){4,{4,Bb4 Bb4& &Bb4 Bb4 B4 Ab5& &Ab5 G5&}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,F4}{171/512,D3}{341/512,F4 F4}{171/512,D3}{341/512,Ab4 Ab4}{171/512,G4}{341/512,F4 F4}{171/512,Eb4}{341/1024,D4}}},_tempo(34/15) _vel(93) _chan(4){4,{{1,D4 -}---}}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,C5}{171/512,G3}{341/512,G4 G4}{171/512,G3}{341/512,Eb4 Eb4}{171/512,D4}{341/512,C4 C5}{171/512,Bb4}{341/1024,G4}}},_tempo(34/15) _vel(107) _chan(2){4,{4,&G5 C5& &C5 C5& &C5 A5 Bb5 Bb5}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,Eb4}{171/512,Eb3}{341/512,Eb4 Eb4}{171/512,Eb3}{341/512,G4 G4}{171/512,F4}{341/512,Eb4 Eb4}{171/512,D4}{341/1024,E4}}},_tempo(34/15) _vel(93) _chan(4){4,{--- 341/1024{171/512,Bb2}{341/1024,C4}}}} {_tempo(34/15) _vel(107) _chan(1){4,{4,A4 F5& &F5 F5 F#5 Eb6& &Eb6 Eb6}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,A5}{171/512,C6}{341/512,F4 F4}{171/512,C5}{341/512,A3 F#4}{171/512,G4}{341/512,F#5 F#5}{171/512,G5}{341/1024,C6}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,F4}{171/512,C3}{341/512,A4 A4}{171/512,C3}{341/512,C5 C5}{171/512,Bb4}{341/512,A4 A4}{171/512,G4}{341/1024,Gb4}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,C4}{171/512,A2}{341/512,C4 C4}{171/512,A2}{341/512,Eb4 Eb4}{171/512,D4}{341/512,C4 C4}{171/512,Bb3}{341/1024,A3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{4,D6 G5& &G5 G5& &G5 E6 Eb6 Eb6}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,Bb5}{171/512,G3}{341/512,G4 G4}{171/512,G4}{341/512,G5 G5}{171/512,A5}{341/512,Bb5 C6}{171/512,C5}{341/1024,A4}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,G4}{171/512,Db3}{341/512,C#4 D4}{171/512,D3}{341/512,Bb4 Bb4}{171/512,A4}{341/512,G4 Gb4}{171/512,F4}{341/1024,Eb4}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,Bb3}{171/512,Bb2}{341/512,Bb3 Bb3}{171/512,Bb2}{341/512,D4 D4}{171/512,C4}{341/512,Bb3 Bb3}{171/512,A3}{341/1024,C4}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,D6}{171/512,C6}{341/512,Bb5 Bb5}{171/512,A5}{341/512,C6 Bb5}{171/512,A5}{341/512,G5 Ab5}{171/512,G5}{341/1024,F5}}},_tempo(34/15) _vel(107) _chan(2){4,{4,F4 D5& &D5 D5& &D5 Bb5 Ab5 Ab5}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,F4}{171/512,F#4}{341/512,G4 G4}{171/512,D4}{341/512,F#4 G4}{171/512,D4}{341/512,Eb4 D4}{171/512,Eb4}{341/1024,F4}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,Bb3}{171/512,A3}{341/512,G3 G3}{171/512,F#3}{341/512,A3 G3}{171/512,F3}{341/512,Eb3 F3}{171/512,Eb3}{341/1024,D3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,G5}{171/512,F6}{341/512,Eb6 Eb6}{171/512,D6}{341/512,F6 Eb6}{171/512,D6}{341/512,C6 D6}{171/512,C6}{341/1024,Bb5}}},_tempo(34/15) _vel(112) _chan(2){4,{{341/1024,G5}{171/512,B3}{341/512,C4 C4}{171/512,D4}{341/1024,B3}{2,C4 F4 Bb3 F4&}}},_tempo(34/15) _vel(93) _chan(3){4,{4,Bb3 G4& &G4 G4& &G4 Eb5 D5 D5}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,Eb3}{171/512,D3}{341/512,C3 C3}{171/512,B2}{341/512,D3 C3}{171/512,Bb2}{341/512,A2 Bb2}{171/512,A3}{341/1024,G3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,C6}{171/512,Bb5}{341/512,A5 Ab5}{171/512,G5}{341/512,Bb5 Ab5}{171/512,G5}{341/512,F5 G5}{171/512,F5}{341/1024,Eb5}}},_tempo(34/15) _vel(93) _chan(2){4,{4,&F4 C5& &C5 C5& &C5 Ab5 G5 G5}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,C5}{171/512,E4}{341/512,F4 F4}{171/512,G4}{341/512,C4 C4}{171/512,F4}{341/512,Bb3 Bb3}{171/512,Eb4}{341/1024,Ab3}}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,A3}{171/512,G3}{341/512,F3 F3}{171/512,Eb3}{341/512,G3 F3}{171/512,Eb3}{341/512,D3 Eb3}{171/512,D3}{341/1024,C3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,F5}{171/512,Eb6}{341/512,D6 Eb6}{171/512,D6}{341/512,C6 D6}{171/512,C6}{341/512,B5 C6}{171/512,Bb5}{341/1024,A5}}},_tempo(34/15) _vel(107) _chan(2){4,{{1,F5 -}-{2,- F5& &F5 F5}}},_tempo(34/15) _vel(107) _chan(3){4,{4,D4 F4& &F4 F4& &F4 D5 C5 Eb5}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,D3}{171/512,C3}{341/512,B2 C3}{171/512,Bb2}{341/512,A2 Bb2}{171/512,A2}{341/512,G#2 A2}{171/512,G2}{341/1024,F2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,D6}{171/512,C5}{341/512,B4 Eb5}{171/512,D5}{341/512,C5 F5}{171/512,Eb5}{341/512,D5 G5}{171/512,F5}{341/1024,E5}}},_tempo(34/15) _vel(93) _chan(2){4,{4,D6 F5 E5 G5 F5 Ab5 G5 Bb5}},_tempo(34/15) _vel(94) _chan(3){4,{4,D5 D4 C4 E4 D4 F4 Eb4 G4}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,Bb2}{171/512,A2}{341/512,G2 C3}{171/512,Bb2}{341/512,A2 D3}{171/512,C3}{341/512,Bb2 Eb3}{171/512,D3}{341/1024,C3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{341/1024,A5}{171/512,G5}{341/512,F#5 Bb5}{171/512,A5}{341/512,G5 C6}{171/512,Bb5}{341/512,A5 D6}{171/512,Eb6}{341/1024,C6}}},_tempo(34/15) _vel(94) _chan(2){4,{4,A5 C6 Bb5 D6 C6 C5 Bb4 A4}},_tempo(34/15) _vel(93) _chan(3){4,{4,F4 A4 D4 Bb4 F4 A3 G3 Eb4}},_tempo(34/15) _vel(93) _chan(4){4,{{341/1024,F3}{171/512,Eb3}{341/512,D3 G3}{171/512,F3}{341/512,E3 A3}{171/512,G3}{341/512,F3 G3}{171/512,Eb3}{341/1024,F3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,F6}{1/2,- D4}{1/2,F6}{1/2,- F6}{1/2,F6}{1/2,- D4}{1/2,Ab6}{1/2,- Ab6}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,F5}{171/512,Eb5}{341/512,D5 D5}{171/512,Eb5}{341/512,C5 C5}{171/512,D5}{341/512,Bb4 Ab4}{171/512,G4}{341/1024,F4}}},_tempo(34/15) _vel(93) _chan(3){4,{{341/1024,Ab3}{171/512,G3}{341/512,F3 F3}{171/512,G3}{341/512,Eb3 Eb3}{171/512,D3}{341/512,F3 F3}{171/512,Eb3}{341/1024,D3}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Bb2}{1/2,- D4}{1/2,Bb2}{1/2,- Bb2}{1/2,Bb2}{1/2,- D4}{1/2,Bb2}{1/2,- B2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,Ab6}{1/2,- G6}{1/2,G6}{1/2,- F6}{1/2,F6}{1/2,- Eb6}{1/2,E6}{1/2,- G6}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,F4}{171/512,G4}{341/512,Eb4 Eb4}{171/512,F4}{341/1024,D4}C4 -}},_tempo(34/15) _vel(93) _chan(3){4,{D3 -{341/1024,D5}{171/512,Eb5}{341/512,C5 C5}{171/512,Db5}{341/1024,C5}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,G2}{1/2,- B3}{1/2,G2}{1/2,- G2}{1/2,C2}{1/2,- C4}{1/2,Bb2}{1/2,- Bb2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,G6}{1/2,- F6}{1/2,F6}{1/2,- Eb6}{1/2,Eb6}{1/2,- D6}{1/2,D6}{1/2,- Eb6}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,Eb4}{171/512,F4}{341/512,D4 D4}{171/512,Eb4}{341/1024,Bb3}{1/2,A3}{1/2,- Bb3}{1/2,F4}1/4{1/4,F4,A4}}},_tempo(34/15) _vel(93) _chan(3){4,{{1/2,C5}{1/2,- D5}{1/2,Bb4}{1/2,- Bb4}{341/1024,C5}{171/512,D5}{341/512,Bb4 Bb4}{171/512,B4}{341/1024,C5}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,A2}{1/2,- Ab2}{1/2,Ab3}{1/2,- G3}{1/2,Gb3}{1/2,- F3}{1/2,F2}{1/2,- F3}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{2,Eb6&}{1/2,&Eb6}{1/2,- A4}{1/2,Eb6}{1/2,- Eb6}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,B5}{171/512,C6}{341/512,A5 G5}{171/512,A5}{341/1024,F5}C6 -}},_tempo(34/15) _vel(93) _chan(3){4,{C4 -{341/1024,B3}{171/512,C4}{341/512,A3 G3}{171/512,A3}{341/1024,F3}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,F2}{1/2,- F3}{1/2,F2}{1/2,- A3}{1/2,A2}{1/2,- C4}{1/2,F3}{1/2,- F2}}}} {_tempo(34/15) _vel(93) _chan(1){4,{{2,Eb6&}{1/2,&Eb6}{1/2,- A3}{1/2,Eb5}{1/2,- Eb5}}},_tempo(34/15) _vel(107) _chan(2){4,{{341/1024,Eb5}{171/512,F5}{341/512,D5 D5}{171/512,Eb5}{341/1024,C5}A5 -}},_tempo(34/15) _vel(93) _chan(3){4,{A3 -{341/1024,D3}{171/512,Eb3}{341/512,C3 B3}{171/512,C4}{341/1024,A3}}},_tempo(34/15) _vel(93) _chan(4){4,{{1/2,Gb2}{1/2,- Gb3}{1/2,Ab2}{1/2,- Ab3}{1/2,C3}{1/2,- C4}{1/2,Gb3}{1/2,- Gb2}}}} {_tempo(113/60) _vel(93) _chan(1){5,{{1/2,Db5}{1/2,- Bb4}Db6&{1/2,&Db6}{1/2,- G3}{2,Db5&}}},_tempo(21/10) _vel(107) _chan(2){4437/1024,{{341/1024,C5}{171/512,Db5}{341/512,Bb4 Ab4}{171/512,Bb4}{341/512,Gb4 Db5}{171/512,Bb4}{341/512,Gb4 F4}{171/512,Gb4}{341/512,Bb3}}},_tempo(21/10) _vel(93) _chan(3){4437/1024,{Bb3 -{341/1024,Cb4}{171/512,Db4}{341/512,Bb3 Ab3}{171/512,Bb3}{341/512,Gb3}}},_tempo(32/15) _vel(93) _chan(4){17/4,{{1/2,Gb2}{1/2,- Gb3}{1/2,Bb2}{1/2,- Bb3}{1/2,Bb2}{1/2,- Db4}{1/2,Gb3}1/4{1/2,Gb2}}}} {_tempo(34/15) _vel(93) _chan(1){2,{{1,&Db5 C4 Db4 Cb5}{1,Bb4 -}}},_tempo(34/15) _vel(38) _chan(2){2,{-{1,- Bb3 Cb4 Ab4}}},_tempo(34/15) _vel(38) _chan(3) 2,_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1){2,{{1,- Ab3 Bb3 Gb4}{1/2,F4}{1/2,Db5 Cb5}}},_tempo(34/15) _vel(107) _chan(2){2,{{1,Gb4 -}{1,- G3 Ab3 F4}}},_tempo(34/15) _vel(93) _chan(3) 2,_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1){2,{2,Cb5 Bb4 Bb5 Ab5 Ab5 Gb5 Db6 Cb6}},_tempo(34/15) _vel(107) _chan(2){2,{2,Gb4 Gb4 Gb4 Gb4 Gb4 Gb4 Gb4 Gb4}},_tempo(34/15) _vel(93) _chan(3) 2,_tempo(34/15) _vel(38) _chan(4){2,{2,Bb5 Bb5 Bb5 Bb5 Bb5 Bb5 Bb5 Bb5}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Cb6 Bb5 Eb6 Db6 Db6 Cb6 Db6 Bb5}},_tempo(34/15) _vel(107) _chan(2){2,{2,Gb4}},_tempo(34/15) _vel(38) _chan(3){2,{{1,- Gb3 C4 Db4}{1,Db4 -}}},_tempo(34/15) _vel(93) _chan(4){2,{2,Bb5}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Db6 Cb6 Eb6 Db6 Db6 Cb6 Db6 Bb5}},_tempo(34/15) _vel(107) _chan(2){2,{{1,F4 Ab4 Ab4 Ab4}Ab4}},_tempo(34/15) _vel(93) _chan(3) 2,_tempo(34/15) _vel(93) _chan(4){2,{2,Cb6}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Bb5 Ab5 Gb5 F5 Eb5 Db5 Eb5 Cb5}},_tempo(34/15) _vel(107) _chan(2){2,{{3/2,Ab4}{1/2,F4 F4}}},_tempo(34/15) _vel(93) _chan(3){2,{{1,- C3 Db3 Db4}{1,Db4 -}}},_tempo(34/15) _vel(93) _chan(4){2,{{3/2,Cb6}{1/2,Ab5 Ab5}}}} {_tempo(34/15) _vel(93) _chan(1){2,{{1,Bb4 -}-}},_tempo(34/15) _vel(107) _chan(2){2,{{1,Gb4 -}-}},_tempo(34/15) _vel(93) _chan(3){2,{ 1/2{3/2,Bb3 Ab3 Ab3 Gb3 Db4 Cb4}}},_tempo(34/15) _vel(93) _chan(4){2,{{1,Bb5 -}-}}} {_tempo(34/15) _vel(93) _chan(1){2,{ 1/2{3/2,Db5 Cb5 Cb5 Bb4 Bb5 Ab5}}},_tempo(34/15) _vel(107) _chan(2) 2,_tempo(34/15) _vel(93) _chan(3){2,{{1,Bb3 -}-}},_tempo(34/15) _vel(93) _chan(4){2,{ 1/2{3/2,Bb5 Ab5 Ab5 Gb5 Db6 Cb6}}}} {_tempo(34/15) _vel(93) _chan(1){2,{{1,Gb5 -}-}},_tempo(34/15) _vel(107) _chan(2){2,{ 1/2{3/2,Bb4 Ab4 Ab4 Gb4 Db5 Cb5}}},_tempo(34/15) _vel(39) _chan(3){2,{- Gb3}},_tempo(34/15) _vel(93) _chan(4){2,{{1,Bb5 -}-}}} {_tempo(34/15) _vel(93) _chan(1) 2,_tempo(34/15) _vel(107) _chan(2){2,{2,Cb5 Bb4 Eb5 Db5 Db5 Cb5 Db5 Bb4}},_tempo(34/15) _vel(93) _chan(3){2,{G3 Fb4}},_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1) 2,_tempo(34/15) _vel(107) _chan(2){2,{2,Db5 Cb5 Eb5 Db5 Db5 Cb5 Db5 Bb4}},_tempo(34/15) _vel(93) _chan(3){2,{Eb4 G3}},_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1) 2,_tempo(34/15) _vel(107) _chan(2){2,{2,Bb4 Ab4 Gb4 F4 Eb4 Db4 Eb4 Cb4}},_tempo(34/15) _vel(93) _chan(3){2,{Ab3 F4}},_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(38) _chan(1){2,{ 1/2{3/2,F5 Eb5 Eb5 Db5 Ab5 Gb5}}},_tempo(34/15) _vel(107) _chan(2){2,{{1,Bb3 -}Db4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Gb4 Bb4 Ab4 Gb4 Gb4 F4 F4 Gb4}},_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1){2,{2,Gb5 F5 Bb5 Ab5 Ab5 Gb5 Ab5 F5}},_tempo(34/15) _vel(107) _chan(2){2,{D4 Cb5}},_tempo(34/15) _vel(93) _chan(3){2,{2,Bb4 Ab4 Gb4 F4 F4 Eb4 F4 D4}},_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1){2,{2,Ab5 Gb5 Bb5 Ab5 Ab5 Gb5 Ab5 F5}},_tempo(34/15) _vel(107) _chan(2){2,{Bb4 D4}},_tempo(34/15) _vel(93) _chan(3){2,{2,F4 Eb4 Gb4 F4 F4 Ab4 F4 Ab4}},_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1){2,{2,F5 Eb5 Db5 C5 Bb4 Ab4 Bb4 Gb4}},_tempo(34/15) _vel(107) _chan(2){2,{Eb4 C5}},_tempo(34/15) _vel(93) _chan(3){2,{2,Ab4 Gb4 F4 Eb4 Gb4 F4 Gb4 Eb4}},_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1){2,{{1,F4 -}{1,- F5 Eb5 F4}}},_tempo(34/15) _vel(107) _chan(2){2,{{3/2,Db5 Gb4 F4 G3 Ab3 -}1/2}},_tempo(34/15) _vel(93) _chan(3){2,{Db4 -}},_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1){2,{{1/2,Gb4 -}1{1/2,Ab4 Gb4}}},_tempo(34/15) _vel(107) _chan(2){2,{2,- Eb5 Db5 Eb4 F4 Db5 C5 Eb4}},_tempo(34/15) _vel(93) _chan(3){2,{-{1,- F4 Eb4 C4}}},_tempo(34/15) _vel(38) _chan(4){2,{ 3/2{1/2,Ab5&}}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Gb4 F4 F5 Eb5 Eb5 Db5 Ab5 Gb5}},_tempo(34/15) _vel(107) _chan(2){2,{{1,F4 F4 F4 F4}F4,-{1,F4 F4 F4 F4}}},_tempo(34/15) _vel(93) _chan(3){2,{{1,Db4 Db4 Db4 Db4}Db4,-{1,Db4 Db4 Db4 Db4}}},_tempo(34/15) _vel(93) _chan(4){2,{{1,&Ab5 Ab5 Ab5 Ab5}Ab5,-{1,Ab5 Ab5 Ab5 Ab5}}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Gb5 F5 Bb5 Ab5 Ab5 Gb5 Ab5 F5}},_tempo(34/15) _vel(107) _chan(2){2,{{2,F4},{2,F4 F4 F4 F4 F4 F4 F4 F4}}},_tempo(34/15) _vel(93) _chan(3){2,{{2,Db4},{2,Db4 Db4 Db4 Db4 Db4 Db4 Db4 Db4}}},_tempo(34/15) _vel(93) _chan(4){2,{{1,Ab5 C5 Db5 Ab5}{1,Ab5 -}}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Ab5 Gb5 Bb5 Ab5 Ab5 Gb5 Ab5 F5}},_tempo(34/15) _vel(107) _chan(2){2,{{2,Gb4},{2,Gb4 Gb4 Gb4 Gb4 Gb4 Gb4 Gb4 Gb4}}},_tempo(34/15) _vel(93) _chan(3){2,{{2,Eb4},{2,Eb4 Eb4 Eb4 Eb4 Eb4 Eb4 Eb4 Eb4}}},_tempo(34/15) _vel(93) _chan(4){2,{{2,Ab5},{2,Ab5 Ab5 Ab5 Ab5 Ab5 Ab5 Ab5 Ab5}}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,F5 Eb5 Db5 C5 Bb4 Ab4 Bb4 Gb4}},_tempo(34/15) _vel(107) _chan(2){2,{{2,Gb4},{2,Gb4 Gb4 Gb4 Gb4 Gb4 Gb4 Gb4 Gb4}}},_tempo(34/15) _vel(93) _chan(3){2,{{2,Eb4},{2,Eb4 Eb4 Eb4 Eb4 Eb4 Eb4 Eb4 Eb4}}},_tempo(34/15) _vel(93) _chan(4){2,{{1,Ab5 G5 Ab5 C6}C6,-{1,C6 C6 C6 C6}}}} {_tempo(34/15) _vel(93) _chan(1){2,{{1/2,F4}{3/2,F5 Eb5 Eb5 Db5 Ab5 Gb5}}},_tempo(34/15) _vel(107) _chan(2){2,{{1,Db4 -}-}},_tempo(34/15) _vel(93) _chan(3){2,{{1,F4 -}-}},_tempo(34/15) _vel(93) _chan(4){2,{{1,Db6 -}-}}} {_tempo(34/15) _vel(93) _chan(1){2,{{1,F5 -}-}},_tempo(34/15) _vel(107) _chan(2){2,{ 1/2{3/2,Bb4 Ab4 Ab4 Gb4 Db5 Cb5}}},_tempo(34/15) _vel(93) _chan(3) 2,_tempo(34/15) _vel(93) _chan(4){2,{ 1/2{3/2,Db6 Cb6 Cb6 Bb5 Bb5 Ab5}}}} {_tempo(34/15) _vel(93) _chan(1) 2,_tempo(34/15) _vel(107) _chan(2){2,{{1/2,Bb4}{3/2,Bb4 Ab4 Ab4 Gb4 Bb3 Ab3}}},_tempo(34/15) _vel(93) _chan(3){2,{ 1/2{3/2,Db4 Cb4 Cb4 Bb3 Db5 Cb5}}},_tempo(34/15) _vel(38) _chan(4){2,{{1,Gb5 -}Gb2}}} {_tempo(34/15) _vel(93) _chan(1) 2,_tempo(34/15) _vel(107) _chan(2){2,{{1,Bb3 -}G3}},_tempo(34/15) _vel(93) _chan(3){2,{2,Cb5 Bb4 Eb5 Db5 Db5 Cb5 Db5 Bb4}},_tempo(34/15) _vel(93) _chan(4){2,{G2 Fb3}}} {_tempo(34/15) _vel(93) _chan(1) 2,_tempo(34/15) _vel(107) _chan(2){2,{Ab3 Bb3}},_tempo(34/15) _vel(93) _chan(3){2,{2,Db5 Cb5 Eb5 Db5 Db5 Cb5 Db5 Bb4}},_tempo(34/15) _vel(93) _chan(4){2,{Eb3 G2}}} {_tempo(34/15) _vel(93) _chan(1) 2,_tempo(34/15) _vel(107) _chan(2){2,{Cb4&{1,&Cb4 Bb3 Cb4 Ab3}}},_tempo(34/15) _vel(93) _chan(3){2,{2,Bb4 Ab4 Gb4 F4 Eb4 Db4 Eb4 Cb4}},_tempo(34/15) _vel(93) _chan(4){2,{Ab2 F3}}} {_tempo(34/15) _vel(38) _chan(1){2,{- Db5}},_tempo(34/15) _vel(107) _chan(2){2,{{1/2,Bb3}{3/2,F4 Eb4 Eb4 Db4 Ab4 Gb4}}},_tempo(34/15) _vel(93) _chan(3){2,{{1,Bb3 Ab3 Bb3 C4}{1,Ab3 F3}}},_tempo(34/15) _vel(93) _chan(4){2,{{1,Gb3 F3 Gb3 Ab3}{1,F3 Db3}}}} {_tempo(34/15) _vel(93) _chan(1){2,{D5 Cb6}},_tempo(34/15) _vel(107) _chan(2){2,{2,Gb4 F4 Cb5 Bb4 Ab4 Gb4 Ab4 F4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Ab4 - D4 -}},_tempo(34/15) _vel(93) _chan(4){2,{{1,Bb2 -}-}}} {_tempo(34/15) _vel(93) _chan(1){2,{Bb5 D5}},_tempo(34/15) _vel(107) _chan(2){2,{2,Ab4 Gb4 Bb4 Ab4 Ab4 Gb4 Ab4 F4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Eb4 - Ab3 -}},_tempo(34/15) _vel(93) _chan(4){2,{-{1,Bb2 -}}}} {_tempo(34/15) _vel(93) _chan(1){2,{Eb5 C6}},_tempo(34/15) _vel(107) _chan(2){2,{2,F4 Eb4 Db5 C5 Bb4 Ab4 Bb4 Gb4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Gb3 - Eb4 -}},_tempo(34/15) _vel(93) _chan(4){2,{2,Eb3 - Ab2 -}}} {_tempo(34/15) _vel(93) _chan(1){2,{Db6 -}},_tempo(34/15) _vel(107) _chan(2){2,{2,Gb4 F4 Gb4 Ab4 Bb4 Ab4 Bb4 Cb5}},_tempo(34/15) _vel(93) _chan(3){2,{2,Eb3 Db3 Eb3 F3 Gb3 F3 Gb3 Ab3}},_tempo(34/15) _vel(93) _chan(4){2,{2,Ab2 Ab3 Gb3 F3}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Bb4 Ab4 Bb4 C5 Db5 C5 Db5 Eb5}},_tempo(34/15) _vel(107) _chan(2){2,{Db4{1,- Bb4 Ab4 Gb4}}},_tempo(34/15) _vel(93) _chan(3){2,{2,Gb3 F3 Gb3 Ab3 Bb3 Ab3 Bb3 C4}},_tempo(34/15) _vel(93) _chan(4){2,{2,Gb3 F3 Eb3 Ab3}}} {_tempo(34/15) _vel(93) _chan(1){2,{{1,F5 Eb5 F5 Gb5}{1,Ab5 -}}},_tempo(34/15) _vel(107) _chan(2){2,{2,F4 Gb4 F4 Eb4 Eb4 Db4 Ab4 Gb4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Db4 Bb3 Ab3 Gb3 Gb3 F3 F4 Eb4}},_tempo(34/15) _vel(93) _chan(4){2,{- Db2}}} {_tempo(34/15) _vel(93) _chan(1){2,{- D5}},_tempo(34/15) _vel(107) _chan(2){2,{2,Gb4 F4 Cb5 Bb4 Ab4 Gb4 Ab4 F4}},_tempo(34/15) _vel(93) _chan(3){2,{{1,Ab3 -}-}},_tempo(34/15) _vel(93) _chan(4){2,{D2 Cb3}}} {_tempo(34/15) _vel(93) _chan(1){2,{Eb5 Cb6}},_tempo(34/15) _vel(107) _chan(2){2,{{1,Ab4 Gb4 F4 Eb4}{1,F4 -}}},_tempo(34/15) _vel(93) _chan(3){2,{-{1,Ab3 Gb3 Ab3 F3}}},_tempo(34/15) _vel(93) _chan(4){2,{Bb2 D2}}} {_tempo(34/15) _vel(93) _chan(1){2,{Bb5 Eb5}},_tempo(34/15) _vel(107) _chan(2){2,{{1,Bb3 -}{1,Bb4 A4 Bb4 G4}}},_tempo(34/15) _vel(93) _chan(3){2,{{1,Ab3 Gb3 F3 Eb3}{1,G3 -}}},_tempo(34/15) _vel(93) _chan(4){2,{Eb2 Db3}}} {_tempo(34/15) _vel(93) _chan(1){2,{E5 Db6}},_tempo(34/15) _vel(107) _chan(2){2,{{1,Bb4 G4 F4 E4}{1,G4 -}}},_tempo(34/15) _vel(93) _chan(3){2,{{1,G4 -}{1,Bb3 A3 Bb3 G3}}},_tempo(34/15) _vel(93) _chan(4){2,{C3 E2}}} {_tempo(34/15) _vel(93) _chan(1){2,{C6 E5}},_tempo(34/15) _vel(107) _chan(2){2,{{1,C5 -}{1,Db5 C5 Db5 Bb4}}},_tempo(34/15) _vel(93) _chan(3){2,{2,Bb3 A3 G3 F3 Bb3 A3 Bb3 G3}},_tempo(34/15) _vel(93) _chan(4){2,{2,F2}}} {_tempo(34/15) _vel(93) _chan(1){2,{F5{1,Db6 C6 Db6 Bb5}}},_tempo(34/15) _vel(107) _chan(2){2,{2,Bb4 A4 G4 F4 Bb4 A4 Bb4 G4}},_tempo(34/15) _vel(93) _chan(3){2,{{1,G3 C4 Bb3 A3}E3}},_tempo(34/15) _vel(93) _chan(4){2,{2,F2&}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Bb5 A5 Gb5 F5 F5 Eb5 D5 C5}},_tempo(34/15) _vel(107) _chan(2){2,{2,C4 C5 Bb4 A4 C5 A3 Bb3 C4}},_tempo(34/15) _vel(93) _chan(3){2,{F3 Eb4}},_tempo(34/15) _vel(93) _chan(4){2,{2,&F2}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,C5 Bb4 A4 Bb4 Eb4 D4 Eb4 C4}},_tempo(34/15) _vel(107) _chan(2){2,{{1,C4 D4 C4 D4}A4}},_tempo(34/15) _vel(93) _chan(3){2,{D4{1,Gb4 F4 Gb4 Eb4}}},_tempo(34/15) _vel(93) _chan(4){2,{2,Bb2&}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,C4 Bb3 Eb4 D4 D4 F4 Eb4 D4}},_tempo(34/15) _vel(107) _chan(2){2,{Bb4 Ab5}},_tempo(34/15) _vel(93) _chan(3){2,{2,Eb4 D4 C4 Bb3 Bb3 Ab3 G3 F3}},_tempo(34/15) _vel(93) _chan(4){2,{2,&Bb2}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Ab4 G4 F4 G4 Cb6 Bb5 Cb6 Ab5}},_tempo(34/15) _vel(107) _chan(2){2,{G5{1,Ab4 G4 Ab4 F4}}},_tempo(34/15) _vel(93) _chan(3){2,{{1,F3 Eb3 D3 Eb3}D3}},_tempo(34/15) _vel(93) _chan(4){2,{2,Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Ab5 G5 F5 Eb5 G5 Ab5 G5 Bb5}},_tempo(34/15) _vel(107) _chan(2){2,{2,F4 Eb4 Ab4 G4 Bb4 Ab4 Bb4 G4}},_tempo(34/15) _vel(93) _chan(3){2,{Eb3 Db4}},_tempo(34/15) _vel(93) _chan(4){2,{2,&Eb2}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,G5 Ab5 Bb5 C6 Eb6 Db6 Eb6 C6}},_tempo(34/15) _vel(107) _chan(2){2,{{1,Bb4 Ab4 G4 Ab4}C4}},_tempo(34/15) _vel(93) _chan(3){2,{C4{1,Gb3 F3 Gb3 Eb3}}},_tempo(34/15) _vel(93) _chan(4){2,{2,Ab2&}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,C6 Db6 Eb6 F6 F6 Gb6 F6 Ab6}},_tempo(34/15) _vel(107) _chan(2){2,{Db4{1,Ab5 Gb5 Ab5 F5}}},_tempo(34/15) _vel(93) _chan(3){2,{2,Gb3 F3 Eb3 Db3 Cb4 Bb3 Cb4 Ab3}},_tempo(34/15) _vel(93) _chan(4){2,{&Ab2 Db2&}}} {_tempo(34/15) _vel(93) _chan(1){2,{{1,F6 Gb6 Ab6 Bb6}Db6&}},_tempo(34/15) _vel(107) _chan(2){2,{2,Ab5 Gb5 F5 Gb5 Ab4 Bb4 Ab4 Cb5}},_tempo(34/15) _vel(93) _chan(3){2,{2,Cb4 Bb3 Ab3 Gb3 F3 Gb3 F3 Ab3}},_tempo(34/15) _vel(93) _chan(4){2,{2,&Db2&}}} {_tempo(34/15) _vel(38) _chan(1){2,{&Db6{1,F5 Gb5 F5 Ab5}}},_tempo(34/15) _vel(38) _chan(2){2,{2,Ab4 Bb4 Cb5 Db5 Eb5 Db5 Eb5 Cb5}},_tempo(34/15) _vel(93) _chan(3){2,{2,F3 Gb3 Ab3 Bb3 Cb4 Bb3 Ab3 F4}},_tempo(34/15) _vel(40) _chan(4){2,{2,&Db2}}} {_tempo(34/15) _vel(93) _chan(1){2,{{1,F5 Gb5 Ab5 Bb5}Gb5}},_tempo(34/15) _vel(107) _chan(2){2,{2,Cb5 Bb4 F5 Gb5 Cb5 Bb4 Bb4 Ab4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Gb4&}},_tempo(34/15) _vel(38) _chan(4){2,{ 1/2{3/2,Bb5 Ab5 Ab5 Gb5 Db6 Cb6}}}} {_tempo(34/15) _vel(93) _chan(1){2,{G5 Fb6}},_tempo(34/15) _vel(107) _chan(2){2,{2,Ab4 Bb4 Cb5 Bb4 Bb4 Ab4 Bb4 Db5}},_tempo(34/15) _vel(93) _chan(3){2,{2,&Gb4&}},_tempo(34/15) _vel(93) _chan(4){2,{2,Cb6 Bb5 Eb6 Db6 Db6 Cb6 Db6 Bb5}}} {_tempo(34/15) _vel(93) _chan(1){2,{Eb6 G5}},_tempo(34/15) _vel(107) _chan(2){2,{2,Bb4 Ab4 Cb5 Bb4 Fb5 Eb5 Fb5 Db5}},_tempo(34/15) _vel(93) _chan(3){2,{2,&Gb4&}},_tempo(34/15) _vel(93) _chan(4){2,{2,Db6 Cb6 Eb6 Db6 Db6 Cb6 Db6 Bb5}}} {_tempo(34/15) _vel(93) _chan(1){2,{Ab5 F6}},_tempo(34/15) _vel(107) _chan(2){2,{2,Db5 Cb5 Bb4 Ab4 Gb4 F4 Gb4 Ab4}},_tempo(34/15) _vel(93) _chan(3){2,{2,&Gb4&}},_tempo(34/15) _vel(93) _chan(4){2,{2,Bb5 Ab5 Gb5 F5 Eb6 Db6 Eb6 Cb6}}} {_tempo(34/15) _vel(93) _chan(1){2,{Gb6{1,D6 Eb6&}}},_tempo(34/15) _vel(107) _chan(2){2,{2,Ab4 Gb4 Cb5 Bb4 Gb4 F4 Gb4 F4}},_tempo(34/15) _vel(93) _chan(3){2,{&Gb4 Bb3}},_tempo(34/15) _vel(93) _chan(4){2,{2,Cb6 Bb5 Ab5 Gb5 Bb5 Ab5 Bb5 Ab5}}} {_tempo(34/15) _vel(93) _chan(1){2,{&Eb6{1,Bb5 Cb6&}}},_tempo(34/15) _vel(107) _chan(2){2,{2,F4 Eb4 Ab4 Gb4 Eb4 Db4 Eb5 Db5}},_tempo(34/15) _vel(93) _chan(3){2,{Eb4 Gb3}},_tempo(34/15) _vel(93) _chan(4){2,{2,Ab5 Gb5 F5 Eb5 Gb5 Fb5 Gb5 Fb5}}} {_tempo(34/15) _vel(93) _chan(1){2,{&Cb6{1,G5 Ab5&}}},_tempo(34/15) _vel(107) _chan(2){2,{2,Db5 Cb5 Bb4 Cb5 Db5 Eb5 Db5 Eb5}},_tempo(34/15) _vel(93) _chan(3){2,{Cb4 Bb3}},_tempo(34/15) _vel(93) _chan(4){2,{2,Fb5 Eb5 Db5 Cb5 Eb5 Db5 Eb5 Db5}}} {_tempo(34/15) _vel(93) _chan(1){2,{&Ab5{1,Gb5 Eb5}}},_tempo(34/15) _vel(107) _chan(2){2,{2,G4 Ab4 G4 Ab4 Ab3 Gb4 Ab4 Gb4}},_tempo(34/15) _vel(93) _chan(3){2,{{1,Cb4}{C3,C4}}},_tempo(34/15) _vel(93) _chan(4){2,{2,Fb5 Eb5 F5 Eb5 F5 Eb5 Gb5 Eb5}}} {_tempo(34/15) _vel(93) _chan(1){2,{F5 C5}},_tempo(34/15) _vel(107) _chan(2){2,{2,Gb4 F4 F5 Eb5 Eb5 Db5 Ab5 Gb5}},_tempo(34/15) _vel(93) _chan(3){2,{{1/2,Db3}{3/2,Ab3 Gb3 Gb3 F3 F4 Eb4}}},_tempo(34/15) _vel(93) _chan(4){2,{2,Db4&}}} {_tempo(34/15) _vel(93) _chan(1){2,{Db5 Cb6}},_tempo(34/15) _vel(107) _chan(2){2,{{1,Gb5 F5 Ab5 Gb5}{1,F5 -}}},_tempo(34/15) _vel(93) _chan(3){2,{{1,Eb4 Db4 F4 Eb4}{1/2,Db4}{1/2,Bb3 Ab3}}},_tempo(34/15) _vel(93) _chan(4){2,{2,&Db4&}}} {_tempo(34/15) _vel(93) _chan(1){2,{Bb5 F5}},_tempo(34/15) _vel(107) _chan(2){2,{ 1/2{3/2,Bb4 Ab4 Ab4 Gb4 Db5 Cb5}}},_tempo(34/15) _vel(93) _chan(3){2,{2,Ab3 Gb3 Db4 Cb4 Cb4 Bb3 Bb4 Ab4}},_tempo(34/15) _vel(93) _chan(4){2,{2,&Db4&}}} {_tempo(34/15) _vel(93) _chan(1){2,{Gb5{1/2,Gb6}{1/2,Cb5 Bb4}}},_tempo(34/15) _vel(107) _chan(2){2,{2,Cb5 Bb4 Bb5 Ab5 Ab5 Gb5 Ab4 Gb4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Ab4 Gb4 Db5 Cb5 Cb5 Bb4 Db5 Db5}},_tempo(34/15) _vel(93) _chan(4){2,{2,&Db4&}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Bb4 Ab4 Ab5 Gb5 Gb5 F5 Cb6 Bb5}},_tempo(34/15) _vel(107) _chan(2){2,{2,Gb4 F4 Cb5 Bb4 Bb4 Ab4 Ab4 Gb4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Db5 Db5 Db5 Db5 Db5 Db5 Db5 Db5}},_tempo(34/15) _vel(93) _chan(4){2,{&Db4 Db3&}}} {_tempo(34/15) _vel(93) _chan(1){2,{{1,Bb5 Ab5 Cb6 Bb5}{1/2,Ab5}{1/2,Db5 Cb5}}},_tempo(34/15) _vel(107) _chan(2){2,{{1,Gb4 F4 Ab4 Gb4}{1/2,F4}{1/2,Db4 Cb4}}},_tempo(34/15) _vel(95) _chan(3){2,{2,Db5 Db5 Db5 Db5 Db5 Db5 Db4 Cb4}},_tempo(34/15) _vel(93) _chan(4){2,{&Db3&{1/2,&Db3}{1/2,Db3 Cb3}}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Cb5 Bb4 Bb5 Ab5 Ab5 Gb5 Db6 Cb6}},_tempo(34/15) _vel(107) _chan(2){2,{2,Cb4 Bb3 Bb4 Ab4 Ab4 Gb4 Db5 Cb5}},_tempo(34/15) _vel(93) _chan(3){2,{2,Cb4 Bb3 Bb3 Ab3 Ab3 Gb3 Db4 Cb4}},_tempo(34/15) _vel(93) _chan(4){2,{{1/2,Bb2}{1/2,Bb2 Ab2}{1/2,Gb2}{1/2,Db3 Cb3}}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Cb6 Bb5 Eb6 Db6 Db6 Cb6 Db6 Bb5}},_tempo(34/15) _vel(107) _chan(2){2,{2,Cb5 Bb4 Eb5 Db5 Db5 Cb5 Db5 Bb4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Cb4 Bb3 Eb4 Db4 Db4 Cb4 Db4 Bb3}},_tempo(34/15) _vel(93) _chan(4){2,{{1/2,Bb2}{1/2,Eb3 Db3}{1/2,Db3}{1/2,Db3 Bb2}}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Db6 Cb6 Eb6 Db6 Db6 Cb6 Db6 Bb5}},_tempo(34/15) _vel(107) _chan(2){2,{2,Db5 Cb5 Eb5 Db5 Db5 Cb5 Db5 Bb4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Db4 Cb4 Eb4 Db4 Db4 Cb4 Db4 Bb3}},_tempo(34/15) _vel(93) _chan(4){2,{{1/2,Cb3}{1/2,Eb3 Db3}{1/2,Cb3}{1/2,Db3 Bb2}}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Bb5 Ab5 Gb5 F5 Eb5 Db5 Eb5 Cb5}},_tempo(34/15) _vel(107) _chan(2){2,{2,Bb4 Ab4 Gb4 F4 Eb4 Db4 Eb4 Cb4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Bb3 Ab3 Gb3 F3 Eb3 Db3 Eb3 Cb4}},_tempo(34/15) _vel(93) _chan(4){2,{{1/2,Ab2}{1/2,Gb2 F2}{1/2,Eb2}{1/2,Eb3 Cb3}}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Cb5 Bb4 Cb5 Ab4 Ab4 Gb4 F4 Eb4}},_tempo(34/15) _vel(107) _chan(2){2,{2,Cb4 D4 D4 D4 D4 Eb4 Eb4 Eb4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Ab3 F3 F3 F3 F3 Gb3 Gb3 Gb3}},_tempo(34/15) _vel(93) _chan(4){2,{2,Bb2 Bb2 Bb2 Bb2 Eb3 Eb3 Eb3 Eb3}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Gb4 F4 Gb4 Eb4 Eb4 Db4 C4 Bb3}},_tempo(34/15) _vel(107) _chan(2){2,{2,Eb4 C4 A3 A3 Bb3 Bb3 Bb3 Bb3}},_tempo(34/15) _vel(93) _chan(3){2,{2,C4 A3 C3 C3 Db3 Db3 F3 F3}},_tempo(34/15) _vel(93) _chan(4){2,{2,F2 F2 F2 F2 Bb2 Bb2 Bb2 Bb2}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Db4 C4 Db4 C4 Db4 C4 Db4 C4}},_tempo(34/15) _vel(54) _chan(2){2,{2,Bb3 Bb3 Bb3 Bb3 Bb3 Bb3 Bb3 Bb3}},_tempo(34/15) _vel(52) _chan(3){2,{2,F3 F3 F3 F3 F3 F3 F3 F3}},_tempo(34/15) _vel(52) _chan(4){2,{2,F2 F2 F2 F2 F2 F2 F2 F2}}} {_tempo(34/15) _vel(52) _chan(1){2,{2,Db4 C4 Db4 C4 Db4 C4 Db4 C4}},_tempo(34/15) _vel(107) _chan(2){2,{2,Bb3 Bb3 Bb3 Bb3 Bb3 Bb3 Bb3 Bb3}},_tempo(34/15) _vel(54) _chan(3){2,{2,F3 F3 F3 F3 F3 F3 F3 F3}},_tempo(34/15) _vel(52) _chan(4){2,{2,F2 F2 F2 F2 F2 F2 F2 F2}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Db4 C4 Db4 C4 Db4 C4 Db4 C4}},_tempo(34/15) _vel(40) _chan(2){2,{2,Bb3 Bb3 Bb3 Bb3 Bb3 Bb3 Bb3 Bb3}},_tempo(34/15) _vel(38) _chan(3){2,{2,F3 F3 F3 F3 F3 F3 F3 F3}},_tempo(34/15) _vel(38) _chan(4){2,{2,F2 F2 F2 F2 F2 F2 F2 F2}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Db4 C4 Db4 C4 D4 C4 D4 C4}},_tempo(34/15) _vel(107) _chan(2){2,{2,A3 A3 A3 A3 A3 A3 A3 A3}},_tempo(34/15) _vel(93) _chan(3){2,{2,Eb3 Eb3 Eb3 Eb3 Eb3 Eb3 Eb3 Eb3}},_tempo(34/15) _vel(93) _chan(4){2,{2,F2 F2 F2 F2 F2 F2 F2 F2}}} {_tempo(34/15) _vel(93) _chan(1){3,{D4 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Bb3 1/2 - 1/2}},_tempo(34/15) _vel(112) _chan(3){3,{D3 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(4){3,{Bb2{1/2,Bb2}B2{1/2,Ab3}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,B3}C4{1/2,A4}}},_tempo(34/15) _vel(93) _chan(4){3,{G3{1/2,B2}C3{1/2,A3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,F4}Gb4{1/2,Eb5}}},_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{Bb4{1/2,F3}Gb3{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(4){3,{Bb3 1/2 3/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{D5{1/2,F#4}G4{1/2,E5}}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,F#4}G3{1/2,E4}}},_tempo(34/15) _vel(93) _chan(3){3,{D4{1/2,F#3}G3{1/2,E4}}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{F5 1/2{3/2,D4}}},_tempo(34/15) _vel(107) _chan(2){3,{F4 1/2 3/2}},_tempo(34/15) _vel(93) _chan(3){3,{F4 1/2 F3 1/2}},_tempo(34/15) _vel(52) _chan(4){3,{-{1/2,Bb2}B2{1/2,Ab3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb4 1/2{3/2,Eb4}, 3/2{139/512,Eb4}{625/512,F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4}1/128}},_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{F3 1/2 F3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{G3{1/2,B2}C3{1/2,A3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{D4 1/2 3/2}},_tempo(34/15) _vel(107) _chan(2){3,{3,- D5}},_tempo(34/15) _vel(93) _chan(3){3,{F3{1/2,Bb3}B3{1/2,Ab4}}},_tempo(34/15) _vel(93) _chan(4){3,{Bb3 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Eb5 1/2{3/2,Eb5}, 3/2{139/512,Eb5}{625/512,F5 Eb5 F5 Eb5 F5 Eb5 F5 Eb5 F5 Eb5}1/128}},_tempo(34/15) _vel(93) _chan(3){3,{G4{1/2,B3}C4{1/2,A4}}},_tempo(34/15) _vel(93) _chan(4){3,{F2 1/2 F2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2{3/2,D5}, 3/2{139/512,D5}{625/512,Eb5 D5 Eb5 D5 Eb5 D5 Eb5 D5 Eb5 D5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{D5{1/2,E4}F4{1/2,D5}}},_tempo(34/15) _vel(93) _chan(3){3,{Bb4 1/2 D4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 Bb3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{C5 1/2 E5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,B3}C4{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(3){3,{F4 1/2 Bb4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{A3 1/2 G3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5{1/2,G5}A5{1/2,F5}}},_tempo(34/15) _vel(107) _chan(2){3,{A4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{C4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{D5 1/2 F#5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,C#4}D4{1/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{D4 1/2 C5 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb3 1/2 A3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{G5{1/2,A5}Bb5{1/2,G5}}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{G4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{G3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{G5 1/2 F5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Bb3}B3{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(4){3,{Eb3 1/2 D3 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Eb5{1/2,D5}C5{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,B3}C4{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(4){3,{C3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5 1/2 A5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F5{1/2,E4}F4{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(3){3,{D4 1/2 C4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 F2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5{1/2,C6}D6{1/2,Bb5}}},_tempo(34/15) _vel(107) _chan(2){3,{D5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{G6 1/2 F6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Bb4}B4{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{Eb4 1/2 D4 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6{1/2,D6}C6{1/2,G6}}},_tempo(34/15) _vel(107) _chan(2){3,{G5{1/2,F5}Eb5{1/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,B4}C5{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(4){3,{C4 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5 1/2 A5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F4 1/2 Eb5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{D5 1/2 C5 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F4 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5 1/2 F4 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{D5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Bb4 1/2{3/2,D4}}},_tempo(34/15) _vel(93) _chan(4){3,{Bb3{1/2,Bb2}B2{1/2,Ab3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{F4 1/2 F4 1/2}},_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{Eb4 1/2{3/2,Eb4}, 3/2{139/512,Eb4}{625/512,F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4}1/128}},_tempo(34/15) _vel(93) _chan(4){3,{G3{1/2,B2}C3{1/2,A3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{F4 1/2{3/2,D6}}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Bb4}B4{1/2,Ab5}}},_tempo(34/15) _vel(93) _chan(3){3,{D4 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb3 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6 1/2{3/2,Eb6}, 3/2{139/512,Eb6}{625/512,F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{G5{1/2,B4}C5{1/2,A5}}},_tempo(34/15) _vel(93) _chan(3){3,{F4 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{D6 1/2{3/2,D5}}},_tempo(34/15) _vel(107) _chan(2){3,{Bb5{1/2,E4}F4{1/2,D5}}},_tempo(34/15) _vel(93) _chan(3){3,{F4 1/2 F3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 Bb2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{C5 1/2 E5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,F5 - B4}C5{1/2,Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{F3 1/2 Bb3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{A2 1/2 G2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5{1/2,G5}A5{1/2,F5}}},_tempo(34/15) _vel(107) _chan(2){3,{A5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{C4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F2 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,C#4}D4{1/2,C5}}},_tempo(34/15) _vel(107) _chan(2){3,{D5 1/2 F#5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3 1/2 A3 1/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{Bb4 1/2 3/2}},_tempo(34/15) _vel(107) _chan(2){3,{G5{1/2,A5}Bb5{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3){3,{G3 1/2 3/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{G6 1/2 F6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Bb4}B4{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3){3,{G3 1/2 G3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb2 1/2 D2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6{1/2,D6}C6{1/2,G6}}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,B4}C5{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3){3,{Eb4 1/2 G3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{C2 1/2 Eb2 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{F5 1/2 A5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{D4 1/2{C4,Eb4}1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F2 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Bb5{1/2,C6}D6{1/2,Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{{Bb3,D4}1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 Bb3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{G6 1/2 F6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{G5{1/2,Bb3}B3{1/2,G4}}},_tempo(34/15) _vel(93) _chan(3){3,{Bb4 1/2{G3,G4}1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb2 1/2 D2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6{1/2,D6}C6{1/2,G6}}},_tempo(34/15) _vel(107) _chan(2){3,{G4{1/2,B4}C5{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(3){3,{{G3,G4}1/2 G3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{C2 1/2 Eb3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5 1/2 A5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{D5 1/2 Eb5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3 1/2 C4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 F2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5 1/2 G5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{D5 1/2 G4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3 1/2 G3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 G2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{B5 1/2 C6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{B4 1/2 Eb4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{B3 1/2 C4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{B2 1/2 C3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2 Eb5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{G4 1/2 Ab4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{G3 1/2 Ab3 1/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(107) _chan(1){3,{G5 1/2 Ab5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4 1/2 C5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Db3 1/2 C3 1/2}},_tempo(34/15) _vel(107) _chan(4){3,{- 1/2{3/2,Ab2&}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{3,&Ab2&}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,F5}Eb5{1/2,Gb4}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{3,&Ab2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,D5}C5{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{3,A2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Bb4}A4{1/2,C4}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{3,Gb3}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,C5}Bb4{1/2,Db4}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{3,F3}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Db5}C5{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{3,A2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Eb5}Db5{1/2,E4}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 G3 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Eb4{1/2,Db5}C5{1/2,F4}}},_tempo(34/15) _vel(107) _chan(3){3,{3,- Eb4&}},_tempo(34/15) _vel(93) _chan(4){3,{{3,Ab3},{435/1024,Ab3}{5/2,Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{G4 1/2{3/2,A3}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Eb4&}},_tempo(34/15) _vel(93) _chan(4){3,{G3 1/2 3/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,C6}Bb5{1/2,Db5}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,Bb3}G4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Eb4}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,Ab5}G5{1/2,Bb4}}},_tempo(34/15) _vel(107) _chan(2){3,{3,- A4}},_tempo(34/15) _vel(93) _chan(3){3,{3,E4}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,F5}E5{1/2,G4}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,Bb4}G5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{3,Db5}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,G5}F5{1/2,Ab4}}},_tempo(34/15) _vel(107) _chan(2){3,{3,- Ab3}},_tempo(34/15) _vel(93) _chan(3){3,{3,C5}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,Ab5}G5{1/2,Bb4}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,C4}G4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{3,E4}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,Bb5}Ab5{1/2,Bb4}}},_tempo(34/15) _vel(107) _chan(2){3,{3,- F4}},_tempo(34/15) _vel(93) _chan(3){3,{F4 1/2 D5 1/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,Bb5}Fb5{1/2,Eb5}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,G4&}&G4{1/2,Ab4&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3,Db5},{435/1024,Db5}{5/2,Eb5 Db5 Eb5 Db5 Eb5 Db5 Eb5 Db5 Eb5 Db5 Eb5 Db5 Eb5 Db5 Eb5 Db5 Eb5 Db5 Eb5 Db5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{Eb5 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{3,&Ab4&}},_tempo(34/15) _vel(93) _chan(3){3,{C5 1/2{3/2,B3}}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{3,&Ab4}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,C4}Ab4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,F4}Eb4{1/2,Gb3}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{3,A4}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2{3/2,D4}}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,Db4}C4{1/2,Eb3}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{3,Gb5}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,Eb4}C5 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,Bb3}A3{1/2,C3}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{3,F5}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2{3/2,Bb3}}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,C4}Bb3{1/2,Db3}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{3,A4}},_tempo(34/15) _vel(93) _chan(3){3,{3,C4 F4}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,Db4}C4{1/2,Eb3}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Bb4 1/2 G5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2{3/2,Bb3}}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,Eb4}Db4{1/2,Fb3}}}} {_tempo(34/15) _vel(107) _chan(1){3,{3,- Eb5&}},_tempo(34/15) _vel(107) _chan(2){3,{{3,Ab5},{435/1024,Ab5}{5/2,Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,C4}Ab4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb3{1/2,Db4}C4{1/2,Eb3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Eb5&}},_tempo(34/15) _vel(107) _chan(2){3,{G5 1/2{3/2,C4}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{Eb3 1/2{3/2,A2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Eb5}},_tempo(34/15) _vel(107) _chan(2){3,{Db4{1/2,Bb4}{3/2,G3&}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,C5}Bb4{1/2,Db4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,Bb2}G3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,E5}},_tempo(34/15) _vel(107) _chan(2){3,{3,&G3&}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Ab4}G4{1/2,Bb3}}},_tempo(34/15) _vel(93) _chan(4){3,{3,- C2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Db6}},_tempo(34/15) _vel(107) _chan(2){3,{3,&G3}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,F4}E4{1/2,G3}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,A2}Bb2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,C6}},_tempo(34/15) _vel(107) _chan(2){3,{3,Ab3}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,G4}F4{1/2,Ab3}}},_tempo(34/15) _vel(93) _chan(4){3,{3,- Ab2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,E5}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,Db4&}&Db4{1/2,Bb3}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,C5}Bb4{1/2,Db4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,Bb2 G3}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5 1/2 D6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Ab3{1/2,G3}Ab3{1/2,Ab4}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Bb4}Ab4{1/2,Bb3}}},_tempo(34/15) _vel(93) _chan(4){3,{3,- F3}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,Db6},{435/1024,Db6}{5/2,Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4 1/2 G5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,C5}Bb4{1/2,Db4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,G3}Eb4 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb5 1/2 C6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{{3,C5},{435/1024,C5}{5/2,Db5 C5 Db5 C5 Db5 C5 Db5 C5 Db5 C5 Db5 C5 Db5 C5 Db5 C5 Db5 C5 Db5 C5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Bb4}Ab4{1/2,C4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,- Ab3}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,Bb5},{435/1024,Bb5}{5/2,C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{Gb4 1/2 Db5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Eb5}Db5{1/2,Gb4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,Bb3}Gb4 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{C5 1/2 Bb5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{{3,G4},{435/1024,G4}{5/2,Ab4 G4 Ab4 G4 Ab4 G4 Ab4 G4 Ab4 G4 Ab4 G4 Ab4 G4 Ab4 G4 Ab4 G4 Ab4 G4}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Ab3}G3{1/2,C3}}},_tempo(34/15) _vel(93) _chan(4){3,{3,- E3}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,Ab5},{435/1024,Ab5}{5/2,Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{F4 1/2 F5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,G4}F4{1/2,B3}}},_tempo(34/15) _vel(107) _chan(4){3,{3,F3 C2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{G5 1/2{3/2,A3}}},_tempo(34/15) _vel(107) _chan(2){3,{{3,E5&},{435/1024,E5}{5/2,F5 E5 F5 E5 F5 E5 F5 E5 F5 E5 F5 E5 F5 E5 F5 E5 F5 E5 F5 E5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{3,&C2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,Bb3}G4 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{3,&E5}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,C4}Bb3{1/2,Db3}}},_tempo(34/15) _vel(93) _chan(4){3,{3,&C2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,- E4}},_tempo(34/15) _vel(107) _chan(2){3,{{3,F5},{435/1024,F5}{5/2,G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{3,Db2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,F4 F5&}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,Db6}{3/4,C6 Db6}{3/4,F4&},{139/512,Db6}{625/512,Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6}1/128 3/2}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Eb4}Db4{1/2,F3}}},_tempo(34/15) _vel(93) _chan(4){3,{3,Bb2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&F5 E5}},_tempo(34/15) _vel(107) _chan(2){3,{3,&F4&}},_tempo(34/15) _vel(93) _chan(3){3,{3,- Bb4}},_tempo(34/15) _vel(93) _chan(4){3,{A2 1/2{3/2,Db4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,F5}Eb6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{3,&F4}},_tempo(34/15) _vel(93) _chan(3){3,{3,A4 C4}},_tempo(34/15) _vel(93) _chan(4){3,{C4{1/2,Gb3}F3{1/2,A2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,- C5&}},_tempo(34/15) _vel(107) _chan(2){3,{3,Gb4}},_tempo(34/15) _vel(93) _chan(3){3,{3,- Gb3}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,F4}Eb4{1/2,F3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,&C5}A5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{3,Eb5}},_tempo(34/15) _vel(107) _chan(3){3,{{3/2,Eb3}C3{1/2,Bb3&}}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,Gb3}F3{1/2,F2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,Eb6}D6{1/2,F5}}},_tempo(34/15) _vel(107) _chan(2){3,{D5 1/2{3/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb3&}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{3,D5 Bb5}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb3}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,C4}Bb3{1/2,D3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,Gb5}F5{1/2,Ab4}}},_tempo(34/15) _vel(107) _chan(2){3,{3,- Eb5}},_tempo(34/15) _vel(93) _chan(3){3,{3,B3}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(107) _chan(1){3,{3,- Eb5&}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,F5}D6{1/2,Eb6&}}},_tempo(34/15) _vel(93) _chan(3){3,{3,Ab4}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,G4}F4{1/2,Ab3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Eb5&}},_tempo(34/15) _vel(107) _chan(2){3,{&Eb6 1/2 3/2}},_tempo(34/15) _vel(93) _chan(3){3,{G4 1/2{3/2,F3}}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,Ab3}G3{1/2,Bb2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Eb5}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,C6}Bb5{1/2,Db5}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,Gb3}Db4 1/2}},_tempo(34/15) _vel(112) _chan(4){3,{3,- Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Fb5}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Ab5}G5{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(3){3,{3,- Db4}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Db6 Eb5&}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Ab4}G4{1/2,Bb3}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,A4}Bb4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Eb5 1/2 C6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Bb4}Ab4{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Db4}C4{1/2,C3}}},_tempo(34/15) _vel(93) _chan(4){3,{&Eb2 1/2 Ab3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,Db6},{435/1024,Db6}{5/2,Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{3,- Ab4&}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Eb4}Db4{1/2,Eb3}}},_tempo(34/15) _vel(93) _chan(4){3,{{3,Bb3},{435/1024,Bb3}{5/2,C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{C6 1/2 3/2}},_tempo(34/15) _vel(107) _chan(2){3,{&Ab4 1/2 F5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{C4{1/2,Bb4}Ab4{1/2,Db4}}},_tempo(34/15) _vel(93) _chan(4){3,{Ab3 1/2 3/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,- Db5&}},_tempo(34/15) _vel(107) _chan(2){3,{{3,Gb5},{435/1024,Gb5}{5/2,Ab5 Gb5 Ab5 Gb5 Ab5 Gb5 Ab5 Gb5 Ab5 Gb5 Ab5 Gb5 Ab5 Gb5 Ab5 Gb5 Ab5 Gb5 Ab5 Gb5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3){3,{{3,Eb4},{435/1024,Eb4}{5/2,F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,Bb3}Ab3{1/2,Db3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Db5 1/2 Bb5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Db4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Db3 1/2 Gb3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,Cb6},{435/1024,Cb6}{5/2,Db6 Cb6 Db6 Cb6 Db6 Cb6 Db6 Cb6 Db6 Cb6 Db6 Cb6 Db6 Cb6 Db6 Cb6 Db6 Cb6 Db6 Cb6}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,F#4&}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Eb5}Db5{1/2,Gb4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3,Ab3},{435/1024,Ab3}{5/2,Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{&F#4 1/2 D#5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,G#4}F#4{1/2,B3}}},_tempo(34/15) _vel(93) _chan(4){3,{Gb3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2{3/2,B4&}}},_tempo(34/15) _vel(107) _chan(2){3,{{3,E5},{435/1024,E5}{5/2,F#5 E5 F#5 E5 F#5 E5 F#5 E5 F#5 E5 F#5 E5 F#5 E5 F#5 E5 F#5 E5 F#5 E5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3){3,{{3,C#4},{435/1024,C#4}{5/2,Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,G#3}F#3{1/2,B2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&B4 1/2 G#5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{D#5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{B3{1/2,C#5}B4{1/2,E4}}},_tempo(34/15) _vel(93) _chan(4){3,{B2 1/2 E4 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,A5},{435/1024,A5}{5/2,Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,E4&}}},_tempo(34/15) _vel(93) _chan(3){3,{D#4{1/2,C#5}B4{1/2,E4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3,F#4},{435/1024,F#4}{5/2,Ab4 F#4 Ab4 F#4 Ab4 F#4 Ab4 F#4 Ab4 F#4 Ab4 F#4 Ab4 F#4 Ab4 F#4 Ab4 F#4 Ab4 F#4}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{G#5 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{&E4 1/2 C#5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{D#4{1/2,F#4}E4{1/2,A3}}},_tempo(34/15) _vel(93) _chan(4){3,{E4 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2{3/2,A4&}}},_tempo(34/15) _vel(107) _chan(2){3,{{3,D5},{435/1024,D5}{5/2,E5 D5 E5 D5 E5 D5 E5 D5 E5 D5 E5 D5 E5 D5 E5 D5 E5 D5 E5 D5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3){3,{{3,B3},{435/1024,B3}{5/2,Db4 B3 Db4 B3 Db4 B3 Db4 B3 Db4 B3 Db4 B3 Db4 B3 Db4 B3 Db4 B3 Db4 B3}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,F#3}E3{1/2,A2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&A4 1/2 F#5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{C#5 1/2 D5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{A3{1/2,B4}A4{1/2,D4}}},_tempo(34/15) _vel(93) _chan(4){3,{A2 1/2 D4 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,G5},{435/1024,G5}{5/2,A5 G5 A5 G5 A5 G5 A5 G5 A5 G5 A5 G5 A5 G5 A5 G5 A5 G5 A5 G5}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{C#4{1/2,B4}A4{1/2,C#4}}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2{3/2,A4&}}},_tempo(34/15) _vel(93) _chan(4){3,{{3,E4},{435/1024,E4}{5/2,F#4 E4 F#4 E4 F#4 E4 F#4 E4 F#4 E4 F#4 E4 F#4 E4 F#4 E4 F#4 E4 F#4 E4}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{F#5 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{C4 1/2 F#4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{&A4 1/2 C4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{D4 1/2 A3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2{3/2,D5&}}},_tempo(34/15) _vel(107) _chan(2){3,{{3,F#4},{435/1024,F#4}{5/2,G4 F#4 G4 F#4 G4 F#4 G4 F#4 G4 F#4 G4 F#4 G4 F#4 G4 F#4 G4 F#4 G4 F#4}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3){3,{{3,C4},{435/1024,C4}{5/2,D4 C4 D4 C4 D4 C4 D4 C4 D4 C4 D4 C4 D4 C4 D4 C4 D4 C4 D4 C4}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(4){3,{{3,A3},{435/1024,A3}{5/2,B3 A3 B3 A3 B3 A3 B3 A3 B3 A3 B3 A3 B3 A3 B3 A3 B3 A3 B3 A3}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{&D5 1/2 B5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{G4 1/2 D5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{B3 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{G3 1/2 F4 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,B5},{435/1024,B5}{5/2,C6 B5 C6 B5 C6 B5 C6 B5 C6 B5 C6 B5 C6 B5 C6 B5 C6 B5 C6 B5}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{{3,D5},{435/1024,D5}{5/2,E5 D5 E5 D5 E5 D5 E5 D5 E5 D5 E5 D5 E5 D5 E5 D5 E5 D5 E5 D5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3){3,{3,- G4&}},_tempo(34/15) _vel(93) _chan(4){3,{{3,F4},{435/1024,F4}{5/2,G4 F4 G4 F4 G4 F4 G4 F4 G4 F4 G4 F4 G4 F4 G4 F4 G4 F4 G4 F4}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{C6 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{C5 1/2 E4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{&G4 1/2 Bb3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{E4 1/2 G3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2{3/2,C5&}}},_tempo(34/15) _vel(107) _chan(2){3,{{3,E4},{435/1024,E4}{5/2,F4 E4 F4 E4 F4 E4 F4 E4 F4 E4 F4 E4 F4 E4 F4 E4 F4 E4 F4 E4}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3){3,{{3,Bb3},{435/1024,Bb3}{5/2,C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3 C4 Bb3}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(4){3,{{3,G3},{435/1024,G3}{5/2,Ab3 G3 Ab3 G3 Ab3 G3 Ab3 G3 Ab3 G3 Ab3 G3 Ab3 G3 Ab3 G3 Ab3 G3 Ab3 G3}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{&C5 1/2 A5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F4 1/2 F5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{A3 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,A5},{435/1024,A5}{5/2,Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{{3,F5},{435/1024,F5}{5/2,G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2{3/2,F4&}}},_tempo(34/15) _vel(93) _chan(4){3,{- 1/2{3/2,C4&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Ab5 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F5 1/2 3/2}},_tempo(34/15) _vel(93) _chan(3){3,{&F4 1/2 Ab3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{&C4 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2{3/2,Ab4&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,- F4&}},_tempo(34/15) _vel(93) _chan(3){3,{{3,Ab3},{435/1024,Ab3}{5/2,Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(4){3,{{3,F3},{435/1024,F3}{5/2,G3 F3 G3 F3 G3 F3 G3 F3 G3 F3 G3 F3 G3 F3 G3 F3 G3 F3 G3 F3}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Ab4 1/2 F5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{&F4 1/2 Ab4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{F3 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Db3 1/2 Db2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,F5},{435/1024,F5}{5/2,G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{3,G4 Ab4 F5 G5 F5 B4}},_tempo(34/15) _vel(107) _chan(3){3,{- 1/2{3/2,C4&}}},_tempo(34/15) _vel(93) _chan(4){3,{{3,Db2},{435/1024,Db2}{5/2,Eb2 Db2 Eb2 Db2 Eb2 Db2 Eb2 Db2 Eb2 Db2 Eb2 Db2 Eb2 Db2 Eb2 Db2 Eb2 Db2 Eb2 Db2}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,E5 E4 C5 F#4 G4 E5}},_tempo(34/15) _vel(107) _chan(2){3,{C5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{3,&C4&}},_tempo(34/15) _vel(93) _chan(4){3,{C2 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,B4 C5 G5 Ab5 G5 C5}},_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{3,&C4}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{3,F5 Ab4 G4 F4 E4 F4}},_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{Db4 1/2 B4 1/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{3,E4 B4 C5 Db5 C5 Bb4}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,F4&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3,Cb5},{435/1024,Cb5}{5/2,Db5 Cb5 Db5 Cb5 Db5 Cb5 Db5 Cb5 Db5 Cb5 Db5 Cb5 Db5 Cb5 Db5 Cb5 Db5 Cb5 Db5 Cb5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{A4 1/2 3/2}},_tempo(34/15) _vel(107) _chan(2){3,{3,&F4&}},_tempo(34/15) _vel(93) _chan(3){3,{3,E3 F3 C4 G#3 A3 F4}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{3,&F4}},_tempo(34/15) _vel(93) _chan(3){3,{3,B3 C4 A4 Bb4 A4 C4}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Gb4 1/2 E5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{3,Bb3 Bb4 C5 Db5 C5 Bb4}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{-{2,- Eb4 D4 C4}}},_tempo(34/15) _vel(107) _chan(2){3,{{3,F5},{435/1024,F5}{5/2,G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5 G5 F5}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(3){3,{{3/2,A4 G4 F4}{3/2,Bb3&}}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{3,Bb3 C#4 D4 D4 A4 Bb4}},_tempo(34/15) _vel(107) _chan(2){3,{3,D4 A4 Bb4 F4 C#5 D5}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb3&}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{3,D4 C#5 D5 A4 Bb4 D5}},_tempo(34/15) _vel(107) _chan(2){3,{3,Bb4 E5 F5 Db5 D5 Bb5}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb3}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{Eb5 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{3,A5 Eb5 F5 Gb5 F5 Eb5}},_tempo(34/15) _vel(93) _chan(3){3,{Cb4 1/2 A4 1/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{3,F4 D5 Eb5 F5 G5 Ab5}},_tempo(34/15) _vel(107) _chan(2){3,{3,D5 C5 Bb4 Ab4 G4 F4}},_tempo(34/15) _vel(93) _chan(3){3,{{3,Bb4},{435/1024,Bb4}{5/2,Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(4){3,{3,- Eb3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,G5 A4 Bb4 A4 Bb4 G5}},_tempo(34/15) _vel(107) _chan(2){3,{3,Eb4 F#4 G4 F#4 G4 Bb4}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2{3/2,G3&}}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,F#5 G5 Bb5}{3/2,Db5&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,A4 Bb4 Db5 A4 Bb4 G5}},_tempo(34/15) _vel(93) _chan(3){3,{3,&G3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb3}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Db5}},_tempo(34/15) _vel(107) _chan(2){3,{3,Db5 A5 Bb5 C5 Bb4 Db4}},_tempo(34/15) _vel(93) _chan(3){3,{&G3 1/2 A4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{E3 1/2 C4 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Db5 1/2 A5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{3,Bb4 E5 F5 Gb4 F4 Bb3}},_tempo(34/15) _vel(93) _chan(3){3,{{3,Bb4},{435/1024,Bb4}{5/2,C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(4){3,{{3,Db4},{435/1024,Db4}{5/2,Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,Bb5},{435/1024,Bb5}{5/2,C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{3,F4 E5 F5 Gb4 F4 C4}},_tempo(34/15) _vel(93) _chan(3){3,{Db4 1/2 A4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 C4 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Db5 1/2 A5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{3,E4 F4 Db5 Gb4 F4 Bb3}},_tempo(34/15) _vel(93) _chan(3){3,{{3,Bb4},{435/1024,Bb4}{5/2,C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(4){3,{{3,Db4},{435/1024,Db4}{5/2,Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,Bb5},{435/1024,Bb5}{5/2,C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{3,Db5 A5 Bb5 Db5 C5 Eb4}},_tempo(34/15) _vel(93) _chan(3){3,{Db4 1/2 A4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Gb3 1/2 C4 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Db5 1/2{3/2,Gb5&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,Db4 A4 Bb4 Ab5 Gb5 Bb4}},_tempo(34/15) _vel(93) _chan(3){3,{{3,Bb4 Bb4&},{139/512,Bb4}{625/512,Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4}1/128{139/512,Bb4}{625/512,Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4}1/128}},_tempo(34/15) _vel(93) _chan(4){3,{{3,Db4},{435/1024,Db4}{5/2,Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4 Eb4 Db4}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Gb5&}},_tempo(34/15) _vel(107) _chan(2){3,{3,Cb5 Bb4 Db4 A4 Bb4 Gb5}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb4&}},_tempo(34/15) _vel(112) _chan(4){3,{3,Gb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Gb5}},_tempo(34/15) _vel(107) _chan(2){3,{3,Cb5 Bb4 Db4 Ab4 Gb4 Bb3}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Gb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,G5}},_tempo(34/15) _vel(107) _chan(2){3,{3,Eb5 Db5 Fb4 Eb4 Fb4 Db5}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Gb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Fb6}},_tempo(34/15) _vel(107) _chan(2){3,{3,Cb5 Bb4 Db4 A3 Bb3 G4}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb4}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Gb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Eb6}},_tempo(34/15) _vel(107) _chan(2){3,{3,Bb4 Ab4 Cb4 Bb3 Cb4 Ab4}},_tempo(34/15) _vel(93) _chan(3){3,{{3,C5&},{435/1024,C5}{5/2,Db5 C5 Db5 C5 Db5 C5 Db5 C5 Db5 C5 Db5 C5 Db5 C5 Db5 C5 Db5 C5 Db5 C5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Gb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{G5 1/2 Ab5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{3,F4 C5 Db5 Gb5 F5 Db5}},_tempo(34/15) _vel(93) _chan(3){3,{3,&C5&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Gb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{F6 1/2{3/2,Gb6&}, 3/2{139/512,Gb6}{625/512,Ab6 Gb6 Ab6 Gb6 Ab6 Gb6 Ab6 Gb6 Ab6 Gb6}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{3,Gb5 F5 Ab4 Ab5 Gb5 Bb4}},_tempo(34/15) _vel(93) _chan(3){3,{{3,Cb5 Bb4&}, 3/2{139/512,Bb4}{625/512,Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4}1/128}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Gb2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Gb6&}},_tempo(34/15) _vel(107) _chan(2){3,{3,Eb5 Db5 Gb4 A4 Bb4 Db5}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb4}},_tempo(34/15) _vel(112) _chan(4){3,{Gb3 1/2{3/2,F2&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&Gb6 F6}, 139/512{625/512,G6 Gb6 G6 Gb6 G6 Gb6 G6 Gb6 G6 Gb6}1/128{139/512,F6}{625/512,Gb6 F6 Gb6 F6 Gb6 F6 Gb6 F6 Gb6 F6}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{3,B4 C5 A5 Bb5 A5 C5}},_tempo(34/15) _vel(93) _chan(3){3,{A4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{3,&F2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,Eb6&},{435/1024,Eb6}{5/2,F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{3,Db5 C5 Eb4 D4 Eb4 C5}},_tempo(34/15) _vel(107) _chan(3){3,{3,- Gb3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&F2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&Eb6 Db6}, 139/512{625/512,F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6}1/128{139/512,Db6}{625/512,Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{3,D4 Eb4 C5 A4 Bb4 Bb5}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Gb3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,Gb2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,C6&},{435/1024,C6}{5/2,Db6 C6 Db6 C6 Db6 C6 Db6 C6 Db6 C6 Db6 C6 Db6 C6 Db6 C6 Db6 C6 Db6 C6}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,B4 C5 A5}{3/2,C4&}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Gb3}},_tempo(34/15) _vel(93) _chan(4){3,{{1/8,F3}{23/8,E3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&C6&}},_tempo(34/15) _vel(107) _chan(2){3,{3,&C4&}},_tempo(34/15) _vel(93) _chan(3){3,{3,A3}},_tempo(34/15) _vel(93) _chan(4){3,{3,A2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&C6&}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,&C4}{3/2,B3 C4 C5}}},_tempo(34/15) _vel(93) _chan(3){3,{{1/8,Gb4}{23/8,F4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,Ab2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&C6 Bb5}, 3/2{139/512,Bb5}{625/512,C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{-{2,- C4 Db4 Db5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,Bb3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,Bb2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,Bb4 Bb5&},{139/512,Bb4}{625/512,C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4 C5 Bb4}1/128{139/512,Bb5}{625/512,C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5 C6 Bb5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{-{2,- C5 Db5 Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb3}},_tempo(34/15) _vel(93) _chan(4){3,{3,Gb3}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&Bb5 A5&}, 3/2{139/512,A5}{625/512,Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5 A5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,Eb4&}}},_tempo(34/15) _vel(93) _chan(3){3,{3,C4}},_tempo(34/15) _vel(93) _chan(4){3,{3,C3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&A5&}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,&Eb4}{3/2,D4 Eb4 Eb5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,A4}},_tempo(34/15) _vel(93) _chan(4){3,{3,&C3}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&A5 Ab5}, 3/2{139/512,Ab5}{625/512,Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{-{2,- E4 F4 F5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,D4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,D3}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,Ab4 Ab5&},{139/512,Ab4}{625/512,Bb4 Ab4 Bb4 Ab4 Bb4 Ab4 Bb4 Ab4 Bb4 Ab4}1/128{139/512,Ab5}{625/512,Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5 Bb5 Ab5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{-{2,- D5 Eb5 F5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&D4}},_tempo(34/15) _vel(93) _chan(4){3,{{1/8,Cb4}{23/8,Bb3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&Ab5 Gb5&}, 3/2{139/512,Gb5}{625/512,Ab5 Gb5 Ab5 Gb5 Ab5 Gb5 Ab5 Gb5 Ab5 Gb5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,Gb4&}}},_tempo(34/15) _vel(93) _chan(3){3,{3,Eb4}},_tempo(34/15) _vel(93) _chan(4){3,{3,Eb3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Gb5&}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,&Gb4}{3/2,F4 Gb4 Eb5}}},_tempo(34/15) _vel(93) _chan(3){3,{{1/8,Db5}{23/8,Cb5}}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb3}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&Gb5 F5&}, 3/2{139/512,F5}{625/512,Gb5 F5 Gb5 F5 Gb5 F5 Gb5 F5 Gb5 F5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{-{2,- G3 Ab3 Ab4}}},_tempo(34/15) _vel(93) _chan(3){3,{3,F4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,F3}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&F5 F6&}, 3/2{139/512,F6}{625/512,Gb6 F6 Gb6 F6 Gb6 F6 Gb6 F6 Gb6 F6}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{-{2,- A4 Bb4 Ab5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&F4}},_tempo(34/15) _vel(93) _chan(4){3,{3,D4}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&F6 Eb6&}, 3/2{139/512,Eb6}{625/512,F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,Bb3&}}},_tempo(34/15) _vel(93) _chan(3){3,{3,Gb4}},_tempo(34/15) _vel(93) _chan(4){3,{3,Gb3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Eb6&}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,&Bb3}{3/2,A4 Bb4 Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,Eb5}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Gb3}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&Eb6 Eb5}, 3/2{139/512,Eb5}{625/512,F5 Eb5 F5 Eb5 F5 Eb5 F5 Eb5 F5 Eb5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,C4&}}},_tempo(34/15) _vel(93) _chan(3){3,{3,A4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,A3}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,Eb4 Eb6&},{139/512,Eb4}{625/512,F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4}1/128{139/512,Eb6}{625/512,F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6 F6 Eb6}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,&C4}{3/2,B4 C5 C6}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&A4}},_tempo(34/15) _vel(93) _chan(4){3,{{1/8,Gb4}{23/8,F4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&Eb6 Db6&}, 3/2{139/512,Db6}{625/512,Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6 Eb6 Db6}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{-{2,- C4 Db4 Bb4}}},_tempo(34/15) _vel(93) _chan(3){3,{3,Bb3}},_tempo(34/15) _vel(93) _chan(4){3,{3,Bb3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Db6&}},_tempo(34/15) _vel(107) _chan(2){3,{-{2,- A4 Bb4 Gb5}}},_tempo(34/15) _vel(93) _chan(3){3,{{1/8,Ab4}{23/8,Gb4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Bb3}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&Db6 C6&}, 3/2{139/512,C6}{625/512,Db6 C6 Db6 C6 Db6 C6 Db6 C6 Db6 C6}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,Eb4&}}},_tempo(34/15) _vel(93) _chan(3){3,{3,C3&,C4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,C4}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&C6 C6&}, 3/2{139/512,C6}{625/512,D6 C6 D6 C6 D6 C6 D6 C6 D6 C6}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,&Eb4}{3/2,D4 Eb4 C5}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,&C3,&C4}{3/2,F4&}}},_tempo(34/15) _vel(93) _chan(4){3,{3,A4&}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&C6}}},_tempo(34/15) _vel(107) _chan(2){3,{-{2,- B4 C5 A5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&F4 F3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&A4}}} {_tempo(34/15) _vel(93) _chan(1){3,{D6 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{ 3/2{3/2,C#5 D5 Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{&F3 1/2{3/2,Ab3&}, 3/2{139/512,Ab3}{625/512,Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3 Bb3 Ab3}1/128}},_tempo(34/15) _vel(93) _chan(4){3,{Ab4 1/2{3/2,F2&}, 3/2{139/512,F2}{625/512,Gb2 F2 Gb2 F2 Gb2 F2 Gb2 F2 Gb2 F2}1/128}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Bb4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{{3,&Ab3}}},_tempo(34/15) _vel(93) _chan(4){3,{{3,&F2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2{3/2,Eb5&}, 3/2{139/512,Eb5}{625/512,F5 Eb5 F5 Eb5 F5 Eb5 F5 Eb5 F5 Eb5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,Bb4&}, 3/2{139/512,Bb4}{625/512,Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4}1/128}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3 1/2{3/2,Gb4&}, 3/2{139/512,Gb4}{625/512,Ab4 Gb4 Ab4 Gb4 Ab4 Gb4 Ab4 Gb4 Ab4 Gb4}1/128}},_tempo(34/15) _vel(93) _chan(4){3,{Gb2 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&Eb5}}},_tempo(34/15) _vel(107) _chan(2){3,{{3,&Bb4}}},_tempo(34/15) _vel(93) _chan(3){3,{{3,&Gb4}}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{F5 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Cb5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Ab4 1/2{3/2,Cb4&}, 3/2{139/512,Cb4}{625/512,Db4 Cb4 Db4 Cb4 Db4 Cb4 Db4 Cb4 Db4 Cb4}1/128}},_tempo(34/15) _vel(93) _chan(4){3,{- 1/2{3/2,Ab2&}, 3/2{139/512,Ab2}{625/512,Bb2 Ab2 Bb2 Ab2 Bb2 Ab2 Bb2 Ab2 Bb2 Ab2}1/128}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{{3,&Cb4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3,&Ab2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2{3/2,G5&}, 3/2{139/512,G5}{625/512,A5 G5 A5 G5 A5 G5 A5 G5 A5 G5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,Db5&}, 3/2{139/512,Db5}{625/512,Eb5 Db5 Eb5 Db5 Eb5 Db5 Eb5 Db5 Eb5 Db5}1/128}},_tempo(34/15) _vel(93) _chan(3){3,{Db4 1/2{3/2,Bb4&}, 3/2{139/512,Bb4}{625/512,Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4 Cb5 Bb4}1/128}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,&G5}}},_tempo(34/15) _vel(107) _chan(2){3,{{3,&Db5}}},_tempo(34/15) _vel(93) _chan(3){3,{{3,&Bb4}}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{Ab5 1/2 3/2}},_tempo(34/15) _vel(107) _chan(2){3,{Eb5 1/2 Ab4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Cb5 1/2{Eb3,Cb4}1/2}},_tempo(34/15) _vel(93) _chan(4){3,{{3,Ab2},{435/1024,Ab2}{5/2,Bb2 Ab2 Bb2 Ab2 Bb2 Ab2 Bb2 Ab2 Bb2 Ab2 Bb2 Ab2 Bb2 Ab2 Bb2 Ab2 Bb2 Ab2 Bb2 Ab2}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Gb4 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{{Eb3,Bb3}1/2{D3,Bb3}1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 Bb2 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Eb4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{{Eb3,Bb3}{1/2,Eb3}G4{1/2,G4}}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,G3}Bb4{1/2,Bb4}}},_tempo(34/15) _vel(54) _chan(3){3,{G4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(107) _chan(1){3,{-{2,- D5 Eb5 Eb6&}}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Eb6&}},_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Eb6}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,-- Eb4}G5{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{3,D6}},_tempo(34/15) _vel(107) _chan(2){3,{G5{1/2,F5}F5{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{{1/2,E5}F5&{3/2,&F5}}},_tempo(34/15) _vel(107) _chan(2){3,{D5{1/2,Db5}C5{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(3){3,{-{2,- A3 Bb3 Ab4&}}},_tempo(34/15) _vel(112) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{F4{1/2,E4}Eb4{1/2,D4}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Ab4&}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,Db4}C6{1/2,Cb6}}},_tempo(34/15) _vel(107) _chan(2){3,{F5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Ab4}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5{1/2,Ab5}Ab5{1/2,G5}}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Bb3}Bb4{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(3){3,{3,G4}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{G5{1/2,F5}F5{1/2,Eb5}}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4{1/2,Ab4}Ab4{1/2,G4}}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,A3}Bb3&{3/2,&Bb3}}},_tempo(34/15) _vel(112) _chan(4){3,{-{2,- D3 Eb3 Eb4&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb5{1/2,Ab4}Ab4{1/2,G4}}},_tempo(34/15) _vel(107) _chan(2){3,{G4{1/2,F4}F4{1/2,Bb3}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb4&}}} {_tempo(34/15) _vel(93) _chan(1){3,{G4 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Bb3{1/2,G3}C5{1/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Eb3}G4{1/2,G4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb4}}} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,Bb4}Ab5{1/2,G5}}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{G4{1/2,F4}F4{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,D4}}} {_tempo(34/15) _vel(93) _chan(1){3,{Ab5 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{-{2,- A4 Bb4 Ab5&}}},_tempo(34/15) _vel(112) _chan(3){3,{D4{1/2,Db4}C4{1/2,Bb3}}},_tempo(34/15) _vel(93) _chan(4){3,{{1/2,E3}F3&{3/2,&F3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Ab4{1/2,G4}G4{1/2,F4}}},_tempo(34/15) _vel(107) _chan(2){3,{3,&Ab5&}},_tempo(34/15) _vel(93) _chan(3){3,{F4{1/2,Eb4}Eb4{1/2,D4}}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{F4{1/2,F4}F5{1/2,F5}}},_tempo(34/15) _vel(107) _chan(2){3,{3,&Ab5}},_tempo(34/15) _vel(93) _chan(3){3,{D4{1/2,F3}Eb3{1/2,D3}}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,D2}C4{1/2,Cb4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb5{1/2,Bb3}Bb4{1/2,Bb4}}},_tempo(34/15) _vel(107) _chan(2){3,{3,G5}},_tempo(34/15) _vel(93) _chan(3){3,{Eb3{1/2,F4}F4{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(4){3,{Bb3{1/2,Ab3}Ab3{1/2,G3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb4{2,- Db5 Eb5 Eb6&}}},_tempo(34/15) _vel(107) _chan(2){3,{{1/2,A4}Bb4&{3/2,&Bb4}}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3{1/2,Ab3}G3{1/2,G4}}},_tempo(34/15) _vel(93) _chan(4){3,{G3{1/2,F3}Eb3{1/2,Db3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Eb6}},_tempo(34/15) _vel(107) _chan(2){3,{A4{1/2,Bb4}Bb4{1/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{Eb4{1/2,Db4}Db4{1/2,C4}}},_tempo(34/15) _vel(93) _chan(4){3,{C3{1/2,Bb2}Bb2{1/2,A2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Db6{2,- D5 Eb5 Db6&}}},_tempo(34/15) _vel(107) _chan(2){3,{G4{1/2,C5}Bb4{1/2,Bb3}}},_tempo(34/15) _vel(93) _chan(3){3,{3,Eb5}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2{1/2,Ab2}Ab2{1/2,G2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Db6}},_tempo(34/15) _vel(107) _chan(2){3,{Bb3{1/2,Bb4}Ab4{1/2,G4}}},_tempo(34/15) _vel(93) _chan(3){3,{Db5{1/2,Ab3}Ab3{1/2,Bb3}}},_tempo(34/15) _vel(93) _chan(4){3,{G2{1/2,F2}Fb2{1/2,Eb2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{C6 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Ab4{2,- B4 C5 C6&}}},_tempo(34/15) _vel(93) _chan(3){3,{C4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb2{1/2,Db2}Db2{1/2,C2}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{3,&C6}},_tempo(34/15) _vel(93) _chan(3){3,{{Ab3,F4}{1/2,G4}G4{1/2,Ab4}}},_tempo(34/15) _vel(93) _chan(4){3,{C2{1/2,Bb3}Bb3{1/2,C4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,C5}},_tempo(34/15) _vel(107) _chan(2){3,{Bb5{2,- B4 C5 Bb5&}}},_tempo(34/15) _vel(93) _chan(3){3,{E4{1/2,F4}F4{1/2,G4}}},_tempo(34/15) _vel(93) _chan(4){3,{G3{1/2,Ab3}Ab3{1/2,Bb3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb4 1/2 -{1/2,Db6}}},_tempo(34/15) _vel(107) _chan(2){3,{3,&Bb5}},_tempo(34/15) _vel(93) _chan(3){3,{G4{1/2,Ab4}Ab4{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(4){3,{E2{1/2,F2}F2{1/2,G2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Db6{1/2,Eb6}Eb6{1/2,F6}}},_tempo(34/15) _vel(107) _chan(2){3,{Ab5{1/2,Gb4}Gb4{1/2,F4}}},_tempo(34/15) _vel(93) _chan(3){3,{F4{2,- G3 Ab3 Ab4&}}},_tempo(34/15) _vel(93) _chan(4){3,{F2{1/2,Eb2}Eb2{1/2,Db2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{F6{1/2,Eb6}Eb6{1/2,D6}}},_tempo(34/15) _vel(107) _chan(2){3,{F5{1/2,Gb5}Gb5{1/2,Ab5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Ab4}},_tempo(34/15) _vel(93) _chan(4){3,{D4{1/2,Eb4}Eb4{1/2,F4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6{1/2,Db6}Db6{1/2,C6}}},_tempo(34/15) _vel(107) _chan(2){3,{3,Ab5}},_tempo(34/15) _vel(93) _chan(3){3,{Gb4{2,- G3 Ab3 Gb4&}}},_tempo(34/15) _vel(93) _chan(4){3,{Eb4 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Ab5{1/2,Bb5}Bb5{1/2,C6}}},_tempo(34/15) _vel(107) _chan(2){3,{Gb5{1/2,Db5}{Bb4,Db5}{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Gb4}},_tempo(34/15) _vel(93) _chan(4){3,{3,Eb4}}} {_tempo(34/15) _vel(93) _chan(1){3,{C6{1/2,Bb5}C6{1/2,Db6}}},_tempo(34/15) _vel(107) _chan(2){3,{F5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,E4 F4 Db5&}{3/2,&Db5&}}},_tempo(34/15) _vel(93) _chan(4){3,{Db4{2,- Eb3 F3 F4&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Db6 1/2 3/2}},_tempo(34/15) _vel(107) _chan(2){3,{Bb5{1/2,C6}C6{1/2,Db6}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Db5}},_tempo(34/15) _vel(93) _chan(4){3,{3,&F4}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,B4 C5 C6&}{3/2,&C6&}}},_tempo(34/15) _vel(107) _chan(2){3,{A4{1/2,Bb4}Bb4{1/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{C5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb4{2,- E3 F3 Eb4&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&C6}},_tempo(34/15) _vel(107) _chan(2){3,{A4{1/2,Bb4}Bb4{1/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,F4}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb4}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5{1/2,Ab5}Ab5{1/2,G5}}},_tempo(34/15) _vel(107) _chan(2){3,{F5{1/2,Fb5}Eb5{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(3){3,{F4{1/2,Bb4}Bb4{1/2,Bb3}}},_tempo(34/15) _vel(93) _chan(4){3,{Db4{2,- D3 Eb3 Db4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Ab5{1/2,Ab6}Ab6{1/2,Ab6}}},_tempo(34/15) _vel(107) _chan(2){3,{Eb5{1/2,Db5}Db5{1/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{C4{1/2,Bb3}Bb3{1/2,Ab3}}},_tempo(34/15) _vel(93) _chan(4){3,{C4{2,- D3 Eb3 C4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Ab6{1/2,G6}G6{1/2,F6}}},_tempo(34/15) _vel(107) _chan(2){3,{Cb5{1/2,Bb4}Bb4{1/2,Ab4}}},_tempo(34/15) _vel(93) _chan(3){3,{F3{1/2,F3}F3{1/2,F3}}},_tempo(34/15) _vel(93) _chan(4){3,{D4{2,- D3 Eb3 D4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{G6 1/2 Ab6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4 1/2 C5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Eb3 1/2 Eb4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb4 1/2 Ab3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Ab6 1/2 G6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4 1/2{Bb4,G5}1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Eb4 1/2{Eb4,Eb5}1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb4 1/2 Eb3 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(112) _chan(4){3,{3,Ab2&}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{3,&Ab2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(107) _chan(3){3,{3,Eb4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,A2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{3,&Eb4}},_tempo(34/15) _vel(93) _chan(4){3,{Gb3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{3,Db5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,Db4}},_tempo(34/15) _vel(93) _chan(4){3,{3,Bb2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{3,&Db5}},_tempo(34/15) _vel(93) _chan(3){3,{Fb3 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{G3 1/2 - 1/2}}} {_tempo(34/15) _vel(107) _chan(1){3,{3,Ab5&}},_tempo(34/15) _vel(107) _chan(2){3,{3,C5}},_tempo(34/15) _vel(93) _chan(3){3,{3,C4}},_tempo(34/15) _vel(93) _chan(4){3,{3,C3}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Ab5}},_tempo(34/15) _vel(107) _chan(2){3,{Eb4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{C3{1/2,C4}Eb5{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(4){3,{Ab3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,A5}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,-- C4}Eb5{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(3){3,{Eb5{1/2,A3}Gb4{1/2,Gb4}}},_tempo(34/15) _vel(107) _chan(4){3,{3,F4&}}} {_tempo(34/15) _vel(93) _chan(1){3,{Gb6 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Eb5{1/2,Db5}Db5{1/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{Gb4{1/2,F4}F4{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,&F4}}} {_tempo(34/15) _vel(93) _chan(1){3,{A5{1/2,Bb5}Bb5{1/2,C6}}},_tempo(34/15) _vel(107) _chan(2){3,{C5{1/2,Gb5}Gb5{1/2,A4}}},_tempo(34/15) _vel(107) _chan(3){3,{3,F4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,Eb4}}} {_tempo(34/15) _vel(93) _chan(1){3,{C6{1/2,Db6}D6{1/2,Eb6}}},_tempo(34/15) _vel(107) _chan(2){3,{A4{1/2,Bb4}B4{1/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&F4}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{D6 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F4{1/2,D4}F5{1/2,F5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,Bb4&}},_tempo(34/15) _vel(107) _chan(4){3,{3,Bb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,-- D4}Cb6{1/2,Cb6}}},_tempo(34/15) _vel(107) _chan(2){3,{F5{1/2,F4}Ab5{1/2,Ab5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb4}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Bb2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Cb6{1/2,Bb5}Bb5{1/2,Ab5}}},_tempo(34/15) _vel(107) _chan(2){3,{3,Ab5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,Ab4}},_tempo(34/15) _vel(93) _chan(4){3,{3,Cb3}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5{1/2,Eb5}Eb5{1/2,D5}}},_tempo(34/15) _vel(107) _chan(2){3,{3,&Ab5}},_tempo(34/15) _vel(93) _chan(3){3,{Cb4{1/2,Gb4}Gb4{1/2,F4}}},_tempo(34/15) _vel(93) _chan(4){3,{Ab3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{G5{1/2,Ab5}Ab5{1/2,Bb5}}},_tempo(34/15) _vel(107) _chan(2){3,{3,G5}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3{1/2,Ab3}F3{1/2,G3}}},_tempo(34/15) _vel(107) _chan(4){3,{3,Eb4&}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5{1/2,Cb6}C6{1/2,Db6}}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4{1/2,F4}Eb4{1/2,G4}}},_tempo(34/15) _vel(93) _chan(3){3,{G4{1/2,Ab4}A4{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb4}}} {_tempo(34/15) _vel(93) _chan(1){3,{Db6 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Eb5{1/2,F5}F#5{1/2,G5}}},_tempo(34/15) _vel(107) _chan(3){3,{3,G3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,Db4}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Ab5{1/2,A5}A5{1/2,Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&G3}},_tempo(34/15) _vel(93) _chan(4){3,{Fb3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{A5{1/2,Bb5}B5{1/2,C6}}},_tempo(34/15) _vel(107) _chan(2){3,{3,Eb5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,A3}},_tempo(34/15) _vel(93) _chan(4){3,{3,C4}}} {_tempo(34/15) _vel(93) _chan(1){3,{C6{1/2,Db6}D6{1/2,Eb6}}},_tempo(34/15) _vel(107) _chan(2){3,{3,&Eb5}},_tempo(34/15) _vel(93) _chan(3){3,{Gb4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6{1/2,F6}F6{1/2,G6}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,Db5}{3/2,Eb4 --}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,Bb3}{3/2,G4 --}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,Bb3}{3/2,Db3 --}}}} {_tempo(34/15) _vel(93) _chan(1){3,{G6{1/2,Ab6}Bb6 1/2}},_tempo(34/15) _vel(93) _chan(2){3,{C5{1/2,Eb4}Ab4{1/2,C4}}},_tempo(34/15) _vel(93) _chan(3){3,{C4{1/2,Ab4}Eb4{1/2,C5}}},_tempo(34/15) _vel(93) _chan(4){3,{Ab3{1/2,C3}Eb3{1/2,Ab2}}}} {_tempo(34/15) _vel(107) _chan(1){3,{3,Ab6&}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,-- D4}Cb6{1/2,Cb6}}},_tempo(34/15) _vel(107) _chan(3){3,{{F3,Ab3}{1/2,Fb3}F3{1/2,D4}}},_tempo(34/15) _vel(107) _chan(4){3,{{3/2,D2 Eb2& &Eb2}- 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Ab6}},_tempo(34/15) _vel(107) _chan(2){3,{Cb6{1/2,D4}Cb6{1/2,Cb6}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,E4}F4{1/2,D5}}},_tempo(34/15) _vel(93) _chan(4){3,{3,-- Eb3& &Eb3 --}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Gb6}},_tempo(34/15) _vel(107) _chan(2){3,{A5{1/2,C4}Gb5{1/2,Gb5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,D4}Eb4{1/2,C5}}},_tempo(34/15) _vel(93) _chan(4){3,{3,-- Eb2& &Eb2 --}}} {_tempo(34/15) _vel(93) _chan(1){3,{A5 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Gb5{1/2,C4}Gb5{1/2,Gb5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,D3}Eb3{1/2,C4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,-- Eb3& &Eb3 --}}} {_tempo(34/15) _vel(107) _chan(1){3,{3,F6&}},_tempo(34/15) _vel(107) _chan(2){3,{Db5{1/2,A3}Db5{1/2,Db5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,F3}A3{1/2,F4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,-- Eb2& &Eb2 --}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&F6}},_tempo(34/15) _vel(107) _chan(2){3,{Db5{1/2,A3}Db5{1/2,Db5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,F4}A4{1/2,F5}}},_tempo(34/15) _vel(93) _chan(4){3,{-{2,Eb3& &Eb3 --}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Eb6}},_tempo(34/15) _vel(107) _chan(2){3,{C5{1/2,A3}C5{1/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,F3}Gb3{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(4){3,{-{2,Eb2& &Eb2 --}}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{C5{1/2,A4}{A4,C6}{1/2,A4,C6}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,F4}Gb4{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(4){3,{-{2,Eb3& &Eb3 --}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Db6&}},_tempo(34/15) _vel(107) _chan(2){3,{C6{1/2,Bb4}Bb5{1/2,Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,F3}G3{1/2,Db4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,-- Eb2& &Eb2 --}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Db6}},_tempo(34/15) _vel(107) _chan(2){3,{Bb5{1/2,G4}G5{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Eb4}E4{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(4){3,{-{2,Eb3& &Eb3 --}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,C6}},_tempo(34/15) _vel(107) _chan(2){3,{G5{1/2,Ab4}Ab5{1/2,Ab5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,D3}Eb3{1/2,C4}}},_tempo(34/15) _vel(93) _chan(4){3,{-{2,Eb2& &Eb2 --}}}} {_tempo(34/15) _vel(93) _chan(1){3,{D5 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Ab5{1/2,D4}F5{1/2,F5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Bb3}Cb4{1/2,Ab4}}},_tempo(34/15) _vel(93) _chan(4){3,{-{2,Eb3& &Eb3 --}}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Cb6&}},_tempo(34/15) _vel(107) _chan(2){3,{{1,F5}{1/2,D4,F4}D5{1/2,D5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,G3}Ab3{1/2,F4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,-- Eb3}F4{1/2,F4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,&Cb6}{3/2,D5 --}}},_tempo(34/15) _vel(107) _chan(2){3,{{1,D5}{1/2,D4,F4}Ab5{1/2,Ab5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Gb4}Ab4{1/2,D5}}},_tempo(34/15) _vel(93) _chan(4){3,{F4{1/2,Eb3}F4{1/2,F4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,Bb5}{3/2,Db5 --}}},_tempo(34/15) _vel(107) _chan(2){3,{D5{1/2,G3}Eb5{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,C4}Db4{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(4){3,{G4{1/2,Eb3}G4{1/2,G4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Ab5{1/2,C5}Eb5{1/2,Ab4}}},_tempo(34/15) _vel(107) _chan(2){3,{C5{1/2,Eb5}C6{1/2,C5 Bb4}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,G3}Ab3{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(4){3,{Ab4{1/2,Eb3}Ab4{1/2,Ab4}}}} {_tempo(34/15) _vel(93) _chan(1){2,{- D5}},_tempo(34/15) _vel(107) _chan(2){2,{2,Bb4 Ab4 C5 Bb4 Bb4 Ab4 Bb5 Ab5}},_tempo(34/15) _vel(93) _chan(3){2,{{1/2,C4,Eb4}1/2 F4}},_tempo(34/15) _vel(93) _chan(4){2,{{1,Ab2 -}-}}} {_tempo(34/15) _vel(93) _chan(1){2,{Eb5 Db6}},_tempo(34/15) _vel(107) _chan(2){2,{2,Ab5 G5 C6 Bb5 Bb5 Ab5 G5 F5}},_tempo(34/15) _vel(93) _chan(3){2,{Eb4 G3}},_tempo(34/15) _vel(93) _chan(4){2,{2,- Ab2 Ab4 Ab4 Ab4 Ab2 Ab4 Ab4}}} {_tempo(34/15) _vel(93) _chan(1){2,{C6 G5}},_tempo(34/15) _vel(93) _chan(2){2,{2,F5 Eb5 Ab5 C5 F5 Eb5 F5 Db5}},_tempo(34/15) _vel(93) _chan(3){2,{Ab3 Bb3}},_tempo(34/15) _vel(93) _chan(4){2,{{1,Ab4 -}-}}} {_tempo(34/15) _vel(93) _chan(1){2,{Ab5 Gb6}},_tempo(34/15) _vel(93) _chan(2){2,{2,Db5 C5 Bb4 Ab4 Ab4 Gb4 F4 Eb4}},_tempo(34/15) _vel(93) _chan(3){2,{Ab3 C3}},_tempo(34/15) _vel(93) _chan(4){2,{2,- C2 Eb3 Eb3 Eb3 C2 Eb3 Eb3}}} {_tempo(34/15) _vel(93) _chan(1){2,{F6 A5}},_tempo(34/15) _vel(107) _chan(2){2,{2,Eb4 Db4 C4 Db4 Gb5 F5 Gb5 Eb5}},_tempo(34/15) _vel(93) _chan(3){2,{Db3 C4}},_tempo(34/15) _vel(93) _chan(4){2,{{1,Db2 -}-}}} {_tempo(34/15) _vel(93) _chan(1){2,{Bb5 Ab6}},_tempo(34/15) _vel(107) _chan(2){2,{2,Eb5 Db5 C5 Bb4 Ab4 G4 Ab4 F4}},_tempo(34/15) _vel(93) _chan(3){2,{Bb3 D3}},_tempo(34/15) _vel(93) _chan(4){2,{2,- Db2 F3 F3 F3 D2 F3 F3}}} {_tempo(34/15) _vel(93) _chan(1){2,{G6 Bb5}},_tempo(34/15) _vel(107) _chan(2){2,{2,F4 Eb4 D4 Eb4 Bb4 Ab4 Bb4 G4}},_tempo(34/15) _vel(94) _chan(3){2,{Eb3 Db4}},_tempo(34/15) _vel(93) _chan(4){2,{{1,Eb2 -}-}}} {_tempo(34/15) _vel(93) _chan(1){2,{C6 Db6}},_tempo(34/15) _vel(107) _chan(2){2,{2,Ab4 G4 F4 Eb4 Eb5 Db5 C5 Bb4}},_tempo(34/15) _vel(93) _chan(3){2,{C4 G3}},_tempo(34/15) _vel(93) _chan(4){2,{2,- Eb2 Eb4 Eb4 Eb4 Eb2 Eb4 Eb4}}} {_tempo(34/15) _vel(98) _chan(1){2,{{1/2,C6}{3/2,C5 Bb4 Bb4 Ab4 Bb5 Ab5}}},_tempo(34/15) _vel(93) _chan(2){2,{{1,Db5 C5 Db5 Eb5}F5}},_tempo(34/15) _vel(93) _chan(3){2,{2,Ab4 Ab3 C5 C5 C5 F4 D3 D3}},_tempo(34/15) _vel(93) _chan(4){2,{{1,Eb4 -}D3}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Ab5 G5 C6 Bb5 Bb5 Ab5 G5 F5}},_tempo(34/15) _vel(93) _chan(2){2,{Eb5 G4}},_tempo(34/15) _vel(93) _chan(3){2,{2,G3 Bb3 Db5 Db5 Db5 Bb4 Bb3 Bb3}},_tempo(34/15) _vel(93) _chan(4){2,{Eb3 Db4}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,F5 Eb5 F6 Eb6 Db6 C6 Db6 Bb5}},_tempo(34/15) _vel(93) _chan(2){2,{Ab4 Bb5}},_tempo(34/15) _vel(93) _chan(3){2,{2,C4 C4 Eb5 Eb5 Eb5 G4 Eb3 Eb3}},_tempo(34/15) _vel(93) _chan(4){2,{C4 G3}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Db6 C6 Bb5 Ab5 Ab5 F5 Gb5 Eb5}},_tempo(34/15) _vel(93) _chan(2){2,{Ab5 C5}},_tempo(34/15) _vel(93) _chan(3){2,{2,Eb3 C3 Eb4 Eb4 Eb4 Eb5 Ab3 Ab3}},_tempo(34/15) _vel(93) _chan(4){2,{Ab3 Gb4}}} {_tempo(34/15) _vel(95) _chan(1){2,{2,Eb5 Db5 C5 Db5 Eb5 Db5 Eb5 C5}},_tempo(34/15) _vel(107) _chan(2){2,{Db5 C6}},_tempo(34/15) _vel(93) _chan(3){2,{2,Ab3 F3 F4 F4 F4 A4 F3 F3}},_tempo(34/15) _vel(93) _chan(4){2,{F4 A2}}} {_tempo(34/15) _vel(95) _chan(1){2,{2,Eb5 Db5 C5 Bb5 Bb5 Ab5 G5 F5}},_tempo(34/15) _vel(107) _chan(2){2,{Bb5 D5}},_tempo(34/15) _vel(93) _chan(3){2,{2,F3 D3 F4 F4 F4 Bb4 Bb3 Bb3}},_tempo(34/15) _vel(93) _chan(4){2,{Bb2 Ab3}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,F5 Eb5 D5 Eb5 F5 Eb5 F5 Db5}},_tempo(34/15) _vel(107) _chan(2){2,{Eb5 Db4}},_tempo(34/15) _vel(93) _chan(3){2,{2,Bb3 Db3 G4 G4 G4 Db5 G3 G3}},_tempo(34/15) _vel(93) _chan(4){2,{G3 Bb2}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,F5 Eb5 Db6 C6 C6 Bb5 C6 Ab5}},_tempo(34/15) _vel(107) _chan(2){2,{{1,Eb4}{Ab3,F4}}},_tempo(34/15) _vel(93) _chan(3){2,{2,G3 Ab3 C5 C5 C5 Ab4 F3 F3}},_tempo(34/15) _vel(93) _chan(4){2,{C3 Db3}}} {_tempo(34/15) _vel(93) _chan(1){2,{{1,Ab5 G5 Ab5 F5}{1,Eb5 Ab5}}},_tempo(34/15) _vel(107) _chan(2){2,{F5{1,Cb5 C5&}}},_tempo(34/15) _vel(93) _chan(3){2,{2,F3 Ab3 Cb5 Cb5 Cb5 Ab4 Ab3 Ab3}},_tempo(34/15) _vel(93) _chan(4){2,{D3 Eb3&}}} {_tempo(34/15) _vel(107) _chan(1){2,{2,C6 Eb6 Ab6 -}},_tempo(34/15) _vel(107) _chan(2){2,{{1/2,&C5}{1/2,C5&,Ab5&}{1/2,&C5,&Ab5}1/2}},_tempo(34/15) _vel(107) _chan(3){2,{{1/2,Ab3 Eb3}{1/4,Ab4,C5}{1/4,Ab4,C5}{1/2,Ab4,C5}1/2}},_tempo(34/15) _vel(107) _chan(4){2,{2,&Eb3 Eb3& &Eb3 -}}} {_tempo(34/15) _vel(93) _chan(1){2,{- Bb3&}},_tempo(34/15) _vel(93) _chan(2){2,{- G3&}},_tempo(34/15) _vel(93) _chan(3){2,{- Eb3&}},_tempo(34/15) _vel(95) _chan(4){2,{- Eb2&,-{115/512,Eb2}{3/4,F2 Eb2 F2 Eb2 F2 Eb2}1/512 3/128}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,&Bb3&}},_tempo(34/15) _vel(107) _chan(2){2,{2,&G3&}},_tempo(34/15) _vel(93) _chan(3){2,{2,&Eb3&}},_tempo(34/15) _vel(93) _chan(4){2,{2,Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){2,{&Bb3 -}},_tempo(34/15) _vel(107) _chan(2){2,{&G3 -}},_tempo(34/15) _vel(93) _chan(3){2,{&Eb3 -}},_tempo(34/15) _vel(93) _chan(4){2,{&Eb2 -}}} {_tempo(34/15) _vel(93) _chan(1) 2,_tempo(34/15) _vel(107) _chan(2) 2,_tempo(34/15) _vel(93) _chan(3) 2,_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1){2,{- Bb3&}},_tempo(34/15) _vel(107) _chan(2){2,{- G3&}},_tempo(34/15) _vel(93) _chan(3){2,{- Eb3&}},_tempo(34/15) _vel(93) _chan(4){2,{- Eb2&,-{115/512,Eb2}{3/4,F2 Eb2 F2 Eb2 F2 Eb2}1/512 3/128}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,&Bb3}},_tempo(34/15) _vel(107) _chan(2){2,{2,&G3&}},_tempo(34/15) _vel(93) _chan(3){2,{&Eb3 Db3}},_tempo(34/15) _vel(93) _chan(4){2,{2,Eb2}}} {_tempo(34/15) _vel(93) _chan(1){2,{C4 -}},_tempo(34/15) _vel(107) _chan(2){2,{&G3 -}},_tempo(34/15) _vel(93) _chan(3){2,{C3 -}},_tempo(34/15) _vel(93) _chan(4){2,{E2 -}}} {_tempo(34/15) _vel(93) _chan(1) 2,_tempo(34/15) _vel(107) _chan(2) 2,_tempo(34/15) _vel(93) _chan(3) 2,_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1){2,{- C4&}},_tempo(34/15) _vel(54) _chan(2){2,{- G3&}},_tempo(34/15) _vel(52) _chan(3){2,{- C3&}},_tempo(34/15) _vel(52) _chan(4){2,{- E2&}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,&C4&}},_tempo(34/15) _vel(107) _chan(2){2,{2,&G3&}},_tempo(34/15) _vel(93) _chan(3){2,{2,&C3&}},_tempo(34/15) _vel(93) _chan(4){2,{2,&E2&}}} {_tempo(34/15) _vel(93) _chan(1){2,{&C4 -}},_tempo(34/15) _vel(107) _chan(2){2,{&G3 -}},_tempo(34/15) _vel(93) _chan(3){2,{&C3 -}},_tempo(34/15) _vel(93) _chan(4){2,{&E2 -}}} {_tempo(34/15) _vel(93) _chan(1) 2,_tempo(34/15) _vel(107) _chan(2) 2,_tempo(34/15) _vel(93) _chan(3) 2,_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1){2,{- C4}},_tempo(34/15) _vel(54) _chan(2){2,{- A3&}},_tempo(34/15) _vel(54) _chan(3) 2,_tempo(34/15) _vel(54) _chan(4){2,{- F2&,-{115/512,F2}{3/4,Gb2 F2 Gb2 F2 Gb2 F2}1/512 3/128}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Db4&}},_tempo(34/15) _vel(107) _chan(2){2,{&A3 Bb3&}},_tempo(34/15) _vel(54) _chan(3){2,{- E3&}},_tempo(34/15) _vel(93) _chan(4){2,{2,F2}}} {_tempo(34/15) _vel(93) _chan(1){2,{&Db4 -}},_tempo(34/15) _vel(107) _chan(2){2,{{1/2,&Bb3}3/2}},_tempo(34/15) _vel(93) _chan(3){2,{&E3{1,F3 -}}},_tempo(34/15) _vel(93) _chan(4){2,{{1,F2 -}-}}} {_tempo(34/15) _vel(93) _chan(1) 2,_tempo(34/15) _vel(107) _chan(2) 2,_tempo(34/15) _vel(93) _chan(3) 2,_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(40) _chan(1){2,{- D4}},_tempo(34/15) _vel(107) _chan(2){2,{- B3&}},_tempo(34/15) _vel(40) _chan(3) 2,_tempo(34/15) _vel(38) _chan(4){2,{- F2&,-{115/512,F2}{3/4,G2 F2 G2 F2 G2 F2}1/512 3/128}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,Eb4&}},_tempo(34/15) _vel(107) _chan(2){2,{Bb3 C4&}},_tempo(34/15) _vel(38) _chan(3){2,{- F3&}},_tempo(34/15) _vel(93) _chan(4){2,{2,F2}}} {_tempo(34/15) _vel(93) _chan(1){2,{&Eb4 -}},_tempo(34/15) _vel(107) _chan(2){2,{&C4 -}},_tempo(34/15) _vel(93) _chan(3){2,{&F3{1,Gb3 -}}},_tempo(34/15) _vel(93) _chan(4){2,{{1,F2 -}-}}} {_tempo(34/15) _vel(93) _chan(1) 2,_tempo(34/15) _vel(107) _chan(2) 2,_tempo(34/15) _vel(93) _chan(3) 2,_tempo(34/15) _vel(93) _chan(4) 2} {_tempo(34/15) _vel(93) _chan(1){2,{- Eb4&}},_tempo(34/15) _vel(107) _chan(2){2,{- Cb4&}},_tempo(34/15) _vel(40) _chan(3) 2,_tempo(34/15) _vel(93) _chan(4){2,{- F2&,-{115/512,F2}{3/4,G2 F2 G2 F2 G2 F2}1/512 3/128}}} {_tempo(34/15) _vel(93) _chan(1){2,{2,&Eb4}},_tempo(34/15) _vel(107) _chan(2){2,{&Cb4 C4}},_tempo(34/15) _vel(93) _chan(3){2,{- Gb3}},_tempo(34/15) _vel(93) _chan(4){2,{2,F2}}} {_tempo(34/15) _vel(93) _chan(1){3,{D4 1/2{3/2,D4}}},_tempo(34/15) _vel(107) _chan(2){3,{Bb3 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{A3{1/2,Bb3}F3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2{1/2,Bb2}B2{1/2,Ab3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb4 1/2{3/2,Eb4}, 3/2{139/512,Eb4}{625/512,F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4}1/128}},_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{F3 1/2 F3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{G3{1/2,B2}C3{1/2,A3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{D4 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{3,- D5}},_tempo(34/15) _vel(93) _chan(3){3,{F3{1/2,Bb3}B3{1/2,Ab4}}},_tempo(34/15) _vel(93) _chan(4){3,{Bb3 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Eb5 1/2{3/2,Eb5}, 3/2{139/512,Eb5}{625/512,F5 Eb5 F5 Eb5 F5 Eb5 F5 Eb5 F5 Eb5}1/128}},_tempo(34/15) _vel(93) _chan(3){3,{G4{1/2,B3}C4{1/2,A4}}},_tempo(34/15) _vel(93) _chan(4){3,{F2 1/2 F2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,- D5}, 3/2{139/512,D5}{625/512,Eb5 D5 Eb5 D5 Eb5 D5 Eb5 D5 Eb5 D5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{D5{1/2,E4}F4{1/2,D5}}},_tempo(34/15) _vel(93) _chan(3){3,{Bb4 1/2 D4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 Bb3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{C5 1/2 E5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,B3}C4{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(3){3,{F4 1/2 Bb4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{A3 1/2 G3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5{1/2,G5}A5{1/2,F5}}},_tempo(34/15) _vel(107) _chan(2){3,{A4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{C4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{D5 1/2 F#5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,C#4}D4{1/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{D4 1/2 C5 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb3 1/2 A3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{G5{1/2,A5}Bb5{1/2,G5}}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{G4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{G3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{G5 1/2 F5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,Bb3}B3{1/2,G4}}},_tempo(34/15) _vel(93) _chan(4){3,{Eb3 1/2 D3 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Eb5{1/2,D5}C5{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,B3}C4{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(4){3,{C3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5 1/2 A5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F5{1/2,E4}F4{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(3){3,{D4 1/2 C4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 F2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5{1/2,C6}D6{1/2,Bb5}}},_tempo(34/15) _vel(107) _chan(2){3,{D5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{G6 1/2 F6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Bb4}B4{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{Eb4 1/2 D4 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6{1/2,D6}C6{1/2,G6}}},_tempo(34/15) _vel(107) _chan(2){3,{G5{1/2,F5}Eb5{1/2,C5}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,B4}C5{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(4){3,{C4 1/2 3/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5 1/2 A5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F4 1/2 Eb5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{D5 1/2 C5 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F4 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5 1/2 F4 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{D5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Bb4 1/2{3/2,D4}}},_tempo(34/15) _vel(93) _chan(4){3,{Bb3{1/2,Bb2}B2{1/2,Ab3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{F4 1/2 F4 1/2}},_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{Eb4 1/2{3/2,Eb4}, 3/2{139/512,Eb4}{625/512,F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4 F4 Eb4}1/128}},_tempo(34/15) _vel(93) _chan(4){3,{G3{1/2,B2}C3{1/2,A3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{F4 1/2{3/2,D6}}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Bb4}B4{1/2,Ab5}}},_tempo(34/15) _vel(93) _chan(3){3,{D4 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb3 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6 1/2{3/2,Eb6}}},_tempo(34/15) _vel(107) _chan(2){3,{G5{1/2,B4}C5{1/2,A5}}},_tempo(34/15) _vel(93) _chan(3){3,{F4 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{D6 1/2{3/2,D5}, 3/2{139/512,D5}{625/512,Eb5 D5 Eb5 D5 Eb5 D5 Eb5 D5 Eb5 D5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{Bb5{1/2,E4}F4{1/2,D5}}},_tempo(34/15) _vel(93) _chan(3){3,{F4 1/2 F3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 Bb2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{C5 1/2 E5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F5{1/2,B4}C5{1/2,Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{F3 1/2 Bb3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{A2 1/2 G2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5{1/2,G5}A5{1/2,F5}}},_tempo(34/15) _vel(107) _chan(2){3,{A5 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{C4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F2 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,C#4}D4{1/2,C5}}},_tempo(34/15) _vel(107) _chan(2){3,{D5 1/2 F#5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3 1/2 A3 1/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{Bb4 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{G5{1/2,A5}Bb5{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3){3,{G3 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{G6 1/2 F6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,Bb4}B4{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3){3,{G3 1/2 G3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb2 1/2 D2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6{1/2,D6}C6{1/2,G6}}},_tempo(34/15) _vel(107) _chan(2){3,{-{1/2,B4}C5{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3){3,{Eb4 1/2 G3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{C2 1/2 Eb2 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{F5 1/2 A5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{D4 1/2{C4,Eb4}1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F2 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Bb5{1/2,C6}D6{1/2,Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{{Bb3,D4}1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 Bb3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{G6 1/2 F6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{G5{1/2,Bb3}B3{1/2,G4}}},_tempo(34/15) _vel(93) _chan(3){3,{Bb4 1/2{G3,G4}1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb2 1/2 D2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6{1/2,D6}C6{1/2,G6}}},_tempo(34/15) _vel(107) _chan(2){3,{G4{1/2,B4}C5{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(3){3,{{G3,G4}1/2 G3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{C2 1/2 Eb3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{F5 1/2 A5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{D5 1/2 Eb5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3 1/2 C4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{F3 1/2 F2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5{1/2,A5}{3/2,Bb5&}}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4{1/2,A4}{3/2,Bb4&}}},_tempo(34/15) _vel(93) _chan(3){3,{{1/8,Ab4}{11/8,F4&}&F4{1/2,Ab4}}},_tempo(34/15) _vel(93) _chan(4){3,{{1/8,F4}{11/8,D4&}&D4{1/2,F4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Bb5{1/2,A5}{3/2,Bb5&}}},_tempo(34/15) _vel(107) _chan(2){3,{&Bb4{1/2,A4}{3/2,Bb4&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,F#4&}&F#4{1/2,G4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,D4&}&D4{1/2,Eb4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Bb5{1/2,A5}{3/2,Bb5&}}},_tempo(34/15) _vel(107) _chan(2){3,{&Bb4{1/2,A4}{3/2,Bb4&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,F4&}&F4{1/2,Ab4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,D4&}&D4{1/2,F4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Bb5{1/2,A5}{3/2,Bb5&}}},_tempo(34/15) _vel(107) _chan(2){3,{&Bb4{1/2,A4}{3/2,Bb4&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,F#4&}&F#4{1/2,G4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,D4&}&D4{1/2,Eb4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Bb5{1/2,A5}{3/2,Bb5&}}},_tempo(34/15) _vel(107) _chan(2){3,{&Bb4{1/2,A4}{3/2,Bb4&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,E4&}&E4{1/2,F4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,C#4&}&C#4{1/2,D4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Bb5{1/2,A5}{3/2,G5&}}},_tempo(34/15) _vel(107) _chan(2){3,{&Bb4{1/2,A4}G4{1/2,Bb4&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,G4}Bb4{1/2,C5}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,Eb4&}&Eb4{1/2,E4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&G5{1/2,G5}{3/2,F5&}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,&Bb4&}&Bb4{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(3){3,{C5{1/2,C#5}D5{1/2,D5&}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,F4&}&F4{1/2,F4&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&F5{1/2,F6}{3/2,Eb6}}},_tempo(34/15) _vel(107) _chan(2){3,{B4{1/2,C5&}&C5{1/2,F5}}},_tempo(34/15) _vel(93) _chan(3){3,{&D5{1/2,Eb5}Eb5{1/2,C5}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,&F4}G4{1/2,A4}}}} {_tempo(34/15) _vel(52) _chan(1){3,{{3/2,D6&}&D6{1/2,Bb5&}}},_tempo(34/15) _vel(52) _chan(2){3,{{1/8,F5}{11/8,Db5&}D5{1/2,F5}}},_tempo(34/15) _vel(52) _chan(3){3,{{1/8,Ab4}{11/8,F4&}&F4{1/2,Ab4}}},_tempo(34/15) _vel(52) _chan(4){3,{Bb5{1/2,A5}{3/2,Bb5&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,&Bb5&}&Bb5{1/2,Bb5}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,D5&}&D5{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,F#4&}&F#4{1/2,G4}}},_tempo(34/15) _vel(93) _chan(4){3,{&Bb5{1/2,A5}{3/2,Bb5&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,D6&}&D6{1/2,F6}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,D5&}&D5{1/2,F5}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,F4&}&F4{1/2,Ab4}}},_tempo(34/15) _vel(93) _chan(4){3,{&Bb5{1/2,A5}{3/2,Bb5&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,D6&}&D6{1/2,Eb6}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,D5&}&D5{1/2,Eb5}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,F#4&}&F#4{1/2,G4}}},_tempo(34/15) _vel(93) _chan(4){3,{&Bb5{1/2,A5}{3/2,Bb5&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,D6&}&D6{1/2,F6}}},_tempo(34/15) _vel(93) _chan(2){3,{D5{1/2,A5}{3/2,Bb5&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,F4&}&F4{1/2,D4}}},_tempo(34/15) _vel(93) _chan(4){3,{&Bb5{1/2,A5}{3/2,Bb5&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,Eb6&}&Eb6{1/2,E6}}},_tempo(34/15) _vel(107) _chan(2){3,{&Bb5{1/2,A5}{3/2,Bb5&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,G3&,G4&}{&G3,&G4}{1/2,Db3}}},_tempo(34/15) _vel(93) _chan(4){3,{&Bb5{1/2,A5}{3/2,G5&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,F6&}&F6{1/2,G6}}},_tempo(34/15) _vel(107) _chan(2){3,{&Bb5{1/2,Bb4}A4{1/2,Bb4&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,C3&}&C3{1/2,C4}}},_tempo(34/15) _vel(93) _chan(4){3,{&G5{1/2,G5}{3/2,F5&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,G6&}&G6{1/2,G6}}},_tempo(34/15) _vel(107) _chan(2){3,{&Bb4{1/2,A5}Bb5{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,C3&}&C3{1/2,C3}}},_tempo(34/15) _vel(93) _chan(4){3,{&F5{1/2,F5}{3/2,E5}}}} {_tempo(34/15) _vel(52) _chan(1){3,{F6 1/2 - 1/2}},_tempo(34/15) _vel(52) _chan(2){3,{A4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{F3 1/2 -{1/2,Eb3}}},_tempo(34/15) _vel(46) _chan(4){3,{F5{1/2,F2}{3/2,F#2&}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{{3/2,D3&}&D3{1/2,F3}}},_tempo(34/15) _vel(93) _chan(4){3,{&F#2{1/2,F#2}{3/2,G2&}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{{3/2,Eb3&}&Eb3{1/2,Gb3}}},_tempo(34/15) _vel(93) _chan(4){3,{&G2{1/2,Ab2}{3/2,A2&}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{{3/2,F3}G3{1/2,A3}}},_tempo(34/15) _vel(93) _chan(4){3,{&A2{1/2,Bb2}B2{1/2,C3}}}} {_tempo(34/15) _vel(38) _chan(1){3,{-{1/2,Eb5}{3/2,D5&}}},_tempo(34/15) _vel(40) _chan(2){3,{- 1/2 -{1/2,E4}}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3 1/2 -{1/2,G3}}},_tempo(34/15) _vel(93) _chan(4){3,{D3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{&D5{1/2,D5}{3/2,C5&}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,F4&}&F4{1/2,D4}}},_tempo(34/15) _vel(38) _chan(3){3,{Ab3 1/2 -{1/2,F3}}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{&C5{1/2,C5}{3/2,Bb4&}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,Eb4&}&Eb4{1/2,C#4}}},_tempo(34/15) _vel(93) _chan(3){3,{G3 1/2 -{1/2,E3}}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{&Bb4{1/2,Bb4}{3/2,A4}}},_tempo(34/15) _vel(107) _chan(2){3,{D4{1/2,Db4}C4{1/2,Gb4}}},_tempo(34/15) _vel(93) _chan(3){3,{F3 1/2 -{1/2,Eb3}}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{Bb4 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F4 1/2 -{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(3){3,{D3{1/2,Ab3}{3/2,G3&}}},_tempo(34/15) _vel(38) _chan(4){3,{ 3/2 -{1/2,A2}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{D4 1/2 -{1/2,Db4}}},_tempo(34/15) _vel(40) _chan(3){3,{&G3{1/2,G3}{3/2,F3&}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,Bb2&}&Bb2{1/2,G2}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{C4 1/2 -{1/2,C4}}},_tempo(34/15) _vel(93) _chan(3){3,{&F3{1/2,F3}{3/2,Eb3&}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,Ab2&}&Ab2{1/2,F#2}}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2){3,{Bb3 1/2 -{1/2,Ab3}}},_tempo(34/15) _vel(93) _chan(3){3,{&Eb3{1/2,Eb3}{3/2,D3}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,G2&}&G2{1/2,F2}}}} {_tempo(34/15) _vel(38) _chan(1){3,{- 1/2 -{1/2,Db5}}},_tempo(34/15) _vel(107) _chan(2){3,{G3{1/2,Eb4}{3/2,E4&}}},_tempo(34/15) _vel(93) _chan(3){3,{Eb3 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb2 1/2 -{1/2,G3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,C5&}&C5{1/2,Eb5}}},_tempo(34/15) _vel(107) _chan(2){3,{&E4{1/2,E4}{3/2,F4&}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{Ab3 1/2 -{1/2,A3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,D5&}&D5{1/2,F5}}},_tempo(34/15) _vel(107) _chan(2){3,{&F4{1/2,F#4}{3/2,G4&}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{Bb3 1/2 -{1/2,B3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,Eb5&}&Eb5{1/2,F5&}}},_tempo(34/15) _vel(107) _chan(2){3,{&G4{1/2,G4}{3/2,Ab4&}}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2 Bb3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{C4 1/2 -{1/2,D4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&F5{1/2,F5}Eb5{1/2,D5&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,&Ab4 G4&}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2 Eb3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb4 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{&D5{1/2,Db5}C5{1/2,Bb4}}},_tempo(34/15) _vel(107) _chan(2){3,{3,&G4&}},_tempo(34/15) _vel(93) _chan(3){3,{E3 1/2 Db4 1/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{3,A4&}},_tempo(34/15) _vel(107) _chan(2){3,{&G4{1/2,G4}F4{1/2,Eb4&}}},_tempo(34/15) _vel(93) _chan(3){3,{C4 1/2 C5 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{- 1/2 F2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&A4}},_tempo(34/15) _vel(107) _chan(2){3,{&Eb4{1/2,Eb4}D4{1/2,C4}}},_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{F#2 1/2 Eb3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{B4{1/2,Ab5}G5{1/2,F5&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,B3&}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2 G3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{D3 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{&F5{1/2,F5}Eb5{1/2,D5}}},_tempo(34/15) _vel(107) _chan(2){3,{3,&B3}},_tempo(34/15) _vel(93) _chan(3){3,{A#3 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{3,C5&}},_tempo(34/15) _vel(107) _chan(2){3,{C4{1/2,Bb4}A4{1/2,G4&}}},_tempo(34/15) _vel(93) _chan(3){3,{Eb4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{- 1/2 B2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&C5}},_tempo(34/15) _vel(107) _chan(2){3,{&G4{1/2,Gb4}F4{1/2,Eb4}}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2 C4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{C3 1/2 A3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{D5{1/2,Eb5}D5{1/2,C6}}},_tempo(34/15) _vel(107) _chan(2){3,{D4{1/2,C4}Bb3{1/2,A3&}}},_tempo(34/15) _vel(93) _chan(3){3,{F3 1/2 A4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb3 1/2 F#2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5{1/2,C6}Bb5{1/2,A5}}},_tempo(34/15) _vel(107) _chan(2){3,{&A3{1/2,G3&}&G3{1/2,F4&}}},_tempo(34/15) _vel(93) _chan(3){3,{D4 1/2 Bb4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{G3 1/2 D2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{G5{1/2,A5}G5{1/2,F5&}}},_tempo(34/15) _vel(107) _chan(2){3,{&F4{1/2,Eb4&}&Eb4{1/2,D4&}}},_tempo(34/15) _vel(93) _chan(3){3,{Eb3 1/2 G4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Eb4 1/2 B2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{&F5{1/2,Eb5}D5{1/2,C5&}}},_tempo(34/15) _vel(107) _chan(2){3,{&D4{1/2,G3}Bb3{1/2,A3}}},_tempo(34/15) _vel(93) _chan(3){3,{C4 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{C3 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{&C5{1/2,Bb4}{3/2,Bb5&}}},_tempo(34/15) _vel(38) _chan(2){3,{3,G3&,D4&}},_tempo(34/15) _vel(38) _chan(3){3,{3,Bb4}},_tempo(34/15) _vel(38) _chan(4){3,{3,G2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Bb5}},_tempo(34/15) _vel(107) _chan(2){3,{3,&G3,&D4}},_tempo(34/15) _vel(93) _chan(3){3,{3,G3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&G2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,B5}},_tempo(34/15) _vel(107) _chan(2){3,{3,Ab3,D4}},_tempo(34/15) _vel(93) _chan(3){3,{3,F3}},_tempo(34/15) _vel(93) _chan(4){3,{3,C2&}}} {_tempo(34/15) _vel(38) _chan(1){3,{3,Ab6}},_tempo(34/15) _vel(38) _chan(2){3,{3,F4}},_tempo(34/15) _vel(93) _chan(3){3,{3,D3,B3}},_tempo(34/15) _vel(38) _chan(4){3,{3,&C2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,G6}},_tempo(34/15) _vel(107) _chan(2){3,{3,C4,Eb4}},_tempo(34/15) _vel(93) _chan(3){3,{3,Eb3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&C2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,B5}},_tempo(34/15) _vel(107) _chan(2){3,{3,D4}},_tempo(34/15) _vel(93) _chan(3){3,{3,Ab3}},_tempo(34/15) _vel(93) _chan(4){3,{3,F2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,C6&}},_tempo(34/15) _vel(107) _chan(2){3,{3,C4}},_tempo(34/15) _vel(93) _chan(3){3,{3,A3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&F2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&C6&}},_tempo(34/15) _vel(107) _chan(2){3,{3,A4&}},_tempo(34/15) _vel(93) _chan(3){3,{3,C4}},_tempo(34/15) _vel(93) _chan(4){3,{3,&F2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&C6}},_tempo(34/15) _vel(107) _chan(2){3,{3,&A4}},_tempo(34/15) _vel(93) _chan(3){3,{3,E4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,E2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,A6&}},_tempo(34/15) _vel(107) _chan(2){3,{3,C5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&E4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&E2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&A6}},_tempo(34/15) _vel(107) _chan(2){3,{3,&C5}},_tempo(34/15) _vel(93) _chan(3){3,{3,&E4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&E2}}} {_tempo(34/15) _vel(93) _chan(1){3,{G#6 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{B4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{&E4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{3,E4&}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{3,&E4}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,A6&}},_tempo(34/15) _vel(107) _chan(2){3,{3,C5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,E4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,E2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&A6}},_tempo(34/15) _vel(107) _chan(2){3,{3,&C5}},_tempo(34/15) _vel(93) _chan(3){3,{3,&E4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&E2}}} {_tempo(34/15) _vel(93) _chan(1){3,{G#6 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{B4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{&E4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{3,E4&}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{3,&E4}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,A6&}},_tempo(34/15) _vel(107) _chan(2){3,{3,C5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,E4}},_tempo(34/15) _vel(93) _chan(4){3,{3,E2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&A6&}},_tempo(34/15) _vel(107) _chan(2){3,{3,&C5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,C4}},_tempo(34/15) _vel(93) _chan(4){3,{3,F2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&A6&}},_tempo(34/15) _vel(107) _chan(2){3,{3,&C5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,F3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,F4&}}} {_tempo(34/15) _vel(93) _chan(1){3,{&A6 1/2 A6 1/2}},_tempo(34/15) _vel(93) _chan(2){3,{&C5 1/2 C5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{&F3 1/2 F3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{&F4 1/2 F4 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2 Bb6 1/2}},_tempo(34/15) _vel(93) _chan(2){3,{- 1/2 D5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{- 1/2 Bb3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2 A5 1/2}},_tempo(34/15) _vel(93) _chan(2){3,{- 1/2 C6 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{- 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2 Bb5 1/2}},_tempo(34/15) _vel(93) _chan(2){3,{- 1/2 D6 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{- 1/2 Bb2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2 A4 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2 Gb4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2 Eb4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{- 1/2 F4 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb4 1/2 C5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F4 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{D4 1/2 A3 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb3 1/2 F3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{D5 1/2 A5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F4 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3 1/2 C4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 F2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5 1/2 D6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{F4 1/2{D5,Bb5}1/2}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3 1/2 F4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{D2 1/2 Bb3 1/2}}} {_tempo(34/15) _vel(52) _chan(1){3,{C6{1/2,B5}{3/2,C6&}}},_tempo(34/15) _vel(52) _chan(2){3,{{3/2,Eb5&}&Eb5{1/2,A4&}}},_tempo(34/15) _vel(52) _chan(3){3,{A4 1/2 -{1/2,F4}}},_tempo(34/15) _vel(52) _chan(4){3,{3,F4&}}} {_tempo(34/15) _vel(93) _chan(1){3,{&C6{1/2,B5}{3/2,C6&}}},_tempo(34/15) _vel(107) _chan(2){3,{&A4{1/2,Eb5}{3/2,A4&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,Gb4&}&Gb4{1/2,F4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,&F4&}}} {_tempo(34/15) _vel(93) _chan(1){3,{&C6{1/2,B5}{3/2,C6&}}},_tempo(34/15) _vel(107) _chan(2){3,{&A4{1/2,Eb5}{3/2,A4&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,Gb4&}&Gb4{1/2,F4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,&F4&}}} {_tempo(34/15) _vel(93) _chan(1){3,{&C6{1/2,D6}{3/2,Eb6&}}},_tempo(34/15) _vel(107) _chan(2){3,{&A4{1/2,B4}{3/2,C5&}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,Gb4&}&Gb4{1/2,G4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,&F4&}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,&Eb6&}&Eb6{1/2,D6}}},_tempo(34/15) _vel(93) _chan(2){3,{&C5{1/2,A5&}&A5{1/2,Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{A4{1/2,C5}C5{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(4){3,{&F4{1/2,F4}{3/2,Gb4&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,Eb6&}&Eb6{1/2,D6}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,A5&}&A5{1/2,Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,C5&}&C5{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(4){3,{&Gb4{1/2,F4}{3/2,Gb4&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,Eb6&}&Eb6{1/2,D6}}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,A5&}&A5{1/2,Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,C5&}&C5{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(4){3,{&Gb4{1/2,F4}{3/2,Gb4&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,Eb6&}&Eb6{1/2,F6}}},_tempo(34/15) _vel(107) _chan(2){3,{A5{1/2,Bb5}C5{1/2,D5}}},_tempo(34/15) _vel(93) _chan(3){3,{C5{1/2,Bb4}A4{1/2,D4}}},_tempo(34/15) _vel(93) _chan(4){3,{&Gb4{1/2,F4}Gb4{1/2,F4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,Gb6&}&Gb6{1/2,F6}}},_tempo(34/15) _vel(107) _chan(2){3,{A4{1/2,G#4}{3/2,A4&}}},_tempo(34/15) _vel(93) _chan(3){3,{Eb4{1/2,F4}{3/2,Eb4&}}},_tempo(34/15) _vel(93) _chan(4){3,{C4{1/2,B3}{3/2,C4&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,Gb6&}&Gb6{1/2,F6}}},_tempo(34/15) _vel(107) _chan(2){3,{&A4{1/2,G#4}{3/2,A4&}}},_tempo(34/15) _vel(93) _chan(3){3,{&Eb4{1/2,F4}{3/2,Eb4&}}},_tempo(34/15) _vel(93) _chan(4){3,{&C4{1/2,B3}{3/2,C4&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,Gb6&}&Gb6{1/2,F6}}},_tempo(34/15) _vel(107) _chan(2){3,{&A4{1/2,G#4}{3/2,A4&}}},_tempo(34/15) _vel(93) _chan(3){3,{&Eb4{1/2,F4}{3/2,Eb4&}}},_tempo(34/15) _vel(93) _chan(4){3,{&C4{1/2,B3}{3/2,C4&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6{1/2,D6}C6{1/2,B5}}},_tempo(34/15) _vel(107) _chan(2){3,{&A4{1/2,Bb4}C5{1/2,D5}}},_tempo(34/15) _vel(93) _chan(3){3,{&Eb4{1/2,F4}{3/2,F4&}}},_tempo(34/15) _vel(93) _chan(4){3,{&C4{1/2,D4}{3/2,Eb4&}}}} {_tempo(34/15) _vel(93) _chan(1){3,{B5{1/2,C6}{3/2,F5&}}},_tempo(34/15) _vel(93) _chan(2){3,{C5{1/2,Bb4}A4{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(3){3,{3,&F4}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,&Eb4&}&Eb4{1/2,D4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&F5{1/2,C6}{3/2,F5&}}},_tempo(34/15) _vel(107) _chan(2){3,{F4 1/2 Gb4{1/2,F4}}},_tempo(34/15) _vel(93) _chan(3){3,{C5{1/2,Bb4}A4{1/2,Bb4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,Eb4&}&Eb4{1/2,D4}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&F5{1/2,C5}{3/2,F4&}}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2 Gb5{1/2,F5}}},_tempo(34/15) _vel(93) _chan(3){3,{C4{1/2,Bb3}A3{1/2,Bb3}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,Eb3&}&Eb3{1/2,D3}}}} {_tempo(34/15) _vel(52) _chan(1){3,{&F4{1/2,C5}{3/2,F4&}}},_tempo(34/15) _vel(52) _chan(2){3,{- 1/2 G5{1/2,F5}}},_tempo(34/15) _vel(52) _chan(3){3,{C4{1/2,Bb3}A3{1/2,Bb3}}},_tempo(34/15) _vel(52) _chan(4){3,{{3/2,Eb3&}&Eb3{1/2,D3}}}} {_tempo(34/15) _vel(52) _chan(1){3,{&F4{1/2,Bb4}{3/2,Eb4&}}},_tempo(34/15) _vel(52) _chan(2){3,{- 1/2 Bb5{1/2,Ab5}}},_tempo(34/15) _vel(52) _chan(3){3,{Bb3{1/2,Ab3}G3{1/2,Ab3}}},_tempo(34/15) _vel(52) _chan(4){3,{{3/2,D3&}&D3{1/2,C3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Eb4{1/2,Ab4}{3/2,D4&}}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2 Ab5{1/2,G5}}},_tempo(34/15) _vel(93) _chan(3){3,{Ab3{1/2,G3}F3{1/2,G3}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,C3&}&C3{1/2,Bb2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&D4{1/2,G4}{3/2,C4&}}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2 G5{1/2,F5}}},_tempo(34/15) _vel(93) _chan(3){3,{G3{1/2,F3}Eb3{1/2,F3}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,Bb2&}&Bb2{1/2,Ab2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{&C4{1/2,F4}{3/2,Bb3&}}},_tempo(34/15) _vel(39) _chan(2){3,{- 1/2 F5{1/2,Eb5&}}},_tempo(34/15) _vel(93) _chan(3){3,{F3{1/2,Eb3}D3{1/2,Eb3&}}},_tempo(34/15) _vel(38) _chan(4){3,{{3/2,Ab2&}&Ab2{1/2,G2}}}} {_tempo(109/60) _vel(93) _chan(1){5,{{2,&Bb3}- 3/4 _tempo(136/109){1/4,D4}_tempo(108/109){1/2,F5}{1/2,- F5}}},_tempo(113/60) _vel(107) _chan(2){5,{{2,&Eb5}---}},_tempo(113/60) _vel(93) _chan(3){5,{{2,&Eb3}---}},_tempo(113/60) _vel(93) _chan(4){5,{{2,F2}---}}} {_tempo(34/15) _vel(93) _chan(1){4,{{1/2,F5}{1/2,- D4}{1/2,F5}{1/2,- F5}{1/2,F5}{1/2,- D4}{1/2,Ab5}{1/2,- Ab5}}},_tempo(34/15) _vel(107) _chan(2){4,{-{1,Bb3& &Bb3}-{1,Bb3& &Bb3}}},_tempo(34/15) _vel(107) _chan(3){4},_tempo(34/15) _vel(93) _chan(4){4}} {_tempo(17/10) _vel(93) _chan(1){6,{Ab5 - 4}},_tempo(34/15) _vel(107) _chan(2){6,{-- 4}},_tempo(34/15) _vel(93) _chan(3){6,{-- 4}},_tempo(34/15) _vel(93) _chan(4){6,{-- 4}}} {_tempo(11/5) _vel(38) _chan(1){2,{ 1/2{1,D5 C5 C5 Bb4}1/2}},_tempo(11/5) _vel(38) _chan(2){2,{- 1/2{1/2,F4 Eb4}}},_tempo(11/5) _vel(38) _chan(3){2,{- Bb3}},_tempo(11/5) _vel(93) _chan(4) 2} {_tempo(11/5) _vel(93) _chan(1){2,{ 1/2{3/2,F5 Eb5 Eb5 D5 Ab5 G5}}},_tempo(11/5) _vel(107) _chan(2){2,{{3/2,Eb4 D4 Ab4 G4 G4 F4}1/2}},_tempo(11/5) _vel(93) _chan(3){2,{Cb4 Ab4}},_tempo(11/5) _vel(93) _chan(4) 2} {_tempo(33/20) _vel(93) _chan(1){3/2,{{1/2,G5 F5}-}},_tempo(11/5) _vel(107) _chan(2){3/2,{ 1/2 -}},_tempo(11/5) _vel(93) _chan(3){3/2,{ 1/2 -}},_tempo(11/5) _vel(93) _chan(4){3/2,{ 1/2 -}}} {_tempo(34/15) _vel(93) _chan(1){3/2,{3/2,Bb4&}},_tempo(34/15) _vel(107) _chan(2){3/2,{3/2,Bb3&}},_tempo(34/15) _vel(107) _chan(3){3/2,{3/2,Bb3&}},_tempo(34/15) _vel(107) _chan(4){3/2,{3/2,Bb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Bb4&}},_tempo(34/15) _vel(107) _chan(2){3,{3,&Bb3&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Bb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Bb4&}},_tempo(34/15) _vel(107) _chan(2){3,{3,&Bb3&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Bb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Bb4 B4&}},_tempo(34/15) _vel(107) _chan(2){3,{3,&Bb3 B3&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb3 B3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Bb2 B2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&B4 Ab5&}},_tempo(34/15) _vel(107) _chan(2){3,{3,&B3 Ab4&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&B3 Ab4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&B2 Ab3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Ab5 G5&}},_tempo(34/15) _vel(107) _chan(2){3,{3,&Ab4 G4&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Ab4 G4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Ab3 G3&}}} {_tempo(34/15) _vel(98) _chan(1){3,{3,&G5 B4&}},_tempo(34/15) _vel(107) _chan(2){3,{3,&G4 B3&}},_tempo(34/15) _vel(95) _chan(3){3,{3,&G4 B3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&G3 B2&}}} {_tempo(34/15) _vel(98) _chan(1){3,{3,&B4 C5&}},_tempo(34/15) _vel(107) _chan(2){3,{3,&B3 C4&}},_tempo(34/15) _vel(95) _chan(3){3,{3,&B3 C4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&B2 C3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&C5 Bb5&}},_tempo(34/15) _vel(93) _chan(2){3,{3,&C4 Bb4&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&C4 Bb4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&C3 Bb3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Bb5 A5&}},_tempo(34/15) _vel(93) _chan(2){3,{3,&Bb4 A4&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Bb4 A4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Bb3 A3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&A5 F5&}},_tempo(34/15) _vel(93) _chan(2){3,{3,&A4 F4&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&A4 F3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&A3 F2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&F5 Eb6&}},_tempo(34/15) _vel(93) _chan(2){3,{3,&F4 Eb5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&F3 Eb4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&F2 Eb3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Eb6 D6&}},_tempo(34/15) _vel(93) _chan(2){3,{3,&Eb5 D5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Eb4 D4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb3 D3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&D6 G6&}},_tempo(34/15) _vel(93) _chan(2){3,{3,&D5 G5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&D4 G4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&D3 G3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&G6 F6&}},_tempo(34/15) _vel(93) _chan(2){3,{3,&G5 F5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&G4 F4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&G3 F3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&F6 Eb6&}},_tempo(34/15) _vel(93) _chan(2){3,{3,&F5 Eb5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&F4 Eb4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&F3 Eb3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Eb6 D6&}},_tempo(34/15) _vel(93) _chan(2){3,{3,&Eb5 D5&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&Eb4 D4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb3 D3&}}} {_tempo(34/15) _vel(93) _chan(1){3,{&D6 1/2 Db6 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{&D5 1/2 Db5 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{&D4 1/2 Db4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{&D3 1/2 Db3 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3,C6},{435/1024,C6}{5/2,D6 C6 D6 C6 D6 C6 D6 C6 D6 C6 D6 C6 D6 C6 D6 C6 D6 C6 D6 C6}1/1024 3/256 1/16}},_tempo(34/15) _vel(107) _chan(2){3,{{3,C5},{435/1024,C5}{5/2,D5 C5 D5 C5 D5 C5 D5 C5 D5 C5 D5 C5 D5 C5 D5 C5 D5 C5 D5 C5}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(3){3,{{3,C4},{435/1024,C4}{5/2,D4 C4 D4 C4 D4 C4 D4 C4 D4 C4 D4 C4 D4 C4 D4 C4 D4 C4 D4 C4}1/1024 3/256 1/16}},_tempo(34/15) _vel(93) _chan(4){3,{{3,C3},{435/1024,C3}{5/2,D3 C3 D3 C3 D3 C3 D3 C3 D3 C3 D3 C3 D3 C3 D3 C3 D3 C3 D3 C3}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4{1/2,Bb3}B3{1/2,Ab4}}},_tempo(34/15) _vel(93) _chan(3){3,{Bb3 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,B4}C5{1/2,A5}}},_tempo(34/15) _vel(107) _chan(2){3,{G4{1/2,B3}C4{1/2,A4}}},_tempo(34/15) _vel(93) _chan(3){3,{-{1/2,D3}Eb3{1/2,C4}}},_tempo(34/15) _vel(93) _chan(4){3,{- 1/2{3/2,F2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5{1/2,Bb4}B4{1/2,Ab5}}},_tempo(34/15) _vel(107) _chan(2){3,{Bb4 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{D3 1/2 - 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{G5{1/2,B4}C5{1/2,A5&}}},_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{- 1/2{3/2,F2&}}}} {_tempo(34/15) _vel(52) _chan(1){3,{3,&A5&}},_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3){3,{3,C4&}},_tempo(34/15) _vel(52) _chan(4){3,{3,&F2&}}} {_tempo(34/15) _vel(52) _chan(1){3,{3,&A5&}},_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(52) _chan(3){3,{3,&C4&}},_tempo(34/15) _vel(52) _chan(4){3,{3,&F2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&A5&}},_tempo(34/15) _vel(52) _chan(2){3,{3,F4&}},_tempo(34/15) _vel(93) _chan(3){3,{3,&C4&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&F2&}}} {_tempo(34/15) _vel(38) _chan(1){3,{3,&A5}},_tempo(34/15) _vel(38) _chan(2){3,{3,&F4}},_tempo(34/15) _vel(93) _chan(3){3,{3,&C4}},_tempo(34/15) _vel(38) _chan(4){3,{{3,&F2 Eb2&}, 3/2{139/512,Eb2}{625/512,F2 Eb2 F2 Eb2 F2 Eb2 F2 Eb2 F2 Eb2}1/128}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Bb5}},_tempo(34/15) _vel(107) _chan(2){3,{3,G4}},_tempo(34/15) _vel(93) _chan(3){3,{3,G3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Bb4}},_tempo(34/15) _vel(107) _chan(2){3,{3,G4}},_tempo(34/15) _vel(93) _chan(3){3,{3,Bb3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,B4}},_tempo(34/15) _vel(107) _chan(2){3,{3,F4}},_tempo(34/15) _vel(93) _chan(3){3,{3,Ab3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Ab5}},_tempo(34/15) _vel(107) _chan(2){3,{3,D4}},_tempo(34/15) _vel(93) _chan(3){3,{3,F3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,G5}},_tempo(34/15) _vel(107) _chan(2){3,{3,Eb4}},_tempo(34/15) _vel(93) _chan(3){3,{3,G3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,D4}},_tempo(34/15) _vel(107) _chan(2){3,{3,Cb5}},_tempo(34/15) _vel(93) _chan(3){3,{3,Ab3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Eb4}},_tempo(34/15) _vel(107) _chan(2){3,{3,Bb4}},_tempo(34/15) _vel(93) _chan(3){3,{3,G3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,Bb4&}},_tempo(34/15) _vel(107) _chan(2){3,{3,Ab3,D4}},_tempo(34/15) _vel(93) _chan(3){3,{3,F3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,&Bb4}},_tempo(34/15) _vel(107) _chan(2){3,{3,Eb4}},_tempo(34/15) _vel(93) _chan(3){3,{3,G3&}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,B4}},_tempo(34/15) _vel(107) _chan(2){3,{3,G4}},_tempo(34/15) _vel(93) _chan(3){3,{3,&G3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,C5}},_tempo(34/15) _vel(107) _chan(2){3,{3,Gb4}},_tempo(34/15) _vel(93) _chan(3){3,{3,Gb3}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Eb2}}} {_tempo(34/15) _vel(93) _chan(1){3,{3,A5&}},_tempo(34/15) _vel(107) _chan(2){3,{3,F4 Eb4}},_tempo(34/15) _vel(93) _chan(3){3,{3,F3 C4}},_tempo(34/15) _vel(93) _chan(4){3,{{3,F2&},{435/1024,F2}{5/2,G2 F2 G2 F2 G2 F2 G2 F2 G2 F2 G2 F2 G2 F2 G2 F2 G2 F2 G2 F2}1/1024 3/256 1/16}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,&A5}Bb5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,C5}Bb4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,Eb4}D4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{&F2{1/2,E2 F2}Bb2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2{3/2,F5&}, 3/2{139/512,F5}{625/512,G5 F5 G5 F5 G5 F5 G5 F5 G5 F5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,C4&}, 3/2{139/512,C4}{625/512,D4 C4 D4 C4 D4 C4 D4 C4 D4 C4}1/128}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2{3/2,A3&}, 3/2{139/512,A3}{625/512,Bb3 A3 Bb3 A3 Bb3 A3 Bb3 A3 Bb3 A3}1/128}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{&F5{1/2,E5 F5}D5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{&C4{1/2,Bb3 C4}D4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{&A3{1/2,G3 A3}Bb3 1/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2{3/2,A5&}}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,C5&}}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2{3/2,Eb4&}}},_tempo(34/15) _vel(93) _chan(4){3,{- 1/2{3/2,F2&}, 3/2{139/512,F2}{625/512,G2 F2 G2 F2 G2 F2 G2 F2 G2 F2}1/128}}} {_tempo(34/15) _vel(93) _chan(1){3,{{3/2,&A5}Bb5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{{3/2,&C5}Bb4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{{3/2,&Eb4}D4 1/2}},_tempo(34/15) _vel(93) _chan(4){3,{&F2{1/2,E2 F2}Bb2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{- 1/2{3/2,F5&}, 3/2{139/512,F5}{625/512,G5 F5 G5 F5 G5 F5 G5 F5 G5 F5}1/128}},_tempo(34/15) _vel(107) _chan(2){3,{- 1/2{3/2,C4&}, 3/2{139/512,C4}{625/512,D4 C4 D4 C4 D4 C4 D4 C4 D4 C4}1/128}},_tempo(34/15) _vel(93) _chan(3){3,{- 1/2{3/2,A3&}, 3/2{139/512,A3}{625/512,Bb3 A3 Bb3 A3 Bb3 A3 Bb3 A3 Bb3 A3}1/128}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{&F5{1/2,E5 F5}D5 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{&C4{1/2,Bb3 C4}D4 1/2}},_tempo(34/15) _vel(93) _chan(3){3,{&A3{1/2,G3 A3}Bb3 1/2}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{- 1/2{3/2,A2&}, 3/2{139/512,A2}{625/512,Bb2 A2 Bb2 A2 Bb2 A2 Bb2 A2 Bb2 A2}1/128}}} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{&A2{1/2,G2 A2}Bb2 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{F4{1/2,E4 F4}D4 1/2,{115/512,F4}{3/4,G4 F4 G4 F4 G4 F4}1/512 3/128 --}},_tempo(34/15) _vel(107) _chan(2){3,{A3{1/2,G3 A3}Bb3 1/2,{115/512,A3}{3/4,Bb3 A3 Bb3 A3 Bb3 A3}1/512 3/128 --}},_tempo(34/15) _vel(93) _chan(3){3,{C4{1/2,Bb3 C4}F3 1/2,{115/512,C4}{3/4,D4 C4 D4 C4 D4 C4}1/512 3/128 --}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(52) _chan(4){3,{A2{1/2,G2 A2}Bb2 1/2,{115/512,A2}{3/4,Bb2 A2 Bb2 A2 Bb2 A2}1/512 3/128 --}}} {_tempo(34/15) _vel(93) _chan(1){3,{F4{1/2,E4 F4}D4 1/2,{115/512,F4}{3/4,G4 F4 G4 F4 G4 F4}1/512 3/128 --}},_tempo(34/15) _vel(52) _chan(2){3,{A3{1/2,G3 A3}Bb3 1/2,{115/512,A3}{3/4,Bb3 A3 Bb3 A3 Bb3 A3}1/512 3/128 --}},_tempo(34/15) _vel(54) _chan(3){3,{C4{1/2,Bb3 C4}F3 1/2,{115/512,C4}{3/4,D4 C4 D4 C4 D4 C4}1/512 3/128 --}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1) 3,_tempo(34/15) _vel(107) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(93) _chan(4){3,{A2{1/2,G2 A2}Bb2 1/2,{115/512,A2}{3/4,Bb2 A2 Bb2 A2 Bb2 A2}1/512 3/128 --}}} {_tempo(34/15) _vel(93) _chan(1){3,{F4{1/2,E4 F4}D4 1/2,{115/512,F4}{3/4,G4 F4 G4 F4 G4 F4}1/512 3/128 --}},_tempo(34/15) _vel(107) _chan(2){3,{A3{1/2,G3 A3}Bb3 1/2,{115/512,A3}{3/4,Bb3 A3 Bb3 A3 Bb3 A3}1/512 3/128 --}},_tempo(34/15) _vel(93) _chan(3){3,{C4{1/2,Bb3 C4}F3 1/2,{115/512,C4}{3/4,D4 C4 D4 C4 D4 C4}1/512 3/128 --}},_tempo(34/15) _vel(93) _chan(4) 3} {_tempo(34/15) _vel(93) _chan(1){3,{C4{1/2,Bb3 C4}Bb3 1/2,{115/512,C4}{3/4,D4 C4 D4 C4 D4 C4}1/512 3/128 --}},_tempo(34/15) _vel(40) _chan(2) 3,_tempo(34/15) _vel(93) _chan(3) 3,_tempo(34/15) _vel(38) _chan(4){3,{A2{1/2,G2 A2}Bb2 1/2,{115/512,A2}{3/4,Bb2 A2 Bb2 A2 Bb2 A2}1/512 3/128 --}}} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,D5}F6{1/2,F6&}}},_tempo(34/15) _vel(107) _chan(2){3,{A3{1/2,G3 A3}{3/2,Ab3 Bb3 Bb3},{115/512,A3}{3/4,Bb3 A3 Bb3 A3 Bb3 A3}1/512 3/128 --}},_tempo(34/15) _vel(93) _chan(3){3,{C4{1/2,Bb3 C4}{1/2,F3,D4}{1/2,F3,Ab3}{1/2,F3,Ab3},{115/512,C4}{3/4,D4 C4 D4 C4 D4 C4}1/512 3/128 --}},_tempo(34/15) _vel(93) _chan(4){3,{3,- Bb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{&F6{1/2,D5}F6{1/2,F6&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,Bb3&}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,F3,Ab3}{1/2,F3,Ab3}{1/2,F3,Ab3}{1/2,F3,Ab3}{1/2,F3,Ab3}{1/2,F3,Ab3}}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Bb2&}}} {_tempo(34/15) _vel(93) _chan(1){3,{&F6{1/2,D5}Ab6{1/2,Ab6&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,&Bb3}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,F3,Ab3}{1/2,F3,Ab3}{1/2,F3,Ab3}{1/2,F3,D4}{1/2,F3,D4}{1/2,F3,D4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,&Bb2}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Ab6{1/2,G6&}&G6{1/2,F6&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,Cb4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,F3,D4}{1/2,F3,D4}{1/2,F3,D4}{1/2,F3,D4}{1/2,F3,D4}{1/2,F3,D4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,B2}}} {_tempo(34/15) _vel(93) _chan(1){3,{&F6{1/2,Eb6&}&Eb6{1/2,D6}}},_tempo(34/15) _vel(107) _chan(2){3,{3,Ab4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,F3,B3}{1/2,F3,B3}{1/2,F3,B3}{1/2,F3,B3}{1/2,F3,B3}{1/2,F3,B3}}},_tempo(34/15) _vel(93) _chan(4){3,{3,Ab3}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6{1/2,Eb5}Eb6{1/2,Eb6&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,G4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,Eb3,C4}{1/2,Eb3,G3}{1/2,Eb3,G3}{1/2,Eb3,G3}{1/2,Eb3,G3}{1/2,Eb3,G3}}},_tempo(34/15) _vel(93) _chan(4){3,{3,G3}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Eb6{1/2,Eb5}G6{1/2,G6&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,B3}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,Eb3,G3}{1/2,Eb3,G3}{1/2,Eb3,G3}{1/2,Eb3,G3}{1/2,Eb3,G3}{1/2,Eb3,G3}}},_tempo(34/15) _vel(93) _chan(4){3,{3,B2}}} {_tempo(34/15) _vel(93) _chan(1){3,{&G6{1/2,F6&}&F6{1/2,Eb6&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,C4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,Eb3,G3}{1/2,Eb3,C4}{1/2,Eb3,C4}{1/2,Eb3,C4}{1/2,Eb3,C4}{1/2,Eb3,C4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,C3}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Eb6{1/2,D6&}&D6{1/2,C6}}},_tempo(34/15) _vel(107) _chan(2){3,{3,A4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,A3}}} {_tempo(34/15) _vel(93) _chan(1){3,{Eb6{1/2,D6&}&D6{1/2,Eb6&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,Bb4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,F3,D4}{1/2,F3,D4}{1/2,F3,D4}{1/2,F3,D4}{1/2,F3,D4}{1/2,F3,D4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,Bb3}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Eb6{1/2,D6&}&D6{1/2,C6&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,F#4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,A3,D4}{1/2,A3,D4}{1/2,A3,D4}{1/2,A3,D4}{1/2,A3,D4}{1/2,A3,D4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,F#3}}} {_tempo(34/15) _vel(93) _chan(1){3,{&C6{1/2,Bb5&}&Bb5{1/2,C6&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,G4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,Bb3,D4}{1/2,Bb3,D4}{1/2,Bb3,D4}{1/2,Bb3,D4}{1/2,Bb3,D4}{1/2,Bb3,D4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,G3}}} {_tempo(34/15) _vel(93) _chan(1){3,{&C6{1/2,Bb5&}&Bb5{1/2,Ab5&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,D4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,Bb3,F4}{1/2,Bb3,F4}{1/2,Bb3,F4}{1/2,Bb3,F4}{1/2,Bb3,F4}{1/2,Bb3,F4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,D3}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Ab5{1/2,G5&}&G5{1/2,Ab5&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,Eb4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,Bb3,G4}{1/2,Eb3,G3}{1/2,Eb3,G3}{1/2,Eb3,G3}{1/2,Eb3,G3}{1/2,Eb3,G3}}},_tempo(34/15) _vel(93) _chan(4){3,{3,Eb3}}} {_tempo(34/15) _vel(93) _chan(1){3,{&Ab5{1/2,G5&}&G5{1/2,F5&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,B3}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,D3,G3}{1/2,G3,D4}{1/2,G3,D4}{1/2,G3,D4}{1/2,G3,D4}{1/2,G3,D4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,B2}}} {_tempo(34/15) _vel(93) _chan(1){3,{&F5{1/2,Eb5}G5{1/2,F5&}}},_tempo(34/15) _vel(107) _chan(2){3,{3,C4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,G3,Eb4}{1/2,G3,Eb4}{1/2,G3,Eb4}{1/2,G3,Eb4}{1/2,G3,Eb4}{1/2,G3,Eb4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,C3}}} {_tempo(34/15) _vel(93) _chan(1){3,{&F5{1/2,Eb5}D5{1/2,C5}}},_tempo(34/15) _vel(107) _chan(2){3,{3,F4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,A3,Eb4}{1/2,A3,Eb4}{1/2,A3,Eb4}{1/2,A3,Eb4}{1/2,A3,Eb4}{1/2,A3,Eb4}}},_tempo(34/15) _vel(93) _chan(4){3,{3,F3}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb4{1/2,F4}D5{1/2,D5}}},_tempo(34/15) _vel(93) _chan(2){3,{3,F4 F4 F4 F4 F4 Bb4}},_tempo(34/15) _vel(98) _chan(3){3,{{1/2,Bb3,D4}{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}}},_tempo(34/15) _vel(94) _chan(4){3,{F3{1/2,D2}F3{1/2,F3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{C5{1/2,C5}A5{1/2,A5}}},_tempo(34/15) _vel(107) _chan(2){3,{3,C5 F4 F4 F4 F4 C5}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,F3,A3}{1/2,F3,A3}{1/2,F3,A3}{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}}},_tempo(34/15) _vel(93) _chan(4){3,{F3{1/2,Eb2}F3{1/2,F3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{Bb5{1/2,F5}D6{1/2,D6}}},_tempo(34/15) _vel(107) _chan(2){3,{3,Bb4 F4 F4 F4 F4 Bb4}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}}},_tempo(34/15) _vel(93) _chan(4){3,{F3{1/2,D2}F3{1/2,F3}}}} {_tempo(34/15) _vel(93) _chan(1){3,{C6{1/2,A4}F6{1/2,F6}}},_tempo(34/15) _vel(107) _chan(2){3,{3,C5 F4 F4 F4 F4 C5}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,F3,A3}{1/2,F3,A3}{1/2,F3,A3}{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}}},_tempo(34/15) _vel(93) _chan(4){3,{F3{1/2,F3}F2{1/2,F2}}}} {_tempo(34/15) _vel(107) _chan(1){3,{F6 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{{F4,D5}{1/2,D5}Bb5{1/2,Bb5}}},_tempo(34/15) _vel(107) _chan(3){3,{{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}}},_tempo(34/15) _vel(107) _chan(4){3,{Bb2 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,A4}F6{1/2,F6}}},_tempo(34/15) _vel(107) _chan(2){3,{{1/2,F4,C5}{1/2,F4,C5}{1/2,F4,C5}{1/2,F4,A4}{1/2,F4,A4}{1/2,F4,A4}}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}}},_tempo(34/15) _vel(93) _chan(4){3,{{3/2,-- F4}F2{1/2,F2}}}} {_tempo(34/15) _vel(93) _chan(1){3,{F6 1/2 - 1/2}},_tempo(34/15) _vel(107) _chan(2){3,{{F4,D5}{1/2,D5}Bb5{1/2,Bb5}}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}{1/2,F3,Bb3}}},_tempo(34/15) _vel(93) _chan(4){3,{Bb2 1/2 - 1/2}}} {_tempo(34/15) _vel(93) _chan(1){3,{-{1/2,A4}F6{1/2,F6}}},_tempo(34/15) _vel(107) _chan(2){3,{{1/2,F4,C5}{1/2,F4,C5}{1/2,F4,C5}{1/2,F4,A4}{1/2,F4,A4}{1/2,F4,A4}}},_tempo(34/15) _vel(93) _chan(3){3,{{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}{1/2,F3,C4}}},_tempo(34/15) _vel(93) _chan(4){3,{-{1/2,F4}F2{1/2,F2}}}} {_tempo(109/60) _vel(93) _chan(1){4,{{D4,D5,Bb5}1/2 -- 1/2}},_tempo(109/60) _vel(107) _chan(2){4,{{Bb3,F4,Bb4}1/2 -- 1/2}},_tempo(109/60) _vel(93) _chan(3){4,{{F3,Bb3}1/2 -- 1/2}},_tempo(109/60) _vel(93) _chan(4){4,{Bb2 1/2 -- 1/2}}}

Another emblem­at­ic exam­ple of com­plex struc­ture is La Campanella, orig­i­nal­ly com­posed by Paganini for the vio­lin and tran­scribed for piano by Franz Liszt:

La Campanella — Liszt's piano ver­sion inter­pret­ed by the Bol Processor with the Pianoteq physical-model syn­the­sis­er
Source: MusicXML score by Heavilon in the MuseScore com­mu­ni­ty

The Bol Processor score of this piece (a sin­gle poly­met­ric expres­sion) con­sists of only 37268 bytes. Dynamics are inter­pret­ed as veloc­i­ties :

_rndtime(20){_tempo(97/60) _vel(52) _chan(1){3, 2 {1/2,D#6,D#7}{1/2,D#6,D#7}, 1/2 {1/2, _switchon(64,1) D#4,D#5}{1/2,D#4,D#5}{1/2,D#4,D#5} 1}} [—2—] {_tempo(97/60) _vel(52) _chan(1){3,{1/2,D#6,D#7} 3/2 {1/2,D#6,D#7}{1/2,D#6,D#7}, 1/2 {1/2, _switchoff(64,1) _switchon(64,1) D#4,D#5}{1/2,D#4,D#5}{1/2,D#4,D#5} 1}} [—3—] {_tempo(16/15) _vel(52) _chan(1){25/8,{1/2,D#6,D#7} 1/2 _tempo(11/8){1/2,D#6,D#7}_tempo(41/32){1/2,D#6,D#7} 1/2 {1/2,D#6,D#7}1/8,1/2 _tempo(11/8) 1/8 {3/8, _switchoff(64,1) _switchon(64,1) D#4,D#5}1/2 _tempo(41/32) 1/8 3/8 _tempo(79/64) 1/8 {1/2, _switchoff(64,1) _switchon(64,1) D#4,D#5} 1/2}} [—4—] {_tempo(47/30) _vel(52) _chan(1){7/2,{1/2,D#6,D#7} ---,1/2 - 1/2 - 1/2}} [—5—] {_tempo(97/60) _vel(63) _chan(1){2,{2,D#5 D#6 D#6 D#7 D#6 D#7 C#6 D#7},{2,D#5 D#6 D#6 C#6},1/2 3/2}} [—6—] {_tempo(97/60) _vel(52) _chan(1){3,{3,B5 D#7 B5 D#7 A#5 D#7 G#5 D#7 G5 D#7 G#5 D#7},{3,B5 B5 A#5 G#5 G5 G#5},{3/20, _switchon(64,1) G#3& D#4& B4&}{7/20,&G#3,&D#4,&B4}{1, _switchoff(64,1) --}{3/20, _switchon(64,1) B3& G#4& D#5&}{7/20,&B3,&G#4,&D#5}{1, _switchoff(64,1) --}}} [—7—] {_tempo(97/60) _vel(52) _chan(1){3,{3,A#5 D#7 D#5 D#7 D#5 D#6 E5 D#6 D#5 D#6 C#5 D#6},{3,A#5 D#5 D#5 E5 D#5 C#5},{3/20, _switchon(64,1) D#4& A#4& G5&}{7/20,&D#4,&A#4,&G5} - {1/10, _switchoff(64,1) G4& A#4&}{2/5,&G4,&A#4} 1}} [—8—] {_tempo(97/60) _vel(52) _chan(1){3,{3,B4 D#6 B4 D#6 A#4 D#6 G#4 D#6 G4 D#6 G#4 D#6},{3,B4 B4 A#4 G#4 G4 G#4},{3/2,G#4 --}{3/20,B3& D4& E#4&}{7/20,&B3,&D4,&E#4} 1}} [—9—] {_tempo(97/60) _vel(52) _chan(1){3,{3,A#4 D#6 D#4 D#5 D#5 D#6 D#6 D#7 D#6 D#7 C#6 D#7},{3,A#4 D#4 D#5 D#6 D#6 C#6},{1/2,D#4,G4} 1/2 --}} [—10—] {_tempo(97/60) _vel(52) _chan(1){3,{3,B5 D#7 B5 D#7 A#5 D#7 G#5 D#7 G5 D#7 G#5 D#7},{3,B5 B5 A#5 G#5 G5 G#5},{3/20, _switchon(64,1) G#3& D#4& B4&}{7/20,&G#3,&D#4,&B4}{1, _switchoff(64,1) --}{3/20, _switchon(64,1) B3& G#4& D#5&}{7/20,&B3,&G#4,&D#5}{1, _switchoff(64,1) --}}} [—11—] {_tempo(97/60) _vel(52) _chan(1){3,{3,A#5 D#7 D#5 D#7 D#5 D#6 E5 D#6 D#5 D#6 C#5 D#6},{3,A#5 D#5 D#5 E5 D#5 D#5},{3/20, _switchon(64,1) D#4& A#4& G5&}{7/20,&D#4,&A#4,&G5} - {1/10, _switchoff(64,1) G4& A#4&}{2/5,&G4,&A#4} 1}} [—12—] {_tempo(33/20) _vel(52) _chan(1){3,{1/2,D#5}{1,G#5 B5 D#6 D#7}{1/2,D#5}{1,G5 A#5 D#6 D#7},{1/4,D#5}{1/4,D#6}{1,- D#6}{1/2,D#5 D#6}{1,- D#6},{1/2,G#4,B4} - {1/2,D#4,G4,C#5} 1}} [—13—] {_tempo(79/60) _vel(52) _chan(1){25/8, 1 {1/2,D#5 D#6}_tempo(94/79){1/2,D#7 D#6}_tempo(88/79){1/2,D#7 D#6}_tempo(82/79){1/4,D#7}{1/4,C#6}1/8,{1, _switchon(64,1) G#3 D#4 B4 G#5}1/2 _tempo(94/79){1/8, _switchoff(64,1) -}3/8 _tempo(88/79) 1/2 _tempo(82/79) 1/8 1/8 3/8}} [—14—] {_tempo(33/20) _vel(60) _chan(1){3,_tempo(85/99) _tempo(85/99){1/8, _legato(20) C#6}{1/8, _legato(0) B5}_tempo(94/99){1/4,D#7}{1,B5 D#7 A#5 D#7}{1/8, _legato(20) A#5}{1/8, _legato(0) G#5}{1,D#7 G5 D#7 G#5}_tempo(79/99){1/4,D#7},_tempo(85/99){1/2,B5}_tempo(94/99){1/2,B5}{1/2,A#5}{3/2,G#5 G5 G#5},_tempo(85/99){1/2, _switchon(64,1) G#2}{1/2, _switchoff(64,1) D#3,B3} 1/2 {1/2, _switchon(64,1) B2}{1/2, _switchoff(64,1) G#3,D#4} 1/2}} [—15—] {_tempo(33/20) _vel(52) _chan(1){3,_tempo(85/99) _tempo(85/99){1/8, _legato(20) G5 G#5}{1/8, _legato(0) A#5}_tempo(94/99){1/4,D#7}{1,D#5 D#7 D#5 D#6}{1/8, _legato(20) F#5}{1/8, _legato(0) E5}{5/4,D#6 D#5 D#6 C#5 D#6},_tempo(85/99){1/2,A#5}_tempo(94/99){1/2,D#5}{1/2,D#5}{3/2,E5 D#5 C#5},_tempo(85/99){1/2, _switchon(64,1) D#3}{1/2,A#3,G4} 1/2 {1/2, _switchoff(64,1) G4,A#4}{1/2,G4,A#4} 1/2}} [—16—] {_tempo(33/20) _vel(52) _chan(1){3,{1/8, _legato(20) C#5}{1/8, _legato(0) B4}{5/4,D#6 B4 D#6 A#4 D#6}{1/8, _legato(20) A#4}{1/8, _legato(0) G#4}{5/4,D#6 G4 D#6 G#4 D#6},{3,B4 B4 A#4 G#4 G4 G#4},{3/2,G#4 G#4 -}{1/2,B3,D4,E#4}{1/2,B3,D4,E#4} 1/2}} [—17—] {_tempo(33/20) _vel(52) _chan(1){3,{3,A#4 D#6 D#4 D#5 D#5 D#6 D#6 D#7 D#6 D#7 C#6 D#7},{1/2,A#4} - {3/2,D#6 D#6 C#6},{1/10, _switchon(64,1) D#3& G4&}{2/5,&D#3,&G4}{1/2, _switchoff(64,1) -} --}} [—18—] {_tempo(79/60) _vel(52) _chan(1){3,{1/8, _legato(20) C#6}{1/8, _legato(0) B5}{5/4,D#7 B5 D#7 A#5 D#7}{1/8, _legato(20) A#5}{1/8, _legato(0) G#5}{1,D#7 G5 D#7 G#5}{1/4,D#7},{3,B5 B5 A#5 G#5 G5 G#5},{1/2, _switchon(64,1) G#2}{1/2, _switchoff(64,1) D#3,B3}{1,- _switchon(64,1) B2}{1/2, _switchoff(64,1) G#3,D#4} 1/2}} [—19—] {_tempo(33/20) _vel(52) _chan(1){3,{1/8, _legato(20) G5 G#5}{1/8, _legato(0) A#5}{5/4,D#7 D#5 D#7 D#5 D#6}{1/8, _legato(20) F#5}{1/8, _legato(0) E5}{5/4,G#6 D#5 G#6 C#5 G#6},{1/2,A#5}{5/2,D#5 D#5 E5 D#5 C#5},{1/2, _switchon(64,1) D#3}{1/2,A#3,G4} 1/2 {1/2, _switchoff(64,1) C#4,G#4,A#4}{1/2,D#4,G#4,A#4}{1/2,E4,G#4,A#4}}} [—20—] {_tempo(5/3) _vel(52) _chan(1){3,{1/2,D#5}{1,G#5 B5 D#6 D#7}{1/2,D#5}{1,G5 A#5 D#6 D#7},{1/4,D#5}{1/4,D#6}{1,- D#6}{1/2,D#5 D#6}{1,- D#6},{1/2,D#4,G#4,B4} - {3/20, _switchon(64,1) D#3& C#4& G4&}{7/20,&D#3,&C#4,&G4}{1, _switchoff(64,1) --}}} [—21—] {_tempo(5/3) _vel(52) _chan(1){3,{5/2, _switchon(64,1) G#2 _switchoff(64,1) B3 _switchoff(64,1) D#4 G#4 D#5 G#5 B5 D#6 G#6 -} 1/2}} [—22—] {_tempo(5/3) _vel(63) _chan(1){25/8,_tempo(22/25) _tempo(22/25) 1 {1/4,B4}_tempo(91/100){1/4,G4,A#4}{1/4,B4}{1/4,F#4,A4}{1/4,B4}{1/4,E#4,G#4}{1/4,B4}{1/4,E4,G4}, 1 _tempo(22/25) 1/4 _tempo(91/100) 1/8 1/8 _tempo(97/100) 1/8 1/8 3/8 -}} [—23—] {_tempo(5/3) _vel(52) _chan(1){3,{1/2, _legato(20) C#5 B4 A#4 _legato(0) B4}{3/4,F#4 F#6 B4}_tempo(22/25){1/4,F#6}{1/2, _legato(20) D#5 C#5 B#4 _legato(0) C#5}{3/4,F#4 F#6 C#5}_tempo(22/25){1/4,F#6}, 1/2 {1/2,B3,D#4}{1/2,F#3,D#4,F#4} 1/2 {1/2,A#3,E4}{1/2,F#3,E4,F#4}}} [—24—] {_tempo(5/3) _vel(52) _chan(1){3,{1/2, _legato(20) E5 D#5 D5 _legato(0) D#5}{1/4,B4}_tempo(22/25){1/4,F#6}_tempo(91/100){1/4,D#5}_tempo(97/100){1/4,B4,D5}{1/4,D#5}{1/4,A#4,C#5}{1/4,D#5}{1/4,A4,C5}{1/4,D#5}{1/4,G#4,B4}, 1/2 {1/2,B3,D#4}_tempo(91/100) 1/4 _tempo(97/100) 1/4 1/2 -}} [—25—] {_tempo(5/3) _vel(52) _chan(1){3,{1/2, _legato(20) E#5 D#5 D5 _legato(0) D#5}{3/4,A#4 A#6 D#5}_tempo(22/25){1/4,A#6}{1/2, _legato(20) F#5 E#5 E5 _legato(0) E#5}{3/4,A#4 A#6 E#5}_tempo(22/25){1/4,A#6}, 1/2 {1/2,D#4,F#4}{1/2,A#3,F#4,A#4} 1/2 {1/2,D4,G#4}{1/2,A#3,G#4,A#4}}} [—26—] {_tempo(5/3) _vel(52) _chan(1){3,{1/2, _legato(20) G#5 F#5 E#5 _legato(0) F#5}{1/4,D#5}_tempo(22/25){1/4,A#6}_tempo(47/50){1/4,F#5}_tempo(97/100){1/4,D5,E#5}{1/4,F#5}{1/4,C#5,E5}{1/4,F#5}{1/4,B#4,D#5}{1/4,F#5}{1/4,B4,D5}, 1/2 {1/2,D#4,F#4}_tempo(47/50) 1/4 _tempo(97/100) 1/4 1/2 -}} [—27—] {_tempo(5/3) _vel(52) _chan(1){3,{1/2, _legato(20) G#5 F#5 E#5 _legato(0) F#5}{3/4,C#5 C#7 F#5}_tempo(22/25){1/4,C#7}{1/2, _legato(20) A#5 G#5 G5 _legato(0) G#5}{3/4,C#5 C#7 G#5}_tempo(47/50){1/4,C#7}, 1/2 {1/2,F#4,A#4}{1/2,C#4,A#4,C#5} 1/2 {1/2,E#4,B4}{1/2,C#4,B4,C#5}}} [—28—] {_tempo(47/30) _vel(52) _chan(1){3,_tempo(50/47) _tempo(50/47){1/2,A#5 B5}{1/2,C#6}_tempo(50/47){1,B5 A#5 G#5 A#5}{1/2,B5}_tempo(50/47){1/2,A#5 G#5},_tempo(50/47) 1/2 {1/4,C#6}{1/4,A#6,C#7}_tempo(50/47) - {1/4,B5}{1/4,D#6,B6}_tempo(50/47) 1/2,_tempo(50/47){1/4,F#5}{1/4,G#5}{1/2,A#5}_tempo(50/47){1/4,G#5}{3/4,F#5 B4 C#5}{1/2,D#5}_tempo(50/47){1/4,C#5}{1/4,B4},_tempo(50/47) 1/2 {1/2,F#4}_tempo(50/47) 1 {1,B3 -}}} [—29—] {_tempo(5/3) _vel(52) _chan(1){3,_tempo(97/100) _tempo(97/100){1/2,F#5 G#5}{1/2,A#5}{1,G#5 F#5 E#5 F#5}_tempo(97/100){1/2,G#5}{1/2,D#5 E#5},1/2 _tempo(97/100) {1/4,A#5}{1/4,C#6,A#6} - _tempo(97/100){1/4,G#5}{1/4,B5,G#6}1/2,{1/2,A#4 B4}_tempo(97/100){1/2,C#5}{1/4,B4}{3/4,A#4 G#4 A#4}_tempo(97/100){1/2,B4}{1/4,F#4}{1/4,G#4},1/2 _tempo(97/100) {1/2,C#4} - _tempo(97/100) 1/8 {3/8,C#4} 1/2}} [—30—] {_tempo(5/3) _vel(82) _chan(1){3,_tempo(97/100) _tempo(97/100){3/2,F#5 --}{3/2,G#4 G#5 G#6 G#5 G#6 F#5},_tempo(97/100){1/4,F#5}{1/4,A#5,F#6} 3/2 {1,G#6 G#6},_tempo(97/100){1/2,A#4}{1/4, _switchon(64,1) F#4}{3/4,F#5 _switchoff(64,1) _switchon(64,1) G4 G5}{1/2, _switchoff(64,1) -}{1/2,E4,G#4}{1/2,D#4,G#4},_tempo(97/100){1/2,F#3} 5/2}} [—31—] {_tempo(5/3) _vel(52) _chan(1){3,{3,G#6 E5 F#7 G#5 E7 G#5 D#7 G#5 C#7 G#5 D#7 G#5},{3,G#6 F#7 E7 D#7 C#7 D#7},{1/2,C#4,G#4}{5/2,D#5 C#5 B#4 A#4 B#4}, 3/2 {1/2,G#3} -}} [—32—] {_tempo(5/3) _vel(52) _chan(1){3,{1,E7 G#5 C#7 G#5} 1/2 {3/2,F#4 F#5 F#6 F#5 F#6 E5},{1,E7 C#7} - {1,F#6 F#6},{1,C#5 E5}{1/2, _switchon(64,1) G4 G5}{1/2, _switchoff(64,1) -}{1/2,D#4,F#4}{1/2,C#4,F#4},{1/2,C#4} 5/2}} [—33—] {_tempo(5/3) _vel(52) _chan(1){3,{3,F#6 D#5 E7 F#5 D#7 F#5 C#7 F#5 B6 F#5 C#7 F#5},{3,F#6 E7 D#7 C#7 B6 C#7},{1/2,B3,F#4}{5/2,C#5 B4 A#4 G#4 A#4}, 3/2 {1/2,F#3} -}} [—34—] {_tempo(5/3) _vel(52) _chan(1){3,{1,D#7 F#5 B6 F#5} 1/2 {3/2,D#4 D#5 D#6 D#5 D#6 D5},{1,D#7 B6}2,{1,B4 D#5}{1/2, _switchon(64,1) D4 D5}{1/2, _switchoff(64,1) -}{1/2,G3,D#4}{1/2,G#3,E#4},{1/2,B3} 5/2}} [—35—] {_tempo(103/60) _vel(52) _chan(1){3,{3,D#6 C#5 D#6 C#5 D#6 B4 E6 D#6 C#6 B5 A#5 G#5},3/2 {3/2,E5 A#5 C#5 E5 B4 E#5},{1/2,A#3,G4}{1/2,A#3,G4}{1/2,B3,G#4}{1/2,C#4,A4} 1/2 {1/2,D4,E#4}}} [—36—] {_tempo(103/60) _vel(52) _chan(1){3,{1,G5 A#5 B5 A#5} 1/2 {3/2,D#5 D#6 D#7 D#6 D#7 D6},{1,A#4 D#5 G5 D#5}2,{1/2,D#4,G4} 1/2 {1/2, _switchon(64,1) D5 D6}{1/2, _switchoff(64,1) -}{1/2,G4,D#5}{1/2,G#4,E#5}}} [—37—] {_tempo(53/30) _vel(52) _chan(1){3,{3,D#7 C#6 D#7 C#6 D#7 B5 E7 D#7 C#7 B6 A6 G#6},3/2 {3/2,E6 A6 C#6 E6 B5 E#6},{1/2,A#4,G5}{1/2,A#4,G5}{1/2,B4,G#5}{1/2,C#5,A5} 1/2 {1/2,D5,E#5}}} [—38—] {_tempo(9/5) _vel(52) _chan(1){3,_tempo(5/6) _tempo(5/6) _tempo(103/108) _tempo(103/108){1/2,G6 A#6} 1/2 1/2 {1/2,D#7 D#6} 1,{1/4,A#5}_tempo(5/6){1/4,D#6}0 _tempo(103/108) _tempo(103/108) 0 5/2,{1/2,D#5,G5}_tempo(103/108){1/4, _switchon(64,1) D5}{3/4,D6 D#5 D#6}{1/2, _switchoff(64,1) -}{1, _switchon(64,1) D#5 D#6 E5 E6}}} [—39—] {_tempo(9/5) _vel(52) _chan(1){3,{1/2,D#7 D#6} - {1/2,D#7 D#6} 1/2 {1/2,D#7 D#6}, 1/2 {1, _switchon(64,1) E5 E6 E#5 E#6}{1/2, _switchoff(64,1) -}{1/2, _switchon(64,1) F#5 F#6}{1/2, _switchoff(64,1) -}}} [—40—] {_tempo(9/5) _vel(52) _chan(1){3, 1/2 {1/2,D#7 D#6} 1/2 {3/2,D#7 A5 D#7 A#5 D#7 B5},{1/2, _switchon(64,1) G5 G6}{1/2, _switchoff(64,1) -}{1/2, _switchon(64,1) G#5 G#6} 1/2 -}} [—41—] {_tempo(9/5) _vel(52) _chan(1){3,{3,D#7 B#5 D#7 C#6 D#7 D6 D#7 D#6 D#7 D#6 D#7 D#6}}} [—42—] {_tempo(103/60) _vel(67) _chan(1){3,{3,D#7 D#6 D#7 D#6 D#7 D#6 D#7 D#6 D#5 D#6 D#7 D#6}}} [—43—] {_tempo(97/60) _vel(57) _chan(1){3,{3,D#5 D#6 D#7 D#6 D#5 D#6 D#7 D#6 D#5 D#6 D#7 D#6}, -- {1/2,D#5}1/2,{3,-- D#4 D#5 - C#5}}} [—44—] {_tempo(97/60) _vel(52) _chan(1){3,{3,D#5 D#6 D#7 D#6 D#5 D#6 D#7 D#6 D#5 D#6 D#7 D#6},{3,B4 B4 A#4 G#4 G4 G#4},{1/2,G#3} - {1/2,B3} -}} [—45—] {_tempo(97/60) _vel(52) _chan(1){3,{3,D#5 D#6 D#7 D#6 D#5 D#6 D#7 D#6 D#5 D#6 D#7 D#6},{3,A#4 D#4 D#4 E4 D#4 C#4},{1/2,G4} - {1/2,G3}1,{1/2,A#4} 5/2}} [—46—] {_tempo(97/60) _vel(52) _chan(1){3,{3,D#5 D#6 D#7 D#6 D#5 D#6 D#7 D#6 D#5 D#6 D#7 D#6},{3,B3 B3 A#3 G#3 G3 G#3},{1/2,G#3} - {1/2,E3}1, 3/2 {1/2,G#3} -}} [—47—] {_tempo(33/20) _vel(52) _chan(1){3,{3,D#5 D#6 D#7 D#6 D#5 D#6 D#7 D#6 D#5 D#6 D#7 D#6},3/2{1,- D#5}1/2,{1, _legato(20) A#3 _legato(0) D#3} 1/4 {1/4,- D#4}{1/2,D#5}{1,- C#5},G3 1/2 3/2}} [—48—] {_tempo(33/20) _vel(52) _chan(1){3,{3,D#5 D#6 D#7 D#6 D#5 D#6 D#7 D#6 D#5 D#6 D#7 D#6},{3,B4 B4 A#4 G#4 G4 G#4},{1/2,G#3} - {1/2,B3} -}} [—49—] {_tempo(33/20) _vel(52) _chan(1){3,{3,D#5 D#6 D#7 D#6 D#5 D#6 E5 D#6 D#5 D#6 C#5 D#6},- {2,D#5 E5 D#5 C#5},{3/2,A#4 D#4 -}{1/2,C#4,G#4,A#4}{1/2,D#4,G#4,A#4}{1/2,E4,G#4,A#4},{1/2,G4} 5/2}} [—50—] {_tempo(47/30) _vel(52) _chan(1){3,_tempo(50/47) _tempo(50/47){1/2,D#5}{1,G#5 B5 D#6 D#7}_tempo(97/94){1/2,D#5}{1/2,G5 A#5}{1/2,D#6 D#7},_tempo(50/47){1/4,D#5}{1/4,D#6} - _tempo(97/94) 1/8 {1/8,D#5}{1/4,D#6}1/2 1/2,_tempo(50/47){1/2,D#4,G#4,B4} - {1/2,D#4,G4,C#5}_tempo(97/94) 1/2 1/2}} [—51—] {_tempo(97/60) _vel(60) _chan(1){3,_tempo(76/97) _tempo(76/97){1, _switchon(64,1) G#3 D#4 B4 G#5}{1/2, _switchoff(64,1) D#5 D#6 D#6}_tempo(85/97){1/2,D#6 D#6 D#7}_tempo(94/97){1/2,D#6 D#6 D#7}{1/2,C#6 C#6 C#7}, - _tempo(76/97) 1/2 _tempo(85/97) 1/2 _tempo(94/97) 1/2 1/2}} [—52—] {_tempo(5/3) _vel(52) _chan(1){3,_tempo(49/50) _tempo(49/50) _tempo(49/50) _tempo(49/50) _tempo(99/100) _tempo(99/100) _tempo(99/100) _tempo(99/100){3,B5 B5 B6 B5 B5 B6 A#5 A#5 A#6 G#5 G#5 G#6 G5 G5 G6 G#5 G#5 G#6},{1/2,G#2}{1/2,D#3,B3}_tempo(49/50){1/2,D#3,B3}_tempo(99/100){1/2,B2}{1/2,G#3,D#4}{1/2,G#3,D#4}}} [—53—] {_tempo(5/3) _vel(52) _chan(1){3,{3,A#5 A#5 A#6 D#5 D#5 D#6 D#5 D#5 D#6 E5 E5 E6 D#5 D#5 D#6 C#5 C#5 C#6},{1/2,D#3}{1/2,A#3,G4}{1/2,A#3,G4}{1/2,G3}{1/2,D#4,A#4}{1/2,D#4,A#4}}} [—54—] {_tempo(5/3) _vel(52) _chan(1){3,{3,B4 B4 B5 B4 B4 B5 A#4 A#4 A#5 G#4 G#4 G#5 G4 G4 G5 G#4 G#4 G#5},{1/2,G#3}{1/2,D#4,G#4}{1/2,D#4,G#4}{1/2,B3}{1/2,D4,E#4}{1/2,D4,E#4}}} [—55—] {_tempo(5/3) _vel(52) _chan(1){3,{3,A#4 A#4 A#5 D#4 D#4 D#5 D#5 D#5 D#5 D#6 D#6 D#7 D#6 D#6 D#7 C#6 C#6 C#7},{1/2,D#3}{1/2, _switchon(64,1) A#3,G4}{2, _switchoff(64,1) -}}} [—56—] {_tempo(5/3) _vel(52) _chan(1){3,{3,B5 B5 B6 B5 B5 B6 A#5 A#5 A#6 G#5 G#5 G#6 G5 G5 G6 G#5 G#5 G#6},{1/2,G#2}{1/2,D#3,B3}{1/2,D#3,B3}{1/2,B2}{1/2,G#3,D#4}{1/2,G#3,D#4}}} [—57—] {_tempo(5/3) _vel(67) _chan(1){3,{3,A#5 A#5 A#6 D#5 D#5 D#6 D#5 D#5 D#6 E5 E5 E6 D#5 D#5 D#6 C#5 C#5 C#6},{1/2,D#3}{1/2,A#3,G4}{1/2,G4,A#4}{1/2,G#4,B4}{1/2,F#4,A#4}{1/2,E4,G#4}}} [—58—] {_tempo(5/3) _vel(52) _chan(1){3,{3,D#5 D#5 D#6 E5 E5 D#6 E#5 E#5 D#6 F#5 F#5 D#6 G5 G5 D#6 G#5 G#5 D#6},{1/2,D#4,G#4,B4} 1/2 --}} [—59—] {_tempo(5/3) _vel(52) _chan(1){3,{3,A5 A5 D#6 A#5 A#5 D#6 B5 B5 D#6 B#5 B#5 D#6 C#6 C#6 D#6 D6 D6 D#6},{3/20, _switchon(64,1) D#3& C#4& G4&}{7/20,&D#3,&C#4,&G4} 1/2 {2, _switchoff(64,1) -}}} [—60—] {_tempo(97/60) _vel(67) _chan(1){3,{3,D#6 D#6 D#7 E6 E6 D#7 E#6 E#6 D#7 F#6 F#6 D#7 G6 G6 D#7 G#6 G#6 D#7},{1/5, _switchon(64,1) G#2& D#3& B3& G#4&}{3/10,&G#2,&D#3,&B3,&G#4} 1/2 --}} [—61—] {_tempo(97/60) _vel(67) _chan(1){5/2, 1/2 - 1,- {3/2, _switchoff(64,1) ---}}} [—62—] {_tempo(97/60) _vel(52) _chan(1){2,{1/2,B4&}{3/2,&B4 B4 B4 B4 B4 B4},{2,B4 A#4 A4 G#4 G4 F#4 E#4 E4},{2,G#4 G4 F#4 E#4 E4 D#4 D4 C#4}}} [—63—] {_tempo(91/60) _vel(60) _chan(1){3,_tempo(88/91) _tempo(50/91) _tempo(50/91) _tempo(64/91) _tempo(64/91) _tempo(10/13) _tempo(10/13) _tempo(79/91) _tempo(79/91) _tempo(85/91) _tempo(85/91) _tempo(88/91) _tempo(88/91){5/2, _legato(20) C#5 B4 A#4 _legato(0) B4 F#4 F#5 F#5 F#5 B4 B5 B5 B5 C#5 C#6 C#6 C#6 F#5 F#6 F#6 F#6}{1/6,C#6}{1/6,F#6,C#7}{1/6,F#6,C#7},_tempo(88/91) 1/2 _tempo(64/91){1/2,F#4}_tempo(10/13){1/2,B4}_tempo(79/91){1/2,C#5}_tempo(85/91){1/2,F#5}_tempo(88/91){1/2,C#6},_tempo(88/91) 1/2 {1/2,B3,D#4}_tempo(10/13){1/2,F#3,D#4,F#4}_tempo(88/91) 1/2 {1/2,A#3,E4}{1/2,F#3,A#3,F#4}}} [—64—] {_tempo(5/3) _vel(52) _chan(1){3,_tempo(22/25) _tempo(22/25){1/6,D#6}{1/6,F#6,D#7}{1/6,F#6,D#7} 1/2 {1/2,D#5&}{3/2,&D#5 D#5 D#5 D#5 D#5 D#5},_tempo(22/25){1/2,D#6}{5/2,B5 - D#5 D5 C#5 B#4 B4 A#4 A4 G#4},_tempo(22/25){1/2,B2}{1/4,F#3,D#4}1/4 1/8 {3/8, _legato(20) B4}{3/2, _legato(0) A#4 A4 G#4 G4 F#4 E#4}}} [—65—] {_tempo(3/2) _vel(52) _chan(1){3,_tempo(91/90) _tempo(44/45) _tempo(11/18) _tempo(11/18) _tempo(79/90) _tempo(79/90) _tempo(17/18) _tempo(17/18) _tempo(44/45) _tempo(44/45){5/2, _legato(20) E#5 D#5 D5 _legato(0) D#5 A#4 A#5 A#5 A#5 D#5 D#6 D#6 D#6 E#5 E#6 E#6 E#6 A#5 A#6 A#6 A#6}{1/6,E#6}{1/6,A#6,E#7}{1/6,A#6,E#7},_tempo(44/45) 1/2 _tempo(79/90){1/2,A#4}_tempo(17/18){1/2,D#5}_tempo(44/45){1/2,E#5}{1/2,A#5}{1/2,E#6},_tempo(44/45) 1/2 {1/2,D#4,F#4}_tempo(17/18){1/2,A#3,F#4,A#4}_tempo(44/45) 1/2 {1/2,D4,G#4}{1/2,A#3,D4,A#4}}} [—66—] {_tempo(5/3) _vel(52) _chan(1){3,_tempo(17/20) _tempo(17/20){1/6,F#6}{1/6,A#6,F#7}{1/6,A#6,F#7} 1/2 {1/2,F#5&}{3/2,&F#5 F#5 F#5 F#5 F#5 F#5},_tempo(17/20){1/2,F#6}{5/2,D#6 - F#5 E#5 E5 D#5 D5 C#5 B#4 A#4},_tempo(17/20){1/2,D#3}{1/4,A#3,F#4}1/4 1/8 {1/8,D#5}{7/4,D5 C#5 B#4 B4 A#4 A4 G#4}}} [—67—] {_tempo(41/30) _vel(52) _chan(1){3,_tempo(91/82) _tempo(44/41) _tempo(32/41) _tempo(32/41) _tempo(79/82) _tempo(79/82) _tempo(85/82) _tempo(85/82) _tempo(44/41) _tempo(44/41) _tempo(85/82) _tempo(85/82){2, _legato(20) G#5 F#5 E#5 _legato(0) F#5 C#5 C#6 C#6 C#6 F#5 F#6 F#6 F#6 G#5 G#6 G#6 G#6}{1/6,C#6}_tempo(42/41){1/6,G#6,C#7}{1/6,G#6,C#7}_tempo(81/82){1/6,G#6,C#7}_tempo(79/82){1/6,G#6,C#7}{1/6,G#6,C#7},_tempo(44/41) 1/2 _tempo(79/82){1/2,C#5}_tempo(85/82){1/2,F#5}_tempo(44/41){1/2,G#5}_tempo(85/82){1/2,C#6}1/2,_tempo(44/41) 1/2 {1/2,F#4,A#4}_tempo(85/82){1/2,C#4,A#4,C#5}_tempo(44/41) 1/2 {1/2, _switchon(64,1) E#4,B4}{1/2, _switchoff(64,1) _switchon(64,1) C#4,E#4,C#5}}} [—68—] {_tempo(3/2) _vel(52) _chan(1){3,_tempo(41/45) _tempo(41/45) _tempo(44/45) _tempo(44/45) _tempo(91/90) _tempo(91/90){3,C#7 D#7 C#7 D#7 C#7 D#7 C#7 D#7 C#7 D#7 C#7 D#7 B6 C#7 B6 C#7 B6 C#7 B6 C#7 B6 C#7 B6 C#7},{1,A#6 A6 G#6 G6}_tempo(41/45){1/2,F#6}_tempo(44/45){1/4,G#6}_tempo(91/90){1/4,G6}{1/2,F#6 E#6}{1/2,D#6},{1/2, _switchon(64,1) F#4}{1/4,F#5,A#5}_tempo(44/45){1/4,G#5,B5}{1/2,A#5,C#6}_tempo(91/90){1/2, _switchoff(64,1) _switchon(64,1) B3}{1/4,B4,G#5}{1/4,C#5,A#5}{1/2,D#5,B5}}} [—69—] {_tempo(91/60) _vel(52) _chan(1){3,_tempo(93/91) _tempo(93/91){3,A#6 B6 A#6 B6 A#6 B6 A#6 B6 A#6 B6 A#6 B6 G#6 A#6 G#6 A#6 G#6 A#6 G#6 A#6 G#6 D#6 E6 E#6},{1,F#6 E#6 D#6 D6}_tempo(93/91){1/2,C#6}{1/4,E#6}{3/4,D#6 D6 C#6}{1/2,B5},{1/2, _switchon(64,1) C#4}{1/4,A#4,F#5}_tempo(93/91){1/4,B4,G#5}{1/2,C#5,A#5}{1/2, _switchoff(64,1) _switchon(64,1) C#4}{1/4,G#4,E#5}{1/4,A#4,F#5}{1/2,B4,G#5}}} [—70—] {_tempo(22/15) _vel(52) _chan(1){3,_tempo(45/44) _tempo(45/44){1/2,F#6 G#6 F#6 G#6 F#6}{5/2,F#5 F#6 G#6 F#6 G5 G6 G#6 G6 G#5 G#6 A6 G#6 A6 G#6 A6 G#6 A6 G#6 A6 G#6},1/10 _tempo(45/44) 2/5 {3/2,F#5 G5 G#5}1,{1/2,F#4,C#5,A#5} 1/2 {1,- _switchon(64,1) -}{1/10,E4& G#5&}{2/5,&E4,&G#5}{1/2,D#4,F#5}}} [—71—] {_tempo(43/30) _vel(52) _chan(1){3,_tempo(45/43) _tempo(45/43){3,- F#7 E7 D#7 C#7 D#7},_tempo(45/43){1/8,G#6}{23/8,A6 G#6 A6 G#6 A6 G#6 A6 G#6 A6 G#6 A6 G#6 A6 G#6 A6 G#6 A6 G#6 A6 G#6 A6 G#6 A6},_tempo(45/43){1/10,C#4& E5&}{2/5,&C#4,&E5}{5/2,D#6 C#6 B#5 A#5 B#5},_tempo(45/43) 3/2 {1/2,G#4} -}} [—72—] {_tempo(22/15) _vel(56) _chan(1){3,_tempo(41/44) _tempo(41/44){1/2,E7}{1/4,C#7}_tempo(25/44) 1/4 _tempo(41/44){1,G5 G6 A6 G6 F#5 F#6 G#6 F#6}{1,G#6 F#6 G#6 F#6 G#6 F#6 G#6 F#6},_tempo(41/44){1/8,G#6}{3/8,A6 G#6 A6}{1/2,G#6 -}_tempo(25/44){1/2,G5}_tempo(41/44){1/2,F#5}0 1,_tempo(41/44){1/2,C#6}{1/2, _switchon(64,1) E6 -}_tempo(25/44){1/2, _switchoff(64,1) -}_tempo(41/44) 1/2 {1/10, _switchon(64,1) D#4& F#5&}{2/5,&D#4,&F#5}{1/2,C#4,E5},_tempo(41/44){1/2, _switchoff(64,1) C#5}1/4 _tempo(25/44) 1/4 _tempo(41/44) 1 -}} [—73—] {_tempo(43/30) _vel(60) _chan(1){3,_tempo(45/43) _tempo(45/43){3,- E7 D#7 C#7 B6 C#7},_tempo(45/43){1/8,F#6}{23/8,G#6 F#6 G#6 F#6 G#6 F#6 G#6 F#6 G#6 F#6 G#6 F#6 G#6 F#6 G#6 F#6 G#6 F#6 G#6 F#6 G#6 F#6 G#6},_tempo(45/43){1/10,B3& D#5&}{2/5,&B3,&D#5}{5/2,C#6 B5 A#5 G#5 A#5},_tempo(45/43) 3/2 {1/2,F#4} -}} [—74—] {_tempo(3/2) _vel(55) _chan(1){3,_tempo(41/45) _tempo(41/45){1/2,D#7}{1/4,B6}_tempo(11/18) 1/4 _tempo(41/45){1,D5 D6 D#6 D6 D#5 D#6 E6 D#6}{1,E6 D#6 E6 D#6 E6 D#6 E6 D#6},_tempo(41/45){1/8,F#6}{3/8,G#6 F#6 G#6}{1/2,F#6 -}_tempo(11/18){1/2,D5}_tempo(41/45){1/2,D#5}0 1,_tempo(41/45){1/2,B5}{1/2, _switchon(64,1) D#6 -}_tempo(11/18){1/2, _switchoff(64,1) _switchon(64,1) -}_tempo(41/45) 1/2 {1/2,D#4,G4,D#5}{1/2,E#4,G#4,D5},_tempo(41/45){1/2, _switchoff(64,1) B4}1/4 _tempo(11/18) 1/4 _tempo(41/45) 1 -}} [—75—] {_tempo(91/60) _vel(76) _chan(1){25/8,_tempo(85/91) _tempo(85/91){1,E6 D#6 D6 D#6 E6 E#6 F#6 G6 G#6 A6}{1/2,A#6 B6 B#6 C#7 D7 D#7}{3/2,E7 F#7 E7 D#7 D7 C#7 B#6 B6 A#6 A6 G#6 G6 F#6 E#6 E6}1/8,{1/2,G4,A#4,C#5}1/2 _tempo(85/91) 1/8 3/8 1/8 {1/2,G#4,B4,E5} 1}} [—76—] {_tempo(91/60) _vel(64) _chan(1){3,{1/2,D#6}{5/2,A#4 A#5 B5 A#5 D5 D6 D#6 D6 D#5 D#6 E6 D#6 E6 D#6 E6 D#6 E6 D#6 E6 D#6},{2,- A#4 D5 D#5}1,{1/10,D#4& G5&}{2/5,&D#4,&G5}{3/2,-- _switchon(64,1) -}{1/2,D#4,G4,D#5}{1/2,E#4,G#4,D5}}} [—77—] {_tempo(7/5) _vel(66) _chan(1){25/8,_tempo(41/42) _tempo(41/42) _tempo(27/28) _tempo(27/28){1,E6 D#6 D6 D#6 E6 E#6 F#6 G6 G#6 A6}{1/2,A#6 B6 B#6 C#7 D7 D#7}{3/2,E7 F#7 E7 D#7 D7 C#7 B#6 B6 A#6 A6 G#6 G6 F#6 E#6 E6}1/8,_tempo(41/42){1/2, _switchon(64,1) G4,A#4,C#5}1/2 _tempo(27/28){1/8, _switchoff(64,1) -}3/8 1/8 {1/2, _switchon(64,1) G#4,B4,E5}{1, _switchoff(64,1) --}}} [—78—] {_tempo(7/5) _vel(67) _chan(1){3,_tempo(85/84) _tempo(85/84){1/2,D#6 E6 D#6 D6 D#6}{1,E6 E#6 F#6 G6 G#6 A6 A#6 B6 B#6 C#7 D7 D#7}{3/2,E7 F#7 E7 D#7 D7 C#7 B#6 B6 A#6 A6 G#6 G6 F#6 E#6 E6},_tempo(85/84){3/20, _switchon(64,1) D#4& A#4& G5&}{7/20,&D#4,&A#4,&G5} 1/2 {1/2, _switchoff(64,1) -}{1/2, _switchon(64,1) G#3,B4}{1, _switchoff(64,1) --}}} [—79—] {_tempo(17/10) _vel(62) _chan(1){3,{1/2,D#6 E6 D#6 D6 D#6}{1,E6 E#6 F#6 G6 G#6 A6 A#6 B6 B#6 C#7 D7 D#7}_tempo(33/34){1/2,E7 F#7 E7 D#7}{1,D7 D#7 D7 C#7 B#6 C#7 B#6 B6},{1/2, _switchon(64,1) D#3,G4}{1,- _switchoff(64,1) -}{1/2, _switchon(64,1) G#2,B3} 1/2 1/2}} [—80—] {_tempo(17/10) _vel(52) _chan(1){3,{3,A#6 B6 A#6 A6 G#6 A6 G#6 G6 F#6 G6 F#6 E#6 E6 F#6 E6 D#6 D6 D#6 D6 C#6 B#5 C#6 B#5 B5}}} [—81—] {_tempo(17/10) _vel(52) _chan(1){3,{3,A#5 B5 A#5 A5 G#5 A5 G#5 G5 F#5 G5 F#5 E#5 E5 F#5 E5 D#5 D5 D#5 D5 C#5 B#4 C#5 B#4 B4}}} [—82—] {_tempo(17/10) _vel(55) _chan(1){3/2,{3/2,A#4 B4 A#4 A4 G#4 A4 G#4 G4 F#4 G4 F#4 E#4},- 1/2}} [—83—] {_tempo(17/10) _vel(52) _chan(1){3,{3,E4 D4 E4 D#4 E#4 E4 F#4 E#4 G4 F#4 G#4 G4 A4 G#4 A#4 A4 B4 A#4 B#4 B4 C#5 B#4 D5 C#5},{3/20, _switchon(64,1) G2& A#3& C#4&}{7/20,&G2,&A#3,&C#4} -- 1/2}} [—84—] {_tempo(17/10) _vel(52) _chan(1){3,{3,D#5 - E5 - E#5 - F#5 - G5 - G#5 - A5 - A#5 - B5 - B#5 - C#6 - D6 -},{3,- D5 - D#5 - E5 - E#5 - F#5 - G5 - G#5 - A5 - A#5 - B5 - B#5 - C#6}}} [—85—] {_tempo(17/10) _vel(52) _chan(1){3,{3,D#6 - E6 - E#6 - F#6 - G6 - G#6 - A6 - A#6 - B6 - B#6 - C#7 - D7 -},{3,- D6 - D#6 - E6 - E#6 - F#6 - G6 - G#6 - A6 - A#6 - B6 - B#6 - C#7}}} [—86—] {_tempo(53/30) _vel(97) _chan(1){3,{3,D#7 - E7 - D#7 - E7 - D#7 - E7 - D#7 - E7 - D#7 - E7 - D#7 - E7 -}, 1/8 {23/8,D7 - D7 - D7 - D7 - D7 - D7 - D7 - D7 - D7 - D7 - D7 - D7}}} [—87—] {_tempo(29/30) _vel(113) _chan(1){6,_tempo(2) 3 {3/8,D#7 E7 D#7 E7 D#7 E7}_tempo(57/58){3/8,D#7 E7 D#7 E7 D#7 E7}_tempo(55/58){3/8,D#7 E7 D#7 E7 D#7 E7}_tempo(27/29){3/8,D#7 E7 D#7 E7 D#7 E7}_tempo(26/29){3/8,D#7 E7 D#7 E7 D#7 E7}_tempo(25/29){3/8,D#7 E7 D#7 E7 D#7 E7}_tempo(49/58){3/8,D#7 E7 D#7 E7 D#7 E7}_tempo(47/58){3/8,D#7 E7 D#7 E7 D#7 E7},_tempo(2){3/2,{1,D#7 E7 D#7 E7 D#7 E7 D#7 E7}}{9/2,{1,D#7 E7 D#7 E7 D#7 E7 D#7 E7}{1,D#7 E7 D#7 E7 D#7 E7 D#7 E7}{1,D#7 E7 D#7 E7 D#7 E7 D#7 E7}},_tempo(2) 4 --}} [—88—] {_tempo(41/30) _vel(52) _chan(1){3,_tempo(38/41) _tempo(38/41){3,D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7}, 1/2 {5/2,- _switchoff(64,1) _switchon(64,1) D#5 D#6 D#6 C#6}}} [—89—] {_tempo(41/30) _vel(52) _chan(1){3,{3,D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7},{3,D#6 D#6 D#6 D#6 D#6 D#6},{3, _switchon(64,1) B5 B5 A#5 _switchoff(64,1) _switchon(64,1) G#5 G5 G#5},{1/2, _switchoff(64,1) G#4} - {1/2,B4} -}} [—90—] {_tempo(41/30) _vel(52) _chan(1){3,{3,D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7},{3,D#6 D#6 D#6 D#6 D#6 D#6},{3, _switchon(64,1) A#5 D#5 D#5 _switchoff(64,1) _switchon(64,1) E5 D#5 C#5},{1/2, _switchoff(64,1) G5} - {1/2,G4,A#4}1,{1/2,A#5} 5/2}} [—91—] {_tempo(41/30) _vel(52) _chan(1){3,{3,D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7},{3,D#6 D#6 D#6 D#6 D#6 D#6},{1/2, _switchon(64,1) G#4,B4}{1/2,G#4,B4}{1/2,F#4,A#4}{3/2,G#4 G4 G#4}, 3/2 {1/2, _switchoff(64,1) E4} -}} [—92—] {_tempo(27/20) _vel(67) _chan(1){3,_tempo(73/81) _tempo(70/81) _tempo(79/81) _tempo(79/81){3,D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7 D#7 E7},_tempo(70/81){1/2,D#6}{5/2,D#6 D#6 D#6 D#6 D#6},_tempo(70/81){1/2, _legato(20) A#4}{1, _legato(0) D#4 -}{1/8,D#4}_tempo(79/81){3/8,D#5}{1,D#5 C#5},_tempo(70/81) G4 1/2 _tempo(79/81) 1 1/2}} [—93—] {_tempo(17/12) _vel(60) _chan(1){3,_tempo(82/85) _tempo(82/85){1,D#7 E7 D#7 D#6 D#6 E6 D#6 D#5}{1/2,D#6 E6 D#6}{1,D#7 E7 D#7 D#6 D#6 E6 D#6 D#5}{1/2,D#6 E6 D#6},_tempo(82/85){1/2,B4}{5/2,B4 A#4 G#4 G4 G#4},_tempo(82/85){1/2,G#3} - {1/2,B3} -}} [—94—] {_tempo(17/12) _vel(52) _chan(1){3,{1,D#7 E7 D#7 D#6 D#6 E6 D#6 D#5}{1/2,D#6 E6 D#6}{1,D#7 E7 D#7 D#6 D#6 E6 D#6 D#5}{1/2,D#6 E6 D#6},{3, _legato(20) A#4 _legato(0) D#4 D#4 G#4 F#4 E4},{1/2,G4} - {3/2,B3 B#3 C#4}}} [—95—] {_tempo(79/60) _vel(52) _chan(1){3,{1/2,D#7 E7 D#7 D#6} - {1/2,D#7 E7 D#7 D#6} 1,{1/2,D#4}{1/4,B4,G#5}{1/4,D#5,B5}{1/2,G#5,D#6}{1/2,D#4}{1/4,A#4,G5}{1/4,C#5,A#5}{1/2,G5,D#6}}} [—96—] {_tempo(13/15) _vel(52) _chan(1){3,_tempo(73/52) _tempo(73/52) - {1/2,D#5 D#6 E6 D#6}_tempo(61/52){1/2,D#6 D#7 E7 D#7}_tempo(33/26){1/2,D#6 D#7 E7 D#7}_tempo(67/52){3/8,C#6 C#7 D#7}{1/8,C#7},_tempo(73/52) - {2,D#5 D#6 D#6 C#6},_tempo(73/52){1/2, _switchon(64,1) G#3}{1/2,G#5 -}1/2 _tempo(16/13) _tempo(61/52) 1/2 _tempo(33/26) 1/2 _tempo(67/52) 3/8{1/8, _switchoff(64,1) _switchon(64,1) -},_tempo(73/52) 1/4 {1/4, _switchoff(64,1) D#4 B4} - _tempo(16/13) _tempo(61/52) 1/2 _tempo(33/26) 1/2 _tempo(67/52) 3/8 1/8}} [—97—] {_tempo(6/5) _vel(60) _chan(1){3,_tempo(61/72) _tempo(29/36) _tempo(35/36) _tempo(35/36){3,B5 B6 C#7 B6 B5 B6 C#7 B6 A#5 A#6 B6 A#6 G#5 G#6 A#6 G#6 G5 G6 G#6 G6 G#5 G#6 A#6 G#6},_tempo(29/36){1/2,B5}_tempo(35/36){1/2,B5}{2,A#5 G#5 G5 G#5},_tempo(61/72){1/2, _switchon(64,1) G#1,G#2}_tempo(35/36){1/2,D#3,B3,D#4}{1/2,G#3,B3,D#4}{1/2, _switchoff(64,1) _switchon(64,1) B1,B2}{1/2,D#3,B3,D#4}{1/2,G#3,B3,D#4}}} [—98—] {_tempo(5/4) _vel(52) _chan(1){3,_tempo(73/75) _tempo(73/75){3,A#5 A#6 B6 A#6 D#5 D#6 E6 D#6 D#5 D#6 E6 D#6 E5 E6 F#6 E6 D#5 D#6 E6 D#6 C#5 C#6 D#6 C#6},_tempo(73/75){1/2,A#5}{5/2,D#5 D#5 E5 D#5 C#5},_tempo(73/75){1/2, _switchon(64,1) D#2,D#3}{1/2,G3,D#4,G4}{1/2,A#3,D#4,G4}{1/2, _switchoff(64,1) _switchon(64,1) G2}{1/2,C#4,D#4,A#4}{1/2,A#3,D#4,A#4}}} [—99—] {_tempo(19/15) _vel(52) _chan(1){3,{3,B4 B5 C#6 B5 B4 B5 C#6 B5 A#4 A#5 B5 A#5 G#4 G#5 A#5 G#5 G4 G5 G#5 G5 G#4 G#5 A#5 G#5},{1/2,B4}{5/2,B4 A#4 G#4 G4 G#4},{1/2, _switchon(64,1) G#2}{1/2,D#4,G#4}{1/2,B3,D#4}{1/2, _switchoff(64,1) _switchon(64,1) E2}{1/2,B3,D4}{1/2,A#3,D4}}} [—100—] {_tempo(13/15) _vel(82) _chan(1){3,_tempo(73/52) _tempo(73/52) _tempo(19/13) _tempo(19/13) _tempo(35/26) _tempo(35/26) _tempo(16/13) _tempo(16/13) _tempo(9/13) _tempo(9/13){3,A#4 A#5 B5 A#5 D#4 D#5 E5 D#5 D#5 D#6 E6 D#6 D#6 D#7 E7 D#7 D#6 D#7 E7 D#7 C#6 C#7 D#7 C#7},_tempo(73/52){1/2,A#4}_tempo(19/13){1/2,D#4}_tempo(35/26){1/2,D#5}{3/2,D#6 D#6 C#6},_tempo(73/52){1/2, _switchon(64,1) D#1,D#2}_tempo(19/13){1/2,G3,A#3}_tempo(35/26){1/2,G4,A#4}{1/2,G5,A#5}_tempo(16/13) 1/2 1/2}} [—101—] {_tempo(73/60) _vel(52) _chan(1){3,_tempo(43/73) _tempo(43/73) _tempo(36/73) _tempo(36/73) _tempo(61/73) _tempo(61/73){3,B#5 B#6 C#7 B#6 B#5 B#6 C#7 B#6 A5 A6 B6 A6 G#5 G#6 A6 G#6 G#5 G#6 A6 G#6 F#5 F#6 G#6 F#6},_tempo(43/73){1/2,B#5}_tempo(36/73){1/2,B#5}_tempo(61/73){1/2,A5}{1/2,G#5}{1,G#5 F#5},_tempo(43/73){1/2, _switchon(64,1) G#1,G#2}_tempo(61/73){1/2,A3,D#4,F#4}{1/2,B#3,D#4,F#4}{1/2, _switchoff(64,1) _switchon(64,1) B#1,B#2}{1/2,A3,D#4,F#4}{1/2,B#3,D#4,F#4}}} [—102—] {_tempo(41/30) _vel(67) _chan(1){3,_tempo(79/82) _tempo(79/82){3,E5 E6 F#6 E6 C#5 C#6 D#6 C#6 D#5 D#6 E6 D#6 E5 E6 F#6 E6 D#5 D#6 E6 D#6 C#5 C#6 D#6 C#6},_tempo(79/82){1/2,E5}{5/2,C#5 D#5 E5 D#5 C#5},_tempo(79/82){1/2, _switchon(64,1) C#2,C#3}{1/2,E4,A4}{1/2,B#3,A4}{1/2,C#4,A4}{1/2, _switchoff(64,1) F#4,A4}{1/2,E4,A4}}} [—103—] {_tempo(53/30) _vel(52) _chan(1){3,_tempo(67/106) _tempo(67/106) _tempo(41/53) _tempo(41/53) _tempo(97/106) _tempo(97/106){3,D#5 D#6 E5 E#5 F#5 G5 G#5 A5 A#5 B5 B#5 C#6 D6 D#6 E6 E#6 F#6 G6 G#6 A6 A#6 B6 B#6 C#7},_tempo(67/106){1/2, _switchon(64,1) D#4,G#4,B4}_tempo(41/53) 1/2 _tempo(97/106) 1/2 3/2}} [—104—] {_tempo(53/30) _vel(97) _chan(1){3,_tempo(56/53) _tempo(56/53) _tempo(115/106) _tempo(115/106){3/2,D7 D#7 F#7 E7 C#7 A#6 G6 D6 D#6 F#6}{3/2,E6 C#6 A#5 G5 E5 C#5 A#4 G4 E4 C#4 A#3 G3},_tempo(56/53){3/20, _switchon(64,1) D#3& C#4& G4&}{7/20,&D#3,&C#4,&G4}1/4 _tempo(115/106) 1/4 1/2 3/2}} [—105—] {_tempo(53/30) _vel(72) _chan(1){7/2,_tempo(79/106) _tempo(79/106) _tempo(50/53) _tempo(50/53) _tempo(105/106) _tempo(105/106){11/8, _legato(20) G#2 D#3 G#3 B3 D#4 _legato(0) G#4 _legato(20) B4 D#5 G#5 B5 D#6}{1/8, _legato(0) G#6,B6}G#6 _tempo(50/53) -,_tempo(79/106){1/2, _switchon(64,1) -}_tempo(50/53) 1/2 5/2}} [—106—] {_tempo(121/60) _vel(82) _chan(1){3/2,_tempo(118/121) _tempo(118/121) 1/4 {1/4,B4,B5}{1/4,B4,B5}{1/4,B4,B5}{1/4,B4,B5}{1/4,B4,B5},_tempo(118/121) 1/4 {1/4,G#4}{1/4,G4,A#4}{1/4,F#4,A4}{1/4,E#4,G#4}{1/4,E4,G4}}} [—107—] {_tempo(31/15) _vel(52) _chan(1){3,{1/2,B5 F#4}{1/4,B4,F#5}{5/4,F#4 B5 F#4 C#6 F#4}{1/4,C#5,F#5}{3/4,F#4 C#6 F#4},{1/4,B5}{5/2,- F#5 - B5 - C#6 - F#5 - C#6}1/4,{1/4, _switchon(64,1) B2}{1/4, _switchoff(64,1) D#4}{1/4,F#3,B3}{5/4,D#4 B2 D#4 _switchon(64,1) F#2 _switchoff(64,1) E4}{1/4,F#3,A#3}{3/4,E4 F#2 E4},{1/4,B2}{11/4,- B3 - B2 - F#2 - A#3 - F#2 -}}} [—108—] {_tempo(21/10) _vel(90) _chan(1){3,_tempo(43/42) _tempo(43/42) _tempo(97/126) _tempo(97/126){7/4,D#6 F#4 D#5 B5 D#6 B6 -}{1/4,D#5,D#6}{1/4,D#5,D#6}{1/4,D#5,D#6}{1/4,D#5,D#6}{1/4,D#5,D#6},{1/4,D#6}11/4,{2,B2 D#4 F#3 B2 F#2 _switchon(64,1) B1 - _switchoff(64,1) B4&}{1/4,&B4,D5}{1/4,A#4,C#5}{1/4,A4,C5}{1/4,G#4,B4},{1/4,B2}1/4 _tempo(43/42) 3/4 _tempo(97/126) 1/2 5/4}} [—109—] {_tempo(21/10) _vel(82) _chan(1){3,{1/2,D#6 A#4}{1/4,D#5,A#5}{5/4,A#4 D#6 A#4 E#6 A#4}{1/4,E#5,A#5}{3/4,A#4 E#6 A#4},{1/4,D#6}{5/2,- A#5 - D#6 - E#6 - A#5 - E#6}1/4,{1/4, _switchon(64,1) D#3}{1/4, _switchoff(64,1) F#4}{1/4,A#3,D#4}{5/4,F#4 D#3 F#4 _switchon(64,1) A#2 _switchoff(64,1) G#4}{1/4,A#3,D4}{3/4,G#4 A#2 G#4},{1/4,D#3}{11/4,- D#4 - D#3 - A#2 - D4 - A#2 -}}} [—110—] {_tempo(21/10) _vel(90) _chan(1){3,_tempo(43/42) _tempo(43/42) _tempo(50/63) _tempo(50/63){7/4,F#6 A#4 F#5 D#6 F#6 D#7 -}{1/4,F#5,F#6}{1/4,F#5,F#6}{1/4,F#5,F#6}{1/4,F#5,F#6}{1/4,F#5,F#6},{1/4,F#6}11/4,{2,D#3 F#4 A#3 D#3 A#2 _switchon(64,1) D#2 - _switchoff(64,1) D#5}{1/4,D5,E#5}{1/4,C#5,E5}{1/4,B#4,D#5}{1/4,B4,D5},{1/4,D#3}1/4 _tempo(43/42) 3/4 _tempo(50/63) 1/2 5/4}} [—111—] {_tempo(53/30) _vel(82) _chan(1){3,_tempo(127/106) _tempo(127/106){1/2,F#6 C#5}{1/4,F#5,C#6}{5/4,C#5 F#6 C#5 G#6 C#5}{1/4,G#5,C#6}{1/2,C#5 G#6}{1/4,C#5},_tempo(127/106){1/4,F#6}{5/2,- C#6 - F#6 - G#6 - C#6 - G#6}0 1/4,_tempo(127/106){1/4, _switchon(64,1) F#3}{1/4, _switchoff(64,1) A#4}{1/4,C#4,F#4}{5/4,A#4 F#3 A#4 _switchon(64,1) C#3 _switchoff(64,1) B4}{1/4,C#4,E#4}{3/4,B4 C#3 B4},_tempo(127/106){1/4,F#3}{11/4,- F#4 - F#3 - C#3 - E#4 - C#3 -}}} [—112—] {_tempo(13/6) _vel(73) _chan(1){3,_tempo(129/130) _tempo(129/130){1/4,C#6,F#6,A#6}{1/4,C#6,G#6,B6}{1/4,C#6,A#6,C#7}{1/4,C#6,A#6,C#7}{1/4,C#6,G#6,B6}{1/4,C#6,F#6,A#6}{1/4,B5,D#6,G#6}{1/4,C#6,D#6,A#6}{1/4,D#6,B6}{1/4,D#6,B6}{1/4,C#6,D#6,A#6}{1/4,B5,D#6,G#6},_tempo(129/130){1/2,F#3}{1,C#4 A#4 F#5 A#5}{1/2,B2}{1,B3 G#4 D#5 G#5}}} [—113—] {_tempo(133/60) _vel(52) _chan(1){3,_tempo(132/133) _tempo(132/133){1/4,A#5,C#6,F#6}{1/4,B5,C#6,G#6}{1/4,C#6,A#6}{1/4,C#6,A#6}{1/4,B5,C#6,G#6}{1/4,A#5,C#6,F#6}{1/4,G#5,C#6,E#6}{1/4,A#5,C#6,F#6}{1/4,B5,C#6,G#6}{1/4,B5,C#6,G#6}_tempo(135/133){1/4,F#5,C#6,D#6}{1/4,G#5,C#6,E#6},_tempo(132/133){1/2,C#3}{1,A#3 F#4 C#5 F#5}{1/2,C#4}{1,E#5 G#4 C#4 B4}}} [—114—] {_tempo(139/60) _vel(110) _chan(1){3,_tempo(124/139) _tempo(124/139){1/2,F#5,C#6,F#6} 1/2 _tempo(121/139) 1/2 {1/4,G#2,G#3}{1/4,G#2,G#3}{1/4,G#3,G#4}{1/4,G#3,G#4}{1/4,G#4,G#5}{1/4,G#4,G#5},_tempo(124/139){F#5,C#6,F#6}_tempo(121/139) 1 1,_tempo(124/139){1/2, _switchon(64,1) F#4,A#4}_tempo(121/139){1/4, _switchoff(64,1) F#2,F#3}{1/4,F#2,F#3}{1/4,G2,G3}{1/4,G2,G3}1/2{1, _switchon(64,1) --}}} [—115—] {_tempo(127/60) _vel(61) _chan(1){3,_tempo(112/127) _tempo(112/127){1/2,G#5,G#6}{1/4,F#6,F#7}{1/4,F#6,F#7}{1/4,E6,E7}{1/4,E6,E7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,C#6,C#7}{1/4,C#6,C#7}{1/4,D#6,D#7}{1/4,D#6,D#7},_tempo(112/127) 1/2 {1/2, _switchoff(64,1) D#5}{2,C#5 B#4 A#4 B#4},_tempo(112/127) 1/2 {1/4,G#5}{9/4,G#5 G#5 G#5 G#5 G#5 G#5 G#5 G#5 G#5}}} [—116—] {_tempo(139/60) _vel(127) _chan(1){3,_tempo(115/139) _tempo(115/139){1/2,E6,E7} 1/2 _tempo(118/139) 1/2 {1/4,F#2,F#3}{1/4,F#2,F#3}{1/4,F#3,F#4}{1/4,F#3,F#4}{1/4,F#4,F#5}{1/4,F#4,F#5},_tempo(115/139){1/2,C#5}{1/4,G#2,G#3}_tempo(118/139){1/4,G#2,G#3}{1/4,G2,G3}{1/4,G2,G3}1/2{1, _switchon(64,1) --},_tempo(115/139){1/2,G#5}_tempo(118/139) 3/2 -}} [—117—] {_tempo(127/60) _vel(61) _chan(1){3,_tempo(112/127) _tempo(112/127){1/2,F#5,F#6}{1/4,E6,E7}{1/4,E6,E7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,C#6,C#7}{1/4,C#6,C#7}{1/4,B5,B6}{1/4,B5,B6}{1/4,C#6,C#7}{1/4,C#6,C#7},_tempo(112/127) 1/2 {1/2, _switchoff(64,1) C#5}{2,B4 A#4 G#4 A#4},_tempo(112/127) 1/2 {1/4,F#5}{9/4,F#5 F#5 F#5 F#5 F#5 F#5 F#5 F#5 F#5}}} [—118—] {_tempo(139/60) _vel(127) _chan(1){3,_tempo(115/139) _tempo(115/139){1/2,D#6,D#7} 1/2 _tempo(118/139) 1/2 {1/4,D#2,D#3}{1/4,D#2,D#3}{1/4,D#3,D#4}{1/4,D#3,D#4}{1/4,D#4,D#5}{1/4,D#4,D#5},_tempo(115/139){1/2,B4}{1/4,E#2,E#3}_tempo(118/139){1/4,E#2,E#3}{1/4,E2,E3}{1/4,E2,E3}1/2{1, _switchon(64,1) --},_tempo(115/139){1/2,F#5}_tempo(118/139) 3/2 -}} [—119—] {_tempo(127/60) _vel(93) _chan(1){3,_tempo(112/127) _tempo(112/127){1/2,D#5,D#6}_tempo(124/127){1/4,D#5,D#6}{1/4,D#5,D#6}{1/4,D#5,D#6}{1/4,D#5,D#6}{1/4,E5,E6}{1/4,D#5,D#6}{1/4,C#5,C#6}{1/4,B4,B5}{1/4,A#4,A#5}{1/4,G#4,G#5},_tempo(112/127) 1/2 {1/4, _switchoff(64,1) D#4,G4}_tempo(124/127){1/4,D#4,G4}{1/4,E#4,G#4}{1/4,E#4,G#4}{1/4,F#4,A4}{1/4,F#4,A4}{1/4,E4,G4}{1/4,E4,G4}{1/4,D4,E#4}{1/4,D4,E#4}}} [—120—] {_tempo(127/60) _vel(127) _chan(1){3,_tempo(88/127) _tempo(88/127){1/2,G4,G5} 1/2 _tempo(97/127) 1/2 _tempo(109/127){1/4,D#2,D#3}{1/4,D#2,D#3}{1/4,D#3,D#4}{1/4,D#3,D#4} 1/4 _tempo(133/127) 1/4,_tempo(88/127) 5/2 _tempo(97/127){1/4,D#5}_tempo(109/127){1/4,D#5},_tempo(88/127) 5/2 _tempo(97/127){1/4,D#4}_tempo(109/127){1/4,D#4},_tempo(88/127){1/2, _switchon(64,1) D#4}{1/4, _switchoff(64,1) A#1,A#2}_tempo(97/127){1/4,A#1,A#2}{1/4,D2,D3}{1/4,D2,D3}_tempo(109/127) _switchon(64,1) - 1/2}} [—121—] {_tempo(103/60) _vel(94) _chan(1){3,_tempo(94/103) _tempo(94/103){1/2,D#5,D#6}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,E6,E7}{1/4,D#6,D#7}{1/4,C#6,C#7}{1/4,B5,B6}{1/4,A#5,A#6}{1/4,G#5,G#6},_tempo(94/103) 1/2 {1/4, _switchoff(64,1) G4,D#5}{1/4,G4,D#5}{1/4,G#4,E#5}{1/4,G#4,E#5}{1/4,A4,F#5}{1/4,A4,F#5}{1/4,A#4,G5}{1/4,A#4,G5}{1/4,D5,E#5}{1/4,D5,E#5}}} [—122—] {_tempo(121/60) _vel(52) _chan(1){3,_tempo(115/121) _tempo(115/121){1/4,G5,G6}{1/4,F#5,F#6}{1/4,E#5,E#6}{1/4,E5,E6}{1/4,D5,D6}{1/4,D#5,D#6}{1/4,E5,E6}{1/4,D#5,D#6}{1/4,C#5,C#6}{1/4,B4,B5}{1/4,A#4,A#5}{1/4,G#4,G#5},_tempo(115/121){1/4,A#4,D#5}{1/4,A#4,D#5}{1/4,G#4,B4}{1/4,G#4,B4}{1/4,F#4,A4}{1/4,F#4,A4}{1/4,G4,A#4}{1/4,G4,A#4}{1/4,E4,G4}{1/4,E4,G4}{1/4,D4,E#4}{1/4,D4,E#4}}} [—123—] {_tempo(13/6) _vel(52) _chan(1){3,_tempo(63/65) _tempo(63/65){1/4,G4,G5}{1/4,F#4,F#5}{1/4,E#4,E#5}{1/4,E4,E5}{1/4,D4,D5}{1/4,D#4,D#5}{1/4,E4,E5}{1/4,D#4,D#5}{1/4,C#4,C#5}{1/4,B3,B4}{1/4,A#3,A#4}{1/4,G#3,G#4},_tempo(63/65){1/4,A#3,D#4}{1/4,A#3,D#4}{1/4,G#3,B3}{1/4,G#3,B3}{1/4,F#3,A3}{1/4,F#3,A3}{1/4,G3,A#3}{1/4,G3,A#3}{1/4,E3,G3}{1/4,E3,G3}{1/4,D3,E#3}{1/4,D3,E#3}}} [—124—] {_tempo(133/60) _vel(52) _chan(1){3,{1/4,G3,G4}{1/4,F#3,F#4}{1/4,E#3,E#4}{1/4,E3,E4}{1/4,D3,D4}{1/4,D#3,D#4}{1/4,E3,E4}{1/4,E3,D#4}{1/4,E3,C#4}{1/4,E3,B3}{1/4,E#3,A#3}{1/4,E#3,G#3},{1/4,A#2,D#3}{1/4,A#2,D#3}{1/4,G#2,B2}{1/4,G#2,B2}{1/4,F#2,A2}{1/4,F#2,A2}{1/4,G2,A#2}{1/4,G2,A#2}{1/4,G2,A#2}{1/4,G2,A#2}{1/4,D2,B2}{1/4,D2,B2}}} [—125—] {_tempo(13/6) _vel(52) _chan(1){3,{1/2,G3}{1/4,D3,D4}{1/4, _switchon(64,1) -}{1/4,D#3,D#4} 1/4 _tempo(15/13){1/4,A3,A4} 1/4 {1/4,A#3,A#4} 1/4 _tempo(6/5){1/4, _switchoff(64,1) D4,D5}{1/4, _switchon(64,1) -},{1/2,D#2,A#2}{9/4,- D3 - D#3 - A3 - A#3 -}{1/4,D3,D4}}} [—126—] {_tempo(13/6) _vel(52) _chan(1){3,{1/4,D#4,D#5}{1/4,D#3,D#4}{1/4,A4,A5}{1/4,A3,A4}{1/4,A#4,A#5}{1/4,A#3,A#4}{1/4,D5,D6}{1/4,D4,D5}{1/4,D#5,D#6}{1/4,D#4,D#5}{1/4,A5,A6}{1/4,A4,A5}}} [—127—] {_tempo(9/4) _vel(52) _chan(1){3,{1/4,A#5,A#6}{1/4,A#4,A#5}{1/4,D6,D7}{1/4,D5,D6}{1/4,D#6,D#7}{1/4,D#5,D#6}_tempo(10/9){1/4,D6,D7}{1/4,D5,D6}{1/4,D#6,D#7}{1/4,D#5,D#6}{1/4,D6,D7}{1/4,D5,D6},3/2 _tempo(10/9) 1/2 -}} [—128—] {_tempo(47/20) _vel(52) _chan(1){3,{1/4,D#6,D#7}{1/4,C#5,C#6}{1/4,D#6,D#7}{1/4,A#4,A#5}{1/4,D#6,D#7}{1/4,G4,G5}{1/4,D#6,D#7}{1/4,D#4,D#5}{1/4,D#6,D#7}{1/4,C#4,C#5}{1/4,D#6,D#7}{1/4,A#3,A#4}, ---}} [—129—] {_tempo(47/20) _vel(52) _chan(1){3,{1/4,D#6,D#7}{1/4,G3,G4}{1/4,D#6,D#7}{1/4,D#3,D#4}{1/4,D#6,D#7}{1/4,C#3,C#4}{1/4,D#6,D#7}{1/4,A#2,A#3}{1/4,D#6,D#7}{1/4,G2,G3}{1/4,D#6,D#7}{1/4,D#2,D#3}, 1/8 23/8}} [—130—] {_tempo(11/5) _vel(52) _chan(1){3,{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}}} [—131—] {_tempo(121/60) _vel(97) _chan(1){3,{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,C#6,C#7}{1/4,C#6,C#7},{3, _switchoff(64,1) -- D#4 D#5 --}}} [—132—] {_tempo(25/12) _vel(82) _chan(1){3,_tempo(124/125) _tempo(124/125){1/4,B5,B6}{1/4,B5,B6}{1/4,B5,B6}{1/4,B5,B6}{1/4,A#5,A#6}{1/4,A#5,A#6}{1/4,G#5,G#6}{1/4,G#5,G#6}{1/4,G5,G6}{1/4,G5,G6}{1/4,G#5,G#6}{1/4,G#5,G#6},_tempo(124/125){1/2,G#1,G#2}{1/4,D#3,B3,D#4}{1/4,D#3,B3,D#4}{1/2,G#3,B3,D#4}{1/2,B1,B2}{1/4,D#3,B3,D#4}{1/4,D#3,B3,D#4}{1/2,G#3,B3,D#4}}} [—133—] {_tempo(21/10) _vel(52) _chan(1){3,_tempo(125/126) _tempo(125/126){1/4,A#5,A#6}{1/4,A#5,A#6}{1/4,D#5,D#6}{1/4,D#5,D#6}{1/4,D#5,D#6}{1/4,D#5,D#6}{1/4,E5,E6}{1/4,E5,E6}{1/4,D#5,D#6}{1/4,D#5,D#6}{1/4,C#5,C#6}{1/4,C#5,C#6},_tempo(125/126){1/2,D#2,D#3}{1/4,G3,D#4,G4}{1/4,G3,D#4,G4}{1/2,A#3,D#4,G4}{1/2,G2,G3}{1/4,C#4,D#4,A#4}{1/4,C#4,D#4,A#4}{1/2,C#4,D#4,A#4}}} [—134—] {_tempo(21/10) _vel(52) _chan(1){3,{1/4,B4,B5}{1/4,B4,B5}{1/4,B4,B5}{1/4,B4,B5}{1/4,A#4,A#5}{1/4,A#4,A#5}{1/4,G#4,G#5}{1/4,G#4,G#5}{1/4,G4,G5}{1/4,G4,G5}{1/4,G#4,G#5}{1/4,G#4,G#5},{1/2,G#2,G#3}{1/4,B3,D#4,G#4}{1/4,B3,D#4,G#4}{1/2,B3,D#4}{1/2, _switchon(64,1) E2}{1/4, _switchoff(64,1) A#3,D4}{1/4,A#3,D4}{1/2,A#3,D4}}} [—135—] {_tempo(127/60) _vel(97) _chan(1){3,{1/4,A#4,A#5}{1/4,A#4,A#5}{1/2,D#5 D#5}{1/4,D#5,D#6}{1/4,D#5,D#6}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,D#6,D#7}{1/4,C#6,C#7}{1/4,C#6,C#7},{1/2, _switchon(64,1) D#2}{1/4,G3,A#3,D#4}{1/4,G3,A#3,D#4}{1/2,G3,A#3,D#4}{1/2,G4,A#4,D#5} 1}} [—136—] {_tempo(127/60) _vel(52) _chan(1){3,{1/4,B#5,B#6}{1/4,B#5,B#6}{1/4,B#5,B#6}{1/4,B#5,B#6}{1/4,A5,A6}{1/4,A5,A6}{1/4,G#5,G#6}{1/4,G#5,G#6}{1/4,G#5,G#6}{1/4,G#5,G#6}{1/4,F#5,F#6}{1/4,F#5,F#6},{1/2, _switchon(64,1) G#1,G#2}{1/4,F#3,A3,D#4}{1/4,F#3,A3,D#4}{1/2,F#3,A3,D#4}{1/2, _switchoff(64,1) _switchon(64,1) B#1,B#2}{1/4,A3,D#4,A4}{1/4,A3,D#4,A4}{1/2,A3,D#4,A4}}} [—137—] {_tempo(127/60) _vel(52) _chan(1){3,{1/2,E5,E6}{1/4,E4,A4,C#5}{1/4,E4,A4,C#5}{1/4,E4,A4,D#5}{1/4,E4,A4,D#5}{1/4,E4,A4,E5}{1/4,E4,A4,E5}{1/4,E4,A4,D#5}{1/4,E4,A4,D#5}{1/4,E4,A4,C#5}{1/4,E4,A4,C#5},{1/2, _switchon(64,1) C#2,C#3}{1/4, _switchoff(64,1) E3,A3,C#4}{1/4,E3,A3,C#4}{1/4,D#3,A3,C#4}{1/4,D#3,A3,C#4}{1/4,C#3,A3,C#4}{1/4,C#3,A3,C#4}{1/4,D#3,A3,C#4}{1/4,D#3,A3,C#4}{1/4,E3,A3,C#4}{1/4,E3,A3,C#4},{3/2,C#2,C#3} 3/2}} [—138—] {_tempo(127/60) _vel(52) _chan(1){3,_tempo(122/127) _tempo(122/127){1/4,D#4,G#4,B4,D#5}{1/4,E4,E5}_tempo(125/127){1/4,E#4,E#5}{1/4,F#4,F#5}{1/4,G4,G5}{1/4,G#4,G#5}{1/4,A4,A5}{1/4,A#4,A#5}{1/4,B4,B5}{1/4,B#4,B#5}{1/4,C#5,C#6}{1/4,D5,D6},_tempo(122/127){1/4,D#3,G#3,B3}{1/4,D3,D4}_tempo(125/127){1/4,C#3,C#4}{1/4,B#2,B#3}{1/4,B2,B3}{1/4,A#2,A#3}{1/4, _switchon(64,1) A2,A3}{1/4,G#2,G#3}{1/4,G2,G3}{1/4,F#2,F#3}{1/4,E#2,E#3}{1/4,E2,E3}}} [—139—] {_tempo(3/4) _vel(52) _chan(1){3,_tempo(25/9) _tempo(25/9){1/4,D#5,G#5,B5,D#6}{1/4,E5,E6}{1/4,E#5,E#6}_tempo(122/45){1/4,F#5,F#6}{1/4,G5,G6}{1/4,G#5,G#6}_tempo(116/45){1/4,A5,A6}_tempo(22/9){1/4,A#5,A#6}_tempo(20/9){1/4,B5,B6}{1/4,C#6,C#7}_tempo(2){1/4,D6,D7}{1/4,D#6,D#7},_tempo(25/9){1/4, _switchon(64,1) D#2,G2,A#2,D#3}{1/4,D2,D3}{1/4,C#2,C#3}_tempo(122/45){1/4,B#1,B#2}{1/4,B1,B2}{1/4,A#1,A#2}_tempo(116/45){1/4,A1,A2}_tempo(22/9){1/4,G#1,G#2}_tempo(20/9){1/4,G1,G2}{1/4,F#1,F#2}_tempo(2){1/4,E1,E2}{1/4,D#1,D#2}}} [—140—] {_tempo(127/60) _vel(113) _chan(1){3,_tempo(100/127) _tempo(100/127){1/2,B3,D#4,G#4} 1/2 _tempo(94/127){1/2,B4,D#5,B5}_tempo(119/127){1/4,A#4,D#5,A#5}{1/4,B4,B5}_tempo(122/127){1/2,C#5,C#6}{1/4,B4,D#5,B5}{1/4,A#4,A#5},_tempo(100/127){1/2, _switchon(64,1) G#1,G#2}{1/4,D#2,D#3}{1/4,G#2,G#3}_tempo(94/127){1/2,D#3,D#4}_tempo(119/127){1/2, _switchoff(64,1) _switchon(64,1) G#1,G#2}_tempo(122/127){1/4,D#2,D#3}{1/4,G#2,G#3}{1/2,D#3,D#4}}} [—141—] {_tempo(43/20) _vel(52) _chan(1){3,{1/4,B4,D#5,B5}{1/4,C#5,C#6}{1/2,D#5,D#6}{1/4,C#5,C#6}{1/4,B4,B5}{1/4,A#4,D#5,A#5}{1/4,B4,B5}{1/2,C#5,C#6}{1/4,B4,D#5,B5}{1/4,A#4,A#5},{1/2, _switchon(64,1) G#1,G#2}{1/4,D#2,D#3}{1/4,G#2,G#3}{1/2,D#3,D#4}{1/2, _switchoff(64,1) _switchon(64,1) G#1,G#2}{1/4,D#2,D#3}{1/4,G#2,G#3}{1/2,D#3,D#4}}} [—142—] {_tempo(43/20) _vel(52) _chan(1){3,{1/4,B4,D#5,B5}{1/4,A#4,A#5}{1/2,G#4,G#5}{1/2,B5,D#6,B6}{1/4,A#5,D#6,A#6}{1/4,B5,B6}{1/2,C#6,C#7}{1/4,B5,D#6,B6}{1/4,A#5,A#6},{1/2, _switchon(64,1) G#1,G#2}{1/4,D#2,D#3}{1/4,G#2,G#3}{1/2,D#3,D#4}{1/2, _switchoff(64,1) _switchon(64,1) G#1,G#2}{1/4,D#2,D#3}{1/4,G#2,G#3}{1/2,D#3,D#4}}} [—143—] {_tempo(43/20) _vel(52) _chan(1){3,{1/4,B5,D#6,B6}{1/4,C#6,C#7}{1/2,D#6,D#7}{1/4,C#6,C#7}{1/4,B5,B6}{1/4,A#5,D#6,A#6}{1/4,B5,B6}{1/2,C#6,C#7}{1/4,B5,D#6,B6}{1/4,A#5,A#6},{1/2, _switchon(64,1) G#1,G#2}{1/4,D#2,D#3}{1/4,G#2,G#3}{1/2,D#3,D#4}{1/2, _switchoff(64,1) _switchon(64,1) G#1,G#2}{1/4,D#2,D#3}{1/4,G#2,G#3}{1/2,D#3,D#4}}} [—144—] {_tempo(13/6) _vel(52) _chan(1){3,{1/4,B5,D#6,B6}{1/4,A#5,A#6}{1/2,G#5,G#6}{1/2,D#4,B4,D#5}{1/4,D#4,A#4,D#5}{1/4,D#4,B4,D#5}{1/2,D#4,C#5,D#5}{1/4,D#4,B4,D#5}{1/4,D#4,A#4,D#5},{1/2, _switchon(64,1) G#1,G#2}{1/4,D#2,D#3}{1/4,G#2,G#3}{1/2,B2,D#3,B3}{1/4, _switchoff(64,1) A#2,D#3,A#3}{1/4,B2,D#3,B3}{1/2,C#3,D#3,C#4}{1/4,B2,D#3,B3}{1/4,A#2,D#3,A#3}}} [—145—] {_tempo(13/6) _vel(52) _chan(1){3,{1/4,D#4,B4,D#5}{1/4,D#4,A#4,D#5}_tempo(62/65){1/2,D#4,G#4,D#5}_tempo(127/130){1/2,D#5,G#5,D#6}{1/4,D#4,A#4,D#5}{1/4,D#4,B4,D#5}{1/2,D#4,C#5,D#5}{1/4,D#4,B4,D#5}{1/4,D#4,A#4,D#5},{1/4,B2,D#3,B3}{1/4,A#2,D#3,A#3}_tempo(62/65){1/2,G#2,D#3,G#3}_tempo(127/130){1/2, _switchon(64,1) G#1,D#2,G#2}{1/4, _switchoff(64,1) A#2,D#3,A#3}{1/4,B2,D#3,B3}{1/2,C#3,D#3,C#4}{1/4,B2,D#3,B3}{1/4,A#2,D#3,A#3}}} [—146—] {_tempo(31/15) _vel(52) _chan(1){3,{1/4,D#4,B4,D#5}{1/4,D#4,A#4,D#5}{1/2,D#4,G#4,D#5}_tempo(127/124){1/2,D#5,G#5,D#6}_tempo(147/124){1/4,D#4,B4,D#5}{1/4,D#4,A#4,D#5}{1/2,D#4,G#4,D#5}{1/2,G#5,D#6,G#6},{1/4,B2,D#3,B3}{1/4,A#2,D#3,A#3}{1/2,G#2,D#3,G#3}_tempo(127/124){1/2, _switchon(64,1) G#1,D#2,G#2}_tempo(147/124){1/4, _switchoff(64,1) B2,D#3,B3}{1/4,A#2,D#3,A#3}{1/2,G#2,D#3,G#3}{1/2, _switchon(64,1) G#1,D#2,G#2}}} [—147—] {_tempo(9/5) _vel(52) _chan(1){3,_tempo(38/27) _tempo(38/27){1/4,D#4,B4,D#5}{1/4,D#4,A#4,D#5}{1/2,D#4,G#4,D#5}_tempo(31/27){1/2,B5,D#6,B6}_tempo(38/27){1/4,D#4,B4,D#5}{1/4,D#4,A#4,D#5}_tempo(22/27){1/2,D#4,G#4,D#5}{1/2,D#6&,G#6&,D#7&},_tempo(38/27){1/4,B2,D#3,B3}{1/4,A#2,D#3,A#3}{1/2,G#2,D#3,G#3}_tempo(31/27){1/2, _switchon(64,1) G#1,D#2,G#2}_tempo(38/27){1/4, _switchoff(64,1) B2,D#3,B3}{1/4,A#2,D#3,A#3}_tempo(22/27){1/2,G#2,D#3,G#3}{1/2, _switchon(64,1) G#1&,D#2&,G#2&}}} [—148—] {_tempo(127/60) _vel(52) _chan(1){3,{1/2,&D#6,&G#6,&D#7}_tempo(103/127){1/2,D#6,G#6,D#7}{1/2,D#6,G#6,D#7}{1/2,D#6,G#6,D#7}{1/2,D#6,G#6,D#7}{1/2,D#6,G#6,D#7},{1/2,&G#1,&D#2,&G#2}_tempo(103/127){1/2,G#2,D#3,G#3}{1/2,G#3,D#4,G#4}{1/2,G#4,D#5,G#5}{1/2,G#3,D#4,G#4}{1/2,G#2,D#3,G#3}}} [—149—] {_tempo(31/15) _vel(52) _chan(1){3,{1/2,D#6,G#6,D#7} - {1/2,B3,D#4,G#4} 1,{1/2,G#1,D#2,G#2} - {1/2,G#2,D#3,G#3} 1}} [—150—] {_tempo(7/5) _vel(52) _chan(1){3,{3,G#5,B5,D#6,G#6},{3, _switchon(64,1) B3,D#4,G#4,B4}}}

In this Bol Processor score, the ped­al start/end com­mands are trans­lat­ed to _switchon(64,1) and _switchoff(64,1), and a 20 mil­lisec­onds ran­domi­sa­tion of dates is applied as per the instruc­tion _rndtime(20) — see Pedals and Randomisation below.

According to Wikipedia : "La Campanella" (Italian for "The lit­tle bell") is the nick­name giv­en to the third of Franz Liszt's six Grandes études de Paganini, S. 141 (1851). Its melody comes from the final move­ment of Niccolò Paganini's Violin Concerto No. 2 in B minor, where the melody is metaphor­i­cal­ly ampli­fied by a 'lit­tle hand­bell'. After lis­ten­ing to Liszt's piano ver­sion inter­pret­ed by the Bol Processor — and its human per­for­mance by Romuald Greiss on the Wikipedia page — I rec­om­mend watch­ing the out­stand­ing vio­lin per­for­mance of Paganini's orig­i­nal work by mae­stro Salvatore Accardo in 2008 (video).

Measure #96 of Liszt's “La Campanella”
Measure #96 of Liszt's “La Campanella”
Bol Processor score (top left), MuseScore dis­play, piano roll (bot­tom left) and sound-objects

In mea­sure #96 (image above), the loca­tions of ver­ti­cal blue lines are irrel­e­vant because of the vary­ing tem­pi list­ed below (green arrows). Note that these are the metronome val­ues giv­en for the per­for­mance (tags sound tempo), which are slight­ly dif­fer­ent from those giv­en in the print­ed score (tags per-minute). However, if the MusicXML score is well designed, there is no sig­nif­i­cant dif­fer­ence between import­ing only per­for­mance metronome val­ues and includ­ing print­ed score val­ues ; this point is dis­cussed below, see Tempo inter­pre­ta­tion: pre­scrip­tive ver­sus descrip­tive.

Ahead with grammars

Before we look in more detail at mate­r­i­al import­ed from MusicXML files, let us con­sid­er the issue of using frag­ments of this mate­r­i­al to cre­ate music in the Bol Processor task environment.

After importing/converting a MusicXML score, click­ing EXPLODE will split it into sep­a­rate items, one per mea­sure, accord­ing to the MusicXML structure:

The EXPLODE but­ton on the Data page.

The data has been chun­ked into units item 1, item 2 etc. Note that it is pos­si­ble to play each mea­sure sep­a­rate­ly and dis­play its sound-objects or its piano roll.

The CREATE GRAMMAR but­ton will now start con­vert­ing this data into a grammar:

The CREATE GRAMMAR button

The new gram­mar is dis­played in a pop-up win­dow and can be copied to a Grammar page:

The new gram­mar has been created

This is a basic trans­for­ma­tion. Playing this gram­mar would sim­ply recon­struct the musi­cal work as it was import­ed. However, as each mea­sure is now labelled as a vari­able M001, M002 etc., these vari­ables can be used as the "build­ing bricks" of a new com­po­si­tion­al work.

Performance controls

MusicXML files con­tain descrip­tive infor­ma­tion for use by mechan­i­cal play­ers that is not dis­played on the graph­ic score. For exam­ple, where the score says "Allegretto" the file con­tains a quan­ti­ta­tive instruc­tion such as "tem­po = 132".

Trills in mea­sure 10 of Beethoven's Fugue in B flat major
Trills as encod­ed in the MusicXML file

Another notable case is the rep­re­sen­ta­tion of trills (see image above). In some (but not all) MusicXML scores, they appear explic­it­ly as sequences of fast notes. Consequently, they are ren­dered cor­rect­ly by the inter­preter of the MusicXML file. In oth­er cas­es they have to be con­struct­ed — see Ornamentation below.

In the same mea­sure #10, a fer­ma­ta appears on top of the crotch­et rest. Its dura­tion is not spec­i­fied as it is at the dis­cre­tion of the per­former or con­duc­tor, but the Bol Processor fol­lows a com­mon prac­tice of mak­ing it twice the dura­tion of the marked rest.

MusicXML files con­tain infor­ma­tion about sound dynam­ics which the Bol Processor can inter­pret as either _volume(x) or _vel(x) com­mands. The lat­ter (veloc­i­ty) is appro­pri­ate for instru­ments such as piano, harp­si­chord etc.

In the absence of a numer­i­cal val­ue, a graph­i­cal rep­re­sen­ta­tion of the dynam­ics (ffff to pppp) will be used. This val­ue is esti­mat­ed accord­ing to the MakeMusic Finale dynam­ics convention.

Options for import­ing a MusicXML file

Some pre­scrip­tive infor­ma­tion that appears on the graph­i­cal score is not (cur­rent­ly) inter­pret­ed. The first rea­son is that it would be dif­fi­cult to trans­late per­for­mance con­trols to the Bol Processor - for exam­ple, stepwise/continuous vol­ume con­trol, accel­er­a­tion, etc. The sec­ond rea­son is that the aim of this exer­cise is not to pro­duce the "best inter­pre­ta­tion" of a score. Score edit­ing pro­grams can do that bet­ter! Our only inten­tion is to cap­ture musi­cal frag­ments and rework them with gram­mars or scripts.

It would be dif­fi­cult to reuse a musi­cal frag­ment packed with strings of per­for­mance con­trols rel­e­vant to its par­tic­u­lar con­text in the musi­cal work. To this end, the user is offered options to ignore vol­ume, tem­po and chan­nel assign­ments in any import­ed MusicXML score. These can lat­er be delet­ed or remapped with a sin­gle click (see below).

Remapping channels and instruments

MusicXML dig­i­tal scores con­tain spec­i­fi­ca­tions for indi­vid­ual parts/instruments. These parts are vis­i­ble in the Bol Processor score after con­ver­sion and can be mapped to the sound out­put device(s) — read below.

Each part can also be assigned a MIDI chan­nel. These chan­nels can be used to match instru­ments avail­able on a MIDI syn­the­sis­er, and _ins() instruc­tions are need­ed to call instru­ments avail­able in the Csound orchestra.

The remap­ping of MIDI chan­nels is eas­i­ly done at the bot­tom of the Data or Grammar pages:

The default note con­ven­tion when import­ing MusicXML scores is English ("C", "D", "E"…). This form allows it to be con­vert­ed with a sin­gle click to the Italian/Spanish/French ("do", "re", "mi"…) or Indian ("sa", "re", "ga"…) conventions.

Clicking on the MANAGE _chan() AND _ins() but­ton dis­plays a form list­ing all occur­rences of MIDI chan­nels and Csound instru­ments found in the score. Here, for exam­ple, we want to keep MIDI chan­nels and in the same time insert _ins() com­mands to call Csound instru­ments described in a "-cs" Csound resource file:

Error corrections

MuseScore's cor­rec­tion of the defec­tive sequence (top score)

MuseScore report­ed an error in mea­sure 142 of the MusicXML score for Beethoven's Fugue: the total tim­ing of the notes in part 1 (the upper­most score) is 3754 units, which is 3.66 beats (instead of 4) based on a divi­sion of 1024 units per quar­ter note. MuseScore has cor­rect­ed this error by stretch­ing this sequence to 4 beats with an erro­neous silence mark­er at the end.

The Bol Processor behaves dif­fer­ent­ly. Its notion of "mea­sure" as a poly­met­ric struc­ture is not based on count­ing beats. It takes the top line of the struc­ture as the tim­ing ref­er­ence, so "mea­sures" can be of vari­able dura­tion. Its inter­pre­ta­tion of this mea­sure is as fol­lows: the ratio 3755/1024 denotes exact­ly the (pre­sum­ably incor­rect) dura­tion of this mea­sure accord­ing to the MusicXML score:

{{3755/1024,
{{341/1024,G5}{171/512,D5}{341/512,D6 D6}{171/512,D5}{341/512,Bb5 Bb5}{171/512,A5}{341/1024,G5}{57/256,G5}{227/1024,F5}{57/256,A5}}},
{4,{{341/1024,Bb4}{171/512,Bb3}{341/512,Bb4 Bb4}{171/512,Bb3}{341/512,D5 D5}{171/512,C5}{341/512,Bb4 Bb4}{171/512,A4}{341/1024,C5}}},
{4,{{2,-}-{341/1024,-}{171/512,Eb3}{341/1024,F4}}},
{4,{{4,D4 F#3 F#3 G3 G3 E4 Eb4 Eb4}}}}

Measure # 142 inter­pret­ed by the Bol Processor

The graph­ic ren­der­ing of this mea­sure shows that the four sequences are per­fect­ly synchronised.

To cor­rect the error, sim­ply replace "3755/1024" with "4".

Error noti­fi­ca­tion while con­vert­ing Beethoven's Fugue

At the time of writ­ing, the Bol Processor has been able to import and play most MusicXML scores cor­rect­ly. Errors can still occur with very com­pli­cat­ed files, par­tic­u­lar­ly due to incon­sis­ten­cies (or round­ing errors) in the MusicXML code. For exam­ple, the mea­sure num­ber­ing in Liszt's 14th Hungarian Rhapsody looks con­fus­ing (due to implic­it mea­sures) and some val­ues of are incor­rect. These details are detect­ed and the errors are cor­rect­ed when the file is converted.

Tempo interpretation: prescriptive versus descriptive

MusicXML scores con­tain tem­po mark­ings of two kinds: (1) metronome pre­scrip­tive mark­ings avail­able on con­ven­tion­al print­ed scores and (2) their descrip­tive mod­i­fi­ca­tions for prop­er mechan­i­cal interpretation.

In the pre­scrip­tive set­ting, tem­po con­trols (sound tempo tags) type with­in mea­sures are dis­card­ed. Only per-minute tags are inter­pret­ed. This results in a "robot­ic" ren­der­ing: acceleration/deceleration lacks the pas­sion and sub­tle­ty of human inter­pre­ta­tion. However, since the tran­scrip­tion reflects the plain print­ed score, its frag­ments are more suit­able for a reuse. Assuming that this is exact­ly the ver­sion pub­lished by the com­pos­er (which is indeed debat­able) we can take the fol­low­ing inter­pre­ta­tion as reflect­ing the music that Liszt "had in mind" regard­less of the performer's inter­pre­ta­tion.

Liszt's 14th Hungarian Rhapsody import­ed by the Bol Processor and played on PianoTeq
with only “pre­scrip­tive” tem­po con­trols.
Source: ManWithNoName in the MuseScore com­mu­ni­ty

In a detailed inter­pre­ta­tion, all tem­po indi­ca­tions are con­vert­ed, includ­ing the "non-printing" ones (sound tempo tags), which we call descrip­tive. Global ren­der­ing is more pleas­ant when these tags make musi­cal sense. For exam­ple, this is Liszt's 14th Hungarian Rhapsody with all tem­po mark­ings. Note that the total dura­tion has increased by 15 seconds:

Liszt's 14th Hungarian Rhapsody with all "descrip­tive" tem­po con­trols.
Source: ManWithNoName in the MuseScore community

The options of rely­ing on exclu­sive­ly pre­scrip­tive, or exclu­sive­ly descrip­tive, tem­po mark­ings should be con­sid­ered when there is an incon­sis­ten­cy between the print­ed score (per-minute tags) and the per­for­mance details (sound tempo tags). The for­mer are intend­ed for use by a human per­former, where­as the lat­ter are intend­ed for use by machines…

Multiple ver­sions of the same piece of music can be found in shared repos­i­to­ries. Below is an inter­pre­ta­tion of the same 14th Hungarian Rhapsody based on the MusicXML score cus­tomised by OguzSirin:

Liszt's 14th Hungarian Rhapsody import­ed by the Bol Processor and played on PianoTeq with all "descrip­tive" tem­po con­trols.
Source: OguzSirin in the MuseScore community
Excerpts of piano roll for Liszt's 14th Hungarian Rhapsody tran­scribed by OguzSirin

The entire work is con­tained in a sin­gle poly­met­ric expres­sion (see code below) which must be "expand­ed" to fill a "phase dia­gram" of sound-objects. Its full expan­sion would pro­duce no less than 7 x 1023 sym­bols… more than the esti­mat­ed 400 bil­lion (4 x 1011) stars in the Milky Way! Fortunately, poly­met­ric rep­re­sen­ta­tions can be com­pressed into a com­pre­hen­sive for­mat (see code below) and processed to pro­duce the expect­ed sequence of sound objects. The com­pres­sion rate for this item is greater than 5 x 1022, so a Bol Processor score can be obtained with­out any loss of data.

Despite the lim­i­ta­tions (and poten­tial errors), the detailed vir­tu­os­i­ty engraved in Liszt's score sup­ports Alfred Brendel's idea of inter­pret­ing a musi­cal work:

If I belong to a tra­di­tion, it is a tra­di­tion that makes the mas­ter­piece tell the per­former what to do, and not the per­former telling the piece what it should be like, or the com­pos­er what he ought to have composed.

Focus on tempo and fermatas

This sec­tion is intend­ed for read­ers famil­iar with stan­dard west­ern music nota­tion. We illus­trate the inter­pre­ta­tion of (non-printed) metronome mark­ings with­in mea­sures and fer­ma­tas (unmea­sured pro­lon­ga­tions) using a typ­i­cal exam­ple: mea­sure #6 of Liszt's 14th Hungarian Rhapsody. The source mate­r­i­al is the MusicXML code of this mea­sure on which tem­po anno­ta­tions are high­light­ed in red and fer­matas in green colour.

This mea­sure is dis­played in the print­ed score as fol­lows. Invisible tem­po mark­ings have been added in red at the exact loca­tions spec­i­fied by the MusicXML score. Three fer­matas are print­ed above/below the note or silence to which they apply.

Measure 6
Measure 6 of Liszt's 14th Hungarian Rhapsody

The sym­bol­ic dura­tion of this mea­sure is 6 beats. Due to round­ing errors, the Bol Processor dis­plays it as 1441/240 = 6.004 beats. This tiny dis­crep­an­cy is caused by round­ing off the dura­tions of the 14 notes Ab2 C3 F3 Ab3 C4 F4 Ab4 C5 F5 Ab5 C6 F6 Ab6 C7, a sequence that should last exact­ly 3/8 of a mea­sure. Each beat is divid­ed into 480 parts — the divi­sion giv­en at the begin­ning of the score. So the sequence should last 480 x 3/8 = 180 units, and each note should last 180/14 = 12.85 units. Since dura­tions are rep­re­sent­ed as inte­gers in a MusicXML score, this val­ue has been round­ed to 13. This explains the small dif­fer­ence vis­i­ble in the Bol Processor score, but unno­tice­able to the human ear.

Below is the com­plete Bol Processor tran­scrip­tion of this mea­sure. First, the graph­ic rep­re­sen­ta­tion of sound-objects labeled as sim­ple notes:

Measure 6 of Liszt's 14th Hungarian Rhapsody dis­played as sound-objects by the Bol Processor

Note that all sound-objects in the first 2.5 sec­onds are dupli­cat­ed. The MusicXML score is redun­dant, for­tu­nate­ly with no incon­sis­ten­cies between dupli­cate occur­rences, which explains why they are not vis­i­ble in the print­ed score.

The same poly­met­ric expres­sion is avail­able in piano roll format:

Measure 6 of Liszt's 14th Hungarian Rhapsody dis­played as piano roll by the Bol Processor

We will fur­ther explain how this tran­scrip­tion has been obtained.

On the Data win­dow the 6th mea­sure is dis­played as a poly­met­ric struc­ture: {dura­tion, field 1, field2, field 3, field4}. After import­ing the MusicXML score, click the EXPLODE but­ton on the right side to dis­play mea­sures as sep­a­rate items. Since mea­sure num­ber­ing in this score starts with 0, mea­sure #6 will be dis­played as item #7.

To facil­i­tate read­ing, each field is on a sep­a­rate line:

_tempo(13/20) _vel(82) _chan(1) {

1441/240,

_tempo(80/39) {Ab2,C3} {2,F3} 1/8 _tempo(16/39) {13/480,Ab2} _tempo(16/39) {169/480,C3 F3 Ab3 C4 F4 Ab4 C5 F5 Ab5 C6 F6 Ab6 C7} _tempo(4/3) {1/2,F7} _tempo(4/3) --,

_tempo(80/39) {Ab2,C3} _tempo(80/39) {2,F3} 1/8 _tempo(16/39) 3/8 _tempo(4/3) {1/2,Ab6} 481/240,

_tempo(80/39) {F1,C2} _tempo(80/39) {2,F2} {1/8,F1} _tempo(16/39) {13/480,C2} _tempo(16/39) {13/480,F2}{13/40,Ab2 C3 F3 Ab3 C4 F4 Ab4 C5 F5 Ab5 C6 F6} _tempo(4/3) 667/480 {53/480,G1,G2} {1/2,Ab1,Ab2}{1/2,B1,B2},

_tempo(80/39) {F1,C2}{2,F2} 1/8 _tempo(16/39) 91/240 _tempo(4/3) 599/240 1/240

}

Integers and inte­ger ratios rep­re­sent rests. For exam­ple, 667/480 in the third field is a rest of 667/480 = 1.389 beats. Dates and dura­tions are treat­ed by the Bol Processor as inte­ger ratios, there­by allow­ing per­fect time accu­ra­cy. The ratio 1/2 in the first field can be inter­pret­ed as a 1/2 beat rest or the sym­bol­ic dura­tion of the expres­sion {1/2,F7}.

Redundancy in the MusicXML score is vis­i­ble as expres­sions such as {Ab2,C3}{2,F3} and {F1,C2}{2,F2} appear in two fields (at the same date and speed).

Tempo mark­ings in red reflect MusicXML score anno­ta­tions. Each field starts with a metronome of 80 bpm (beats per minute). The _tempo(13/20) instruc­tion before the poly­met­ric struc­ture sets the metronome to 60 x 13/20 = 39 bpm. At the begin­ning of each field it is mul­ti­plied by 80/39, so 60 x 13/20 x 80/39 = 80 bpm, as expect­ed. The fol­low­ing instruc­tions pro­duce 16 bpm and 52 bpm in their respec­tive places.

This inter­pre­ta­tion of a MusicXML score as a poly­met­ric struc­ture is not easy to work out with respect to metronome anno­ta­tions. The main prob­lem is that these anno­ta­tions only appear on the top line of the graph­ic score (i.e. the first field of the struc­ture) and should be insert­ed at the same date in oth­er fields. For exam­ple, _tempo(4/3) is on the 4.5th beat, before {1/2,F7} in the first field, and there­fore before {1/2,Ab6} in the sec­ond field. This is easy to calculate.

The rest 481/240 (about 2 beats), which appears in green on the Bol Processor score, has been added after the sec­ond field to cal­i­brate its dura­tion to that of the mea­sure. This cal­i­bra­tion is not manda­to­ry on print­ed scores or in MusicXML files: where no note is shown, musi­cians under­stand that there is an implic­it rest, which they insert spon­ta­neous­ly to antic­i­pate the syn­chro­ni­sa­tion of upcom­ing notes in the next mea­sure. However, a machine should be instruct­ed to do so.

However, _tempo(16/39), which pre­cedes the Ab2 C3 F3… sequence in the first field, falls with­in a 1/2 beat rest in the sec­ond field. This pause is actu­al­ly cod­ed as a for­ward instruc­tion, as it does not appear on the print­ed score. To syn­chro­nise tem­po changes, the_tempo(16/39) instruc­tion must be placed in the first quar­ter of this rest. The result is:

1/8 _tempo(16/39) 3/8

Similarly, a for­ward of 2.5 beats in the fourth field must be bro­ken in order to insert the _tempo(8/27) and _tempo(26/27) state­ments, which would yield the following:

1/8 _tempo(16/39) 91/240 _tempo(4/3) 480/240

However, the cal­i­bra­tion of the dura­tion of this fourth field requires an addi­tion­al pause of 1/2 beat, sug­gest­ing that 480/240 be replaced by 600/240. An addi­tion­al 1/240 gap is required to com­pen­sate for round­ing errors. This gives:

1/8 _tempo(16/39) 91/240 _tempo(4/3) 599/240 1/240

Another prob­lem with mea­sure 6 of Liszt's 14th Hungarian Rhapsody is the appear­ance of three fer­matas (see print­ed score). Like metronome mark­ings, fer­matas are not repeat­ed on every line of the score, as they apply to all parts (voic­es) simul­ta­ne­ous­ly. The dura­tions must there­fore be adjust­ed accord­ing­ly in order to main­tain syn­chro­ni­sa­tion in a machine performance.

The first fer­ma­ta (coloured green in the MusicXML score) is on note "F3" of the first field. Its dura­tion is there­fore 2 beats instead of 1. This exten­sion is prop­a­gat­ed to sub­se­quent fields at the same date, name­ly "F3", "F2", "F2".

The sec­ond fer­ma­ta is placed on an eighth (qua­ver) rest that appears in the print­ed score, and its dura­tion is extend­ed by 1/2 beat. This ends by extend­ing by 1/2 beat the rests that occur at the same date in sub­se­quent fields.

To facil­i­tate sim­i­lar analy­ses, an option is pro­vid­ed to track trans­for­ma­tions when importing/converting MusicXML scores. The part rel­e­vant to mea­sure #6 (item #7) reads as follows:

• Measure #6 part [P1] starts with cur­rent peri­od = 0.75s, cur­rent tem­po = 4/3, default tem­po = 4/3 (metronome = 80)
mm Measure #6 part P1 field #1 metronome set to 80 at date 0 beat(s)
f+ Measure #6 part P1 field #1 note ‘F3’ at date 1 increased by 1 beat(s) as per fer­ma­ta #1
mm Measure #6 part P1 field #1 metronome set to 16 at date 3 beat(s)
mm Measure #6 part P1 field #1 metronome set to 16 at date 25/8 beat(s)
mm Measure #6 part P1 field #1 metronome set to 52 at date 1513/480 beat(s)
mm Measure #6 part P1 field #1 metronome set to 52 at date 841/240 beat(s)
f+ Measure #6 part P1 field #1 note ‘-’ at date 961/240 increased by 1/2 beat(s) as per fer­ma­ta #2
+ mea­sure #6 field #1 : phys­i­cal time = 7.98s
• Rounding part P1 mea­sure 6 field #2, neglect­ing ‘back­up’ rest = 1/240
mm Measure #6 part P1 field #2 metronome set to 80 at date 0 beat(s)
f+ Measure #6 part P1 field #2 note ‘F3’ at date 1 increased by 1 beat(s) to insert fer­ma­ta #1
mm Measure #6 part P1 field #2 metronome set to 80 at date 1 beat(s)
mm Measure #6 part P1 field #2 metronome set to 16 dur­ing rest start­ing date 3 beat(s)
mm Measure #6 part P1 field #2 metronome set to 52 at date 7/2 beat(s)
+ mea­sure #6 field #2 : phys­i­cal time = 5.08s
➡ Error in mea­sure 6 part P1 field #3, ‘back­up’ rest = -1/2 beat(s) (fixed)
mm Measure #6 part P1 field #3 metronome set to 80 at date 0 beat(s)
f+ Measure #6 part P1 field #3 note ‘F2’ at date 1 increased by 1 beat(s) to insert fer­ma­ta #1
mm Measure #6 part P1 field #3 metronome set to 80 at date 1 beat(s)
mm Measure #6 part P1 field #3 metronome set to 16 at date 25/8 beat(s)
mm Measure #6 part P1 field #3 metronome set to 16 at date 1513/480 beat(s)
f+ Measure #6 part P1 field #3 silence at date 961/240 increased by 1/2 to insert fer­ma­ta #2
mm Measure #6 part P1 field #3 metronome set to 52 dur­ing rest start­ing date 841/240 beat(s)
+ mea­sure #6 field #3 : phys­i­cal time = 9.28s
• Rounding part P1 mea­sure 6 field #4, neglect­ing ‘back­up’ rest = 1/240
mm Measure #6 part P1 field #4 metronome set to 80 at date 0 beat(s)
f+ Measure #6 part P1 field #4 note ‘F2’ at date 1 increased by 1 beat(s) to insert fer­ma­ta #1
f+ Measure #6 part P1 field #4 silence at date 961/240 increased by 1/2 to insert fer­ma­ta #2
mm Measure #6 part P1 field #4 metronome set to 16 dur­ing rest start­ing date 3 beat(s)
mm Measure #6 part P1 field #4 metronome set to 52 dur­ing rest start­ing date 3 beat(s)
+rest Measure #6 part P1 field #2 added rest = 481/240 beat(s)
+rest Measure #6 part P1 field #4 added rest = 1/240 beat(s)
+ mea­sure #6 field #4 : phys­i­cal time = 7.77s
➡ Measure #6 part [P1] phys­i­cal time = 9.28s, aver­age metronome = 49, final metronome = 39

Changing tempo

There are sev­er­al meth­ods for chang­ing the tem­po of import­ed MusicXML scores. After the con­ver­sion it is obvi­ous­ly pos­si­ble to edit the _tempo(x) state­ments indi­vid­u­al­ly. Clicking on the EXPLODE but­ton allows each mea­sure to be mod­i­fied and checked visually/audibly.

Inserting a _tempo(x) instruc­tion in front of the musi­cal work changes the aver­age metronome val­ue. The effect is iden­ti­cal to chang­ing the metronome in the set­tings file (which we did for Oscar Peterson's work). For exam­ple, the fol­low­ing Bol Processor score would play Liszt's 14th Hungarian Rhapsody at half speed:

// MusicXML file ‘Hungarian_Rhapsody_No._14.musicxml’ con­vert­ed
// Score part ‘P1’: instru­ment = Piano — MIDI chan­nel 1
-se.Hungarian_Rhapsody

_tempo(1/2) {_tempo(9/10) _vel(82) _chan(1){9/8, 1/8 _tempo(53/54) -,_tempo(10/9){1/8,C1,C2}_tempo(53/54){1/2,Db1,Db2}{1/2,E1,E2}}}{_tempo(4/3) _vel(82) _chan(1){33/8,{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}

Beginning of Liszt's 14th Hungarian Rhapsody at half speed

Despite the Bol Processor's sys­tem­at­ic treat­ment of sym­bol­ic time as inte­ger ratios, a floating-point argu­ment x is accept­able in a _tempo(x) instruc­tion. For exam­ple, _tempo(1.68) is auto­mat­i­cal­ly con­vert­ed to _tempo(168/100) and sim­pli­fied to _tempo(42/25).

Advanced tem­po adjust­ment is pos­si­ble when import­ing the MusicXML score.

The cur­rent aver­age, min­i­mum and max­i­mum metronome val­ues are dis­played. Yellow box­es show the default val­ues, e.g. set aver­age to 60 bpm, min­i­mum to 10 bpm and max­i­mum to 180 bpm.

All metronome val­ues are mod­i­fied using a qua­drat­ic regres­sion of the map­ping of val­ues. A lin­ear regres­sion can be used to replace the poly­no­mi­al form if it is not monot­o­nous. For this exam­ple (14th Hungarian Rhapsody) the new aver­age would be 63 bpm instead of the expect­ed 60 bpm. The dis­crep­an­cy depends on the sta­tis­ti­cal dis­tri­b­u­tion of the values.

Changing volume or velocity

When con­vert­ing a MusicXML score, there is an option to inter­pret sound dynam­ics as vol­ume or veloc­i­ty con­trols. The lat­ter may be prefer­able for sound syn­the­sis that imi­tates plucked or struck string instruments.

Whatever you choose, you can lat­er adjust the vol­ume and veloc­i­ty con­trols for the entire musi­cal work. For exam­ple, click Modify _vel() at the bot­tom of the Data page.

This will dis­play a form show­ing the cur­rent aver­age, min­i­mum and max­i­mum val­ues of _vel(x) state­ments in the score. Enter the desired val­ues in the yel­low cells and click APPLY.

The map­ping uses a qua­drat­ic regres­sion (if monot­o­nous), as explained in rela­tion to tem­po (see above). For the same rea­son, the aver­ages obtained are gen­er­al­ly not exact­ly the desired ones.

Ornamentation

Western musi­cal scores can con­tain many types of orna­men­ta­tion with names and styles of inter­pre­ta­tion depend­ing on the his­tor­i­cal peri­od. The MusicXML for­mat includes some of these, which can pro­duce sound effects sim­i­lar to those pro­duced by human performers.

The fol­low­ing orna­ments are tran­scribed into Bol Processor scores when MusicXML files are import­ed. The accu­ra­cy of these inter­pre­ta­tions is not a big deal, since the main object is to import musi­cal frag­ments that will be trans­formed and reused in dif­fer­ent con­texts. Nevertheless, it is fun to design a good inter­pre­ta­tion… Before import­ing a MusicXML file, options are giv­en to dis­card one of the fol­low­ing types of orna­ments. The option is only dis­played if at least one occur­rence is found in the file.

Mordents

There is a wide vari­ety of mor­dents with mean­ings that have changed over the years. The inter­pre­ta­tion in Bol Processor is close to the musi­cal prac­tice of the 19th cen­tu­ry, yet accept­able for the inter­pre­ta­tion of Baroque works.

The MusicXML tags for mor­dents are mordent and inverted-mordent which cor­re­spond to the more com­pre­hen­si­ble terms of low­er mor­dent and upper mor­dent respec­tive­ly. We will illus­trate their use in François Couperin's work Les Ombres Errantes (1730), using a MusicXML file arranged by Vinckenbosch from the MuseScore com­mu­ni­ty. Let us look at and lis­ten to the first three measures:

Beginning of François Couperin's Les Ombres Errantes (MuseScore)
➡ read full score (Creative Commons licence CC0 1.0 Universal)
Beginning of François Couperin's “Les Ombres Errantes” inter­pret­ed by the Bol Processor + Csound with a “Rameau en sib” temperament

There are eight mor­dents in the first three mea­sures of Les Ombres Errantes. Those num­bered 1, 2, 3, 7 and 8 are of the upper type. Mordents #4, #5 and #6 are of the low­er type. In addi­tion, the marks of all the upper mor­dents are longer than stan­dard, which makes them long. Their MusicXML tag is there­fore <inverted-mordent long="yes"/>.

Each mor­dent is inter­pret­ed as a series of notes on a rhyth­mic pat­tern, which may be short or long. For exam­ple, note B4 (the first long upper mor­dent) is inter­pret­ed as

{1/4,C5 B4 C5}{3/4,B4}

which indi­cates that it has been embell­ished by a short step down from the next high­er note C5. The fourth mor­dent is of the short low­er type on note C5, which yields:

{1/8,C5 B4}{7/8,C5}

The full list of mor­dents in these three mea­sures is:

  1. {1/4,C5 B4 C5}{3/4,B4}
  2. {1/4,Eb5 D5 Eb5}{3/4,D5}
  3. {1/4,C5 B4 C5}{3/4,B4}
  4. {1/8,C5 B4}{7/8,C5}
  5. {1/8,Eb4 D4}{7/8,Eb4}
  6. {1/8,Eb4 D4}{7/8,Eb4}
  7. {1/4,C4 B3 C4}{3/4,B3}
  8. {1/4,C4 B3 C4}{3/4,B3}

While cre­at­ing rhyth­mic pat­terns of mor­dents is fair­ly straight­for­ward, a dif­fi­cul­ty lies in choos­ing the note above or below the final note at a tonal dis­tance of 1 or 2 semi­tones. The default choice is a note that belongs to the dia­ton­ic scale, which can be mod­i­fied by changes ear­li­er in the mea­sure. An option to inter­pret mor­dents, turns and trills as"chromatic" is offered, see below.

With two flats in the key sig­na­ture, i.e. Bb and Eb, the glob­al dia­ton­ic scale of this piece reads as B flat major (or G minor) scale = "C D Eb F G D Bb". However, in the sec­ond mea­sure, Bb is altered to B by a nat­ur­al sign. Therefore, in the fol­low­ing mor­dent #4, the note B4 must be used instead of Bb4 as the low­er note lead­ing to C5.

Mordents sound accept­able in this inter­pre­ta­tion, as can be heard in the full record­ing with micro­ton­al adjust­ments on a Pianoteq synthesiser:

François Couperin's “Les Ombres Errantes” (1730) with “Rameau en sib” tem­pera­ment (1726) inter­pret­ed by the Bol Processor on a Pianoteq syn­the­sis­er.
➡ More tun­ings and Csound ver­sion on the page Comparing tem­pera­ments

Turns

A turn is sim­i­lar to a mor­dent, except that it picks up both the next high and low notes in the scale. If it is linked to a mor­dent, it can bor­row its attrib­ut­es (see above): upper/lower and long/short. If the turn is not asso­ci­at­ed with a mor­dent, it will use the long + upper attrib­ut­es. This is a design option that can be revised or made optional.

A spe­cif­ic attribute of turns is beats, sim­i­lar to trill-beats (see below). These are defined (read the source) as "The num­ber of dis­tinct notes dur­ing play­back, count­ing the start­ing note but not the two-note turn. It is 4 if not specified."

Examples of turns can be found in François Couperin's Les Ombres Errantes. They are all four beats long and embed­ded in long/upper mor­dents, for exam­ple, the note Ab3 in mea­sure #12:

{1, Ab3 {2, A3 Ab3 G3} Ab3}

The com­plete mea­sure #12 (with the turn high­light­ed) is:

Measure #12 of “Les Ombres Errantes” MuseScore ver­sion by Vinckenbosch

{4,
{1,D5 Bb4}{2,Eb5}{3/4,Eb5}{1/4,D5},
&Ab4&{1/2,&Ab4}{3/2,G4& &G4 F4&}&F4,
Bb3{1,Ab3{2,A3 Ab3 G3}Ab3}Bb3& &Bb3,
1 - Bb3 Bb2
}

The ‘&’ glyph indi­cates tied notes, see the tuto­r­i­al.

Measure #12 of “Les Ombres Errantes” with a turn on Ab3 as a vari­ant of a long upper mordent

A short turn on 4 beats on the same note would result:

{1, Ab3 {1, A3 Ab3 G3} Ab3_}

The glyph ‘_’ is a one-beat pro­lon­ga­tion of the pre­ced­ing note. Short and long turns of 5 beats would respec­tive­ly result:

{1, Ab3{2, A3 Ab3 G3 Ab3 A3} Ab3_}
{1, Ab3 {3, A3 Ab3 G3 Ab3 A3} Ab3}

Note that the result would be unchanged if the turns in this piece were inter­pret­ed as "chromatic" in this piece: this option picks up the next high­er and low­er notes in the chro­mat­ic scale under­ly­ing the tun­ing of the piece — see image of the Rameau en sib mean­tone temperament.

Turns not asso­ci­at­ed with mor­dents are found in François Couperin’s Le Petit Rien:

François Couperin's “Le Petit Rien” (1722) with a “Rameau en do” tem­pera­ment inter­pret­ed by the Bol Processor on a Pianoteq syn­the­sis­er
Source: MusicXML score by Yvan43

Trills

Trills are marked with the trill-mark tag. There is an option to ignore this if the detailed note sequences are already encod­ed in the MusicXML file. (This is not easy to guess!) Let us see the con­struc­tion of trills when the option is not checked.

The treat­ment of trills is sim­i­lar to that of mor­dents (see above). There are many ways to inter­pret a trill, depend­ing on the style and per­son­al pref­er­ence of the per­former. By default, trills in the Bol Processor start with the ref­er­ence note and end with the altered note, which is one step high­er in the scale. However, if the start­ing note has a tie, the order of the notes is reversed, so that the stream ends with the tied note.

Among the avail­able options of the trill-mark tag, we pick up trill-beats (read the doc­u­men­ta­tion), whose val­ue is "3" by default. Its def­i­n­i­tion is a lit­tle obscure: "The num­ber of dis­tinct notes dur­ing play­back, count­ing the start­ing note but not the two-note turn. It is 3 if not spec­i­fied." Our pro­vi­sion­al inter­pre­ta­tion is that the total num­ber of jumps is trill-beats + 1.

Examples of the two types in Liszt's 14th Hungarian Rhapsody:

Measure #86 = {_tempo(7/15) _vel(82){1081/240,{3/2,D5,A5}{1/2,D5,G5}{1/2,D5,F#5}{1,G5 A5 G5 A5 G5 A5 G5 A5} - 1/240,--- {1/2,C#5}{7/160,F#5}{147/160,G5 A#5 B5 E6 E#6 F#6 A6 G6 E6 C#6 A#5 G5 E5 E#5 F#5 A5 G5 B#4 C#5 F#5 E5}{1/24,- D5},{3/2,F#4,A4}{1/2,E4,A4}{1/2,D4,A4}{2,A#3,E4,G4}1/240}}

Measure #207 = {_tempo(4/3) _vel(82){45/8,{1/2,C7 Db7 Eb7}{3,{1,G7 F7 G7 F7 G7 F7 G7 F7&}}{3/4,&F7}{1/4,C7 Db7}_tempo(1/2){1,F7 Db7 E7 C7 Eb7 Cb7 D7 Bb6 Db7 A6 C7 Ab6 B6 G6 Bb6 Gb6 A6 F6 Ab6 E6 G6 Eb6 Gb6 D6}_tempo(3/2) 1/8,{1,-- B1}{5/2,B2 F3 Ab3 Db4 F4 Ab4 Db5 F5 Ab5 Db6}{1/2,F6}1/2 _tempo(1/2) 1 _tempo(3/2) 1/8}}

Measure #211 = {_tempo(11/4) _volume(64){2,{1,G4 C4}{1,G4 A4 G4 A4 G4 A4 G4 A4},{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}

Measure #207 of the 14th Hungarian rhapsody
Measure #211 of the 14th Hungarian rhapsody

If the trill option is set to "chromatic", the pre­ced­ing trills will be respectively:

{1, G5 G#5 G5 G#5 G5 G#5 G5 G#5}
{1, F#7 F7 F#7 F7 F#7 F7 F#7 F7&}
{1, G4 G#4 G4 G#4 G4 G#4 G4 G#4}

Arpeggios

Arpeggios are also con­vert­ed into poly­met­ric struc­tures. Below is a chord {F1,C2,F3} of 1/2 beat dura­tion, fol­lowed by its inter­pre­ta­tion as an arpeggio:

{1/2, F1, C2, F2} - {1/5, F1& C2& F2&} {3/10, &F1, &C2, &F2}

Chord with­out then with arpeggio
Piano roll of chord with­out then with arpeggio

The piano roll of this sequence makes it clear. The chord is divid­ed into two parts. The dura­tion of the first part is deter­mined by a min­i­mum val­ue of the delay between each arpeg­gio note and the fol­low­ing one, here set to 1/20th of a beat. The total dura­tion must not exceed half of the dura­tion of the chord.

Notes are tied (sym­bol '&') so that their dura­tions are merged, as expect­ed, between the arpeg­gio part and the pure chord part: for instance, "F1&" is tied to "&F1" — read page Tied notes for details.

Slurs

Slurs are trans­lat­ed into the Bol Processor score as _legato(x) state­ments, where "x" is the per­cent­age by which note dura­tions are increased. This option is set by default to x = 20% and can be des­e­lect­ed before import­ing the MusicXML file.

Slurs on the first notes of François Couperin's “Les Ombres Errantes”

The score (first two mea­sures) reads as follows:

{_tempo(13/15) _vel(64){3, _legato(20) C5 _legato(0) {1/4,C5 B4 C5}{3/4,B4} _legato(20) Eb5, {1/2,Eb4}{5/2,G4 D4 F4 C4 Eb4},Eb4 D4 C4}} [—2—] {_tempo(13/15) _vel(64){4, _legato(0) {1/4,Eb5 D5 Eb5}{3/4,D5} _legato(20) C5 _legato(0) {1/4,C5 B4 C5}{3/4,B4}{1/8,C5 B4}{7/8,C5},{4,B3 F4 Eb4 G4 D4 F4 C4 Eb4},B3 Eb4 D4 C4}}

The notes used for stretch­ing are those asso­ci­at­ed with slurs in the score: C5 , Eb5 and C5. Other notes, even the sequence {1/2,Eb4}{5/2,G4 D4 F4 C4 Eb4},Eb4 D4 C4}}, are not mod­i­fied because they do not appear at the same lev­el of the poly­met­ric structure.

Staccato

Staccato, spic­ca­to and stac­catis­si­mo are pro­duced by reduc­ing the dura­tion of the notes to which they apply.

With stac­ca­to or spic­ca­to, the dura­tion is halved. For exam­ple, C4 is replaced by {1, C4 -}.

Staccatissimo reduces the dura­tion by three quar­ters. For exam­ple, C4 is replaced by {1, C4 ---}.

Pedals

Pedal com­mands are cap­tured from the MusicXML file and can be inter­pret­ed as MIDI con­troller com­mands. (These are ignored when gen­er­at­ing a Csound output.)

A con­troller set­ting is sug­gest­ed for each part of the score where a ped­al com­mand has been found. By default, con­troller #64 is used along with the MIDI chan­nel assigned to the part. The per­for­mance con­trols _switchon() and _switchoff() are used accord­ing to the Bol Processor syntax.

Below are the set­tings for ped­als, trills, etc., and the extra dura­tion of the last mea­sure for a piece with ped­als in a sin­gle part. Numbers in yel­low cells can be modified:

For exam­ple, the first three mea­sures of Liszt's La Campanella are inter­pret­ed as follows:

{_tempo(97/60) _vel(52) _chan(1){3, 2 {1/2,D#6,D#7}{1/2,D#6,D#7}, 1/2 {1/2, _switchon(64,1) D#4,D#5}{1/2,D#4,D#5}{1/2,D#4,D#5} 1}}
[—2—] {_tempo(97/60) _vel(52) _chan(1){3,{1/2,D#6,D#7} 3/2 {1/2,D#6,D#7}{1/2,D#6,D#7}, 1/2 {1/2, _switchoff(64,1) _switchon(64,1) D#4,D#5}{1/2,D#4,D#5}{1/2,D#4,D#5} 1}}
[—3—] {_tempo(16/15) _vel(52) _chan(1){25/8,{1/2,D#6,D#7} 1/2 _tempo(11/8){1/2,D#6,D#7}_tempo(41/32){1/2,D#6,D#7} 1/2 {1/2,D#6,D#7}1/8,1/2 _tempo(11/8) 1/8 {3/8, _switchoff(64,1) _switchon(64,1) D#4,D#5}1/2 _tempo(41/32) 1/8 3/8 _tempo(79/64) 1/8 {1/2, _switchoff(64,1) _switchon(64,1) D#4,D#5} 1/2}}

Breaths

Breath of 1/4 quar­ter note in mea­sure #3 of “Les Ombres Errantes”

Breath marks are "grace rests" anal­o­gous to the com­mas in writ­ten lan­guages. On the Bol Processor, they are option­al­ly inter­pret­ed as short silences last­ing a frac­tion of a quar­ter note.

Look at mea­sure #3 of François Couperin's Les Ombres Errantes (see con­ven­tion­al score above). The image shows the effect of breaths set to a 1/4 quar­ter note — that is, an eighteenth.

In the Bol Processor score, breaths can be tagged with any sequence of sym­bols. For exam­ple, in mea­sure #3 of Les Ombres Errantes, the breaths are tagged with [🌱] which actu­al­ly con­tains a Unicode char­ac­ter 🌱  com­pat­i­ble with BP syn­tax. Note that the breaths after D4 and B3 are 1/4 beats because these beats are quar­ter beats, where­as the breath after F4 is 1/2 beats because each beat is an eighth.

_scale(rameau_en_sib,0) [—3—] {_tempo(13/15) _vel(64){25/6,{25/6, D4 F4 [🌱] 1/2 {1/8,Eb4 D4}{7/8,Eb4}G4 D4 F4 {1/8,Eb4 D4}{7/8,Eb4}G4},{25/6,D4 [🌱] 1/4 Eb4 D4 Eb4},{25/6,{1/4,C4 B3 C4}{3/4,B3} [🌱] 1/4 C4{1/4,C4 B3 C4}{3/4,B3} C4}}}

When import­ing this piece, we used 1/6th quar­ter note silence as it sound­ed more accept­able. In addi­tion, we ran­domised the tim­ing by 20 ms (see below).

Previewing ornamentation and setting options

Previewing orna­men­ta­tion and set­ting options before import­ing a MusicXML file

Before import­ing a MusicXML file, options are dis­played for select­ing or ignor­ing any orna­ments detect­ed in the file. Here, for exam­ple, mor­dents and turns. Selecting an option implies that the orna­ment was described only as a graph­ic mark in the print­ed score, so we expect the algo­rithm to con­struct the note sequences accord­ing to the rules shown above. If the orna­ment has been embed­ded in the file as a sequence of notes, it is nec­es­sary to ignore its statement.

This deci­sion can be dif­fi­cult to make, as it requires analy­sis of the MusicXML code. To do this, the but­tons open win­dows show­ing only the bars in which the select­ed orna­ment occurs. The orna­ment code is dis­played in green and pre­ced­ed by a red arrow.

Mordents, turns and trills can also be inter­pret­ed as chro­mat­ic. See their check­box­es on the picture.

Another but­ton (at the top of the win­dow) dis­plays the com­plete MusicXML code in a pop-up win­dow with coloured lines for mea­sures and notes.

There are sev­er­al "trace" options avail­able. With a long file, it may not be easy to trace the entire process. It is there­fore pos­si­ble to focus on a num­ber of mea­sures. Other restrict­ed options are the man­age­ment of tem­po and ornamentation.

Measure and part numbers

An option (see image above) allows the mea­sure num­bers to be dis­played on the import­ed score, as shown below:

{_tempo(6/5) _vel(52){4,_tempo(11/9) _tempo(10/9) _tempo(7/8) 4,_tempo(10/9) G2 _tempo(7/8) D3{2,G3,Bb3,D4}}} [—2—] {_tempo(21/20) _vel(52){4,-- {2,- D4 E4 F#4},{2,G2 D3}{2,G3,Bb3,D4}}} [—3—] {_tempo(21/20) _vel(52){4,{4,G4 A4 Bb4 C5 D5 G5 F#5 G5},{2,G2 D3}{G3,Bb3,D4}A2}}

These become more vis­i­ble after click­ing the EXPLODE but­ton, which frag­ments the score into one item per mea­sure. Measure numbers (which appear on the print­ed score) do not always cor­re­spond to item numbers in the explod­ed view.

[item 1] {_tempo(6/5) _vel(52){4,_tempo(11/9) _tempo(10/9) _tempo(7/8) 4,_tempo(10/9) G2 _tempo(7/8) D3{2,G3,Bb3,D4}}}
[item 2] [—2—] {_tempo(21/20) _vel(52){4,-- {2,- D4 E4 F#4},{2,G2 D3}{2,G3,Bb3,D4}}}
[item 3] [—3—] {_tempo(21/20) _vel(52){4,{4,G4 A4 Bb4 C5 D5 G5 F#5 G5},{2,G2 D3}{G3,Bb3,D4}A2}}

If the score con­tains sev­er­al parts, their labels are also option­al­ly dis­played as "_part()" com­mands in the result­ing score. This makes it eas­i­er to match the BP score with the print­ed one. For example:

[—2—] {_tempo(34/15) _vel(63)
_part(1) {9/2,{{3,&G5}{3/2,G4&}}},_tempo(34/15) _vel(104)
_part(2) {9/2,{{3,&G3,&G4}{3/2,G3&}}},_tempo(34/15) _vel(107)
_part(3) {9/2,{{3,&G3,&G4}{3/2,G3&}}},_tempo(34/15) _vel(120)
_part(4) {9/2,{{3,&G2,&G3}{3/2,G2&}}}}

In real-time MIDI, each part can be mapped to a spe­cif­ic MIDI out­put and fed to a spe­cif­ic dig­i­tal instru­ment as indi­cat­ed on the score — see the method.

Randomisation

Many per­for­mance con­trols can be applied to the import­ed score to change its glob­al tem­po, dynam­ics etc. These include the "ran­dom" oper­a­tors "_rndvel(x)" and "_rndtime(x)".

The first changes the veloc­i­ties by a ran­dom val­ue between 0 and x, where x < 64. It can be placed at the begin­ning of a sequence of notes and fol­lowed by "_rdnvel(0)" when the ran­domi­sa­tion is no longer desired. If it is placed before a poly­met­ric struc­ture it will apply to all notes in the structure.

The per­for­mance con­trol "_rndtime(x)" fol­lows the same syn­tax. Its effect is to ran­dom­ly shift each note by ± x milliseconds.

Randomisation is not intend­ed to "human­ise" dig­i­tal music, but rather to com­pen­sate for unwant­ed effects when mul­ti­ple dig­i­tal­ly syn­the­sised sounds are super­im­posed. This is the case, for exam­ple, when notes in a syn­the­sis­er are attacked to imi­tate plucked instru­ments. Attacking sev­er­al notes (in a chord) at the same time can sound very harsh. In gen­er­al, plac­ing a "_rndtime(20)" instruc­tion at the begin­ning of the piece will solve the prob­lem. However, the musi­cal score may con­sist of sev­er­al parts with instru­ments that ben­e­fit from dif­fer­ent ran­domi­sa­tions; there­fore, sev­er­al instruc­tions must be placed in from of each part (one per bar). To avoid this edi­to­r­i­al work, an option is giv­en to insert "_rndtime(x)" with the cor­rect val­ues of x on each part/instrument.

Compare the begin­ning of Les Ombres Errantes with­out, then with, a time ran­domi­sa­tion of 20 mil­lisec­onds — i. e. much less than what would be per­ceived as a "wrong tim­ing". To get the right effect, the time res­o­lu­tion of the Bol Processor must be much low­er than 20 ms. Here it is set to 1 ms, which means that the tim­ing off­sets can ran­dom­ly pick up 40 dif­fer­ent val­ues with­in the ± 20 ms interval.

However, be care­ful not to reduce the time quan­ti­za­tion to less than 10 mil­lisec­onds, as this could increase mem­o­ry usage to the point where the MAMP or XAMPP dri­ver hangs with­out warn­ing. For exam­ple, on a Mac with 16 GB mem­o­ry, Beethoven's Fugue in B flat major will only play in a sin­gle chunk at 30 ms quantization.

Non-randomized begin­ning of “Les Ombres Errantes”
20-millisecond ran­dom­ized begin­ning of “Les Ombres Errantes”

See the Time res­o­lu­tion and quan­ti­za­tion page for more details.

File sizes

Let us com­pare the sizes of the files able to deliv­er the same inter­pre­ta­tion of the 14th Hungarian Rhapsody:

  • Sound file in AIFF 16-bit 48 Khz pro­duced by PianoTeq = 200 MB
  • MusicXML file = 3.9 MB
  • Graphic + audio score pro­duced by MuseScore = 141 KB
  • Graphic score export­ed as PDF by MuseScore = 895 KB
  • Csound score pro­duced by Bol Processor = 582 KB
  • MIDI file pro­duced by Bol Processor = 75 KB
  • Bol Processor data = 64 KB

This com­par­i­son sup­ports the idea that Bol Processor data is arguably the most com­pact and alto­geth­er com­pre­hen­sive (text) for­mat for rep­re­sent­ing dig­i­tal music. Below is the com­plete data of this musi­cal work (with mea­sure numbers):

// MusicXML file ‘Hungarian_Rhapsody_No._14.musicxml’ con­vert­ed
// Reading metronome mark­ers
// Including slurs = _legato(20)
// Including trills
// Including fer­matas
// Including mor­dents
// Including arpeg­gios

{_tempo(53/60) _vel(55){9/8, 1/8 -,{1/8,C1,C2}{1/2,Db1,Db2}{1/2,E1,E2}}} [—1—] {_tempo(4/3) _vel(55){33/8,{1/8, _legato(20) F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{3/20, _legato(0) F1& C2& F2&}{7/20,&F1,&C2,&F2} 1/2 {1/8,C1,C2}{1/2,Db1,Db2}{1/2,E1,E2}}} [—2—] {_tempo(4/3) _vel(55){33/8,{1/8, _legato(20) F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8, _legato(0) F1,C2}{1/8,F2}{3/20,F1& C2& F2&}{7/20,&F1,&C2,&F2} 1/2 {1/8,C1,C2}{1/2,Db1,Db2}{1/2,E1,E2}}} [—3—] {_tempo(13/15) _vel(55){4,_tempo(20/13) _tempo(20/13){3/2, _legato(20) G2,B2,E3}{1/2,B2,D#3,F#3}{1/2,B2,E3,G3}{3/2, _legato(0) C3,E3,A3},_tempo(20/13){1/8, _legato(20) F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8, _legato(0) F1,C2}{1/8,F2}{3/20,F1& C2& F2&}{7/20,&F1,&C2,&F2} 1/3 {1/6,C1,C2}{1/2,Db1,Db2}{1/2,E1,E2}}} [—4—] {_tempo(13/15) _vel(55){4,_tempo(20/13) _tempo(20/13){3/2, _legato(20) E3,G3,B3}{1/2,E3,A3,C4}{1/2,E3,G3,B3}{3/2, _legato(0) C3,E3,A3},_tempo(20/13){1/8, _legato(20) F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8, _legato(0) F1,C2}{1/8,F2}{3/20,F1& C2& F2&}{7/20,&F1,&C2,&F2} 1/3 {1/6,C1,C2}{1/2,Db1,Db2}{1/2,E1,E2}}} [—5—] {_tempo(4/3) _vel(55){4,{15/8, _legato(20) Bb2,Eb3,G3}{1/8, _legato(0) G3}{15/8, _legato(20) Bb2,E3,G3}{1/8, _legato(0) E3},{1/8, _legato(20) F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8, _legato(0) F2} 1/6 {1/12,G1}{1,Ab1 B1}{1/8, _legato(20) C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8, _legato(0) C3} 1/6 {1/12,C1,C2}{1/2,Db1,Db2}{1/2,E1,E2}}} [—6—] {_tempo(13/15) _vel(55){1441/240,_tempo(20/13) _tempo(20/13){Ab2,C3}{2,F3} 1/8 _tempo(4/13){91/240, _legato(20) Ab2 C3 F3 Ab3 C4 F4 Ab4 C5 F5 Ab5 C6 F6 Ab6 C7}{1/2, _legato(0) F7} --,_tempo(20/13){Ab2,C3}{2,F3}1/8 _tempo(4/13) 3/8 {1/2, _legato(0) Ab6}481/240,_tempo(20/13){F1,C2}{2,F2}{1/8, _legato(20) F1}_tempo(4/13){13/480,C2}{169/480,F2 Ab2 C3 F3 Ab3 C4 F4 Ab4 C5 F5 Ab5 C6 F6} 667/480 {53/480,G1,G2}{1/2,Ab1,Ab2}{1/2,B1,B2},_tempo(20/13){F1,C2}{2,F2}1/8 _tempo(4/13) 91/240 599/240 1/240}} [—7—] {_tempo(13/15) _vel(55){4,_tempo(20/13) _tempo(20/13){3/2, _legato(20) Eb3,G3,C4}{1/2,G3,D4}{1/2,G3,C4,Eb4}{3/2, _legato(0) Ab3,C4,F4},_tempo(20/13){1/8, _legato(20) C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8, _legato(0) C2,G2}{1/8,C3}{3/20,C2& G2& C3&}{7/20,&C2,&G2,&C3} 1/3 {1/6,G1,G2}{1/2,Ab1,Ab2}{1/2,B1,B2}}} [—8—] {_tempo(13/15) _vel(55){4,_tempo(20/13) _tempo(20/13){3/2, _legato(20) C4,Eb4,G4}{1/2,Ab3,F4,Ab4}{1/2,C4,Eb4,G4}{3/2, _legato(0) Ab3,C4,F4},_tempo(20/13){1/8, _legato(20) C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8, _legato(0) C2,G2}{1/8,C3}{3/20,C2& G2& C3&}{7/20,&C2,&G2,&C3} 1/3 {1/6,G1,G2}{1/2,Ab1,Ab2}{1/2,B1,B2}}} [—9—] {_tempo(4/3) _vel(55){4,{15/8, _legato(20) G3,C4,Eb4}{1/8, _legato(0) D4}{15/8, _legato(20) F3,B3,D4}{1/8, _legato(0) C4},{1/8, _legato(20) C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8, _legato(0) C3} 1/6 {1/12,D2}{1,Eb2 F#2}{1/8, _legato(20) G2,D3}{1/8,G3}{1/8,G2,D3}{1/8,G3}{1/8,G2,D3}{1/8, _legato(0) G3} 1/6 {1/12,G1}{1,Ab1 B1}}} [—10—] {_tempo(13/15) _vel(55){11/2,_tempo(20/13) _tempo(20/13){C3,Eb3,G3}{2,C4} 1/4 _tempo(21/26){3/4,C3 Eb3 G3 C4 Eb4 G4 C5 Eb5 G5 C6 Eb6 G6 C7 Eb7 _legato(0) G7}{1/2,C8} -,_tempo(20/13){C3,Eb3,G3}{2,C4}1/4 _tempo(21/26) 3/4 {1/2,Eb7}0 1,_tempo(20/13){C1,G1}{2,C2}{1/8, _legato(20) C1,G1}{1/8,C2}_tempo(21/26){1/20,Eb2}{7/10,G2 C3 Eb3 G3 C4 Eb4 G4 C5 Eb5 G5 C6 Eb6 Ab6 _legato(0) C6}1/2 -,_tempo(20/13){C1,G1}{2,C2}1/4 _tempo(21/26) 5/4 -}} [—11—] {_tempo(13/15) _vel(55){4,- 3/4 {1/4,Eb4}{3/4,Eb4}{1/4,Eb4}{3/4,Eb4}{1/4,Eb4}}} [—12—] {_tempo(13/15) _vel(55){4,{3/2, _legato(20) Ab4}{1,Cb5 Bb4}{3/2, _legato(0) Ab4},{3/2,Eb4}{1/2,Eb4}{3/4,Eb4}{1/4,Eb4}{3/4,Eb4}{1/4,Eb4},{3/2, _legato(20) Eb3,Cb4}{1/2,Eb3,Eb4}{1/2,Eb3,Db4}{3/2, _legato(0) Eb3,Cb4}}} [—13—] {_tempo(13/15) _vel(55){4,{3/2, _legato(20) G4}{1,F4 Eb4}{3/2, _legato(0) Ab4},{1/2,Eb4}Eb4{1/2,Eb4}{3/4,Eb4}{1/4,Eb4}{3/4,Eb4}{1/4,Eb4},{3/2, _legato(20) Eb3,Bb3}{1/2,Eb3,Ab3}{1/2,Eb3,G3}{3/2, _legato(0) Eb3,Cb4}}} [—14—] {_tempo(13/15) _vel(55){4,{7/4, _legato(20) Bb3,Db4,Eb4}{1/4, _legato(0) Ab3,Cb4,Eb4}{7/4, _legato(20) Ab3,Cb4,Eb4}{1/4, _legato(0) G3,Bb3,Eb4},{7/4, _legato(20) G2,Eb3}{1/4, _legato(0) Ab2,Eb3}{7/4, _legato(20) Ab2,Eb3}{1/4, _legato(0) Eb2,Bb2,Eb3}}} [—15—] {_tempo(13/15) _vel(55){23/4,{3,G3,Bb3,Eb4} 1/2 {1/4,C4,C5}{3/4,C4,C5}{1/4,C4,C5}{3/4,C4,C5}{1/4,C4,C5},{3,Eb2,Bb2,Eb3} 3/4 --,{3/10,Eb2& Bb2& Eb3& G3& Bb3& Eb4&}{27/10,&Eb2,&Bb2,&Eb3,&G3,&Bb3,&Eb4} 11/4}} [—16—] {_tempo(13/15) _vel(55){4,{3/2,F4}{1,C5 G4}{3/2, _legato(0) F4},{3/2, _legato(20) C4,C5}{1/2,Ab4}{3/4,C4,C5}{1/4,C4,C5}{3/4,C4,C5}{1/4,C4,C5},{3/2, _legato(20) C3,Ab3}{1/2,C3,C4}{1/2,C3,Bb3}{3/2, _legato(0) C3,Ab3}}} [—17—] {_tempo(13/15) _vel(55){4,{3/2,Eb4}{1,C5 C4}{3/2, _legato(0) F4},{3/2, _legato(20) C4,C5}{1/2,Db4}{3/4,C5}{1/4,C4,C5}{3/4,C4,C5}{1/4,C4,C5},{3/2, _legato(20) C3,G3}{1/2,C3,F3}{1/2,C3,E3}{3/2, _legato(0) C3,Ab3}}} [—18—] {_tempo(13/15) _vel(55){4,{7/4,C4,C5}{1/4,C4,F4,Ab4,C5}{7/4, _legato(20) C4,F4,Ab4,C5}{1/4, _legato(0) Db4,F4,Ab4,Db5},{7/4,G4,Bb4}9/4,{7/4,E2,C3,G3,Bb3}{1/4, _legato(20) F2}{7/4, _legato(0) C3,F3,Ab3}{1/4,Ab1&}}} [—19—] {_tempo(13/15) _vel(55){4,{15/4,Db4,F4,Ab4,Db5} 1/8 {1/8,C4,Gb4,A4,Eb5},{3/4, _legato(20) Ab2}{3,Db3 F3 Ab3 Db4 F4 Ab4 _legato(0) Db5 _legato(20) F5 _legato(0) Ab5 Db6 F6 Ab6}{1/4,- Ab1&},&Ab1 ---}} [—20—] {_tempo(13/15) _vel(55){33/8,{1/5,Db4& Gb4& A4& Eb5&}{71/20,&Db4,&Gb4,&A4,&Eb5} 1/4 {1/8,Fb4,Ab4,Cb5,Fb5},{3/4, _legato(20) Ab2}{13/4,Eb3 Gb3 A3 C4 G4 Bb4 _legato(0) Eb5 _legato(20) Gb5 _legato(0) A5 Eb6 Gb6 A6 -}{1/8,Ab1&},&Ab1 25/8}} [—21—] {_tempo(13/15) _vel(55){33/8,{15/4,Fb4,Ab4,C5,Fb5} 1/4 {1/8,F4,Ab4,Db5,F5},{3/4, _legato(20) Ab2}{13/4,Fb3 Ab3 Cb4 F4 Ab4 C5 _legato(0) F5 _legato(20) Ab5 _legato(0) Cb6 Fb6 Ab6 Cb7 -}{1/8,B1&},&Ab1 25/8}} [—22—] {_tempo(13/15) _vel(55){4,{7/2,F4,Ab4,Db5,F5} 1/2,{3/4, _legato(20) B2}{13/4,F3 Ab3 Db4 F4 Ab4 Db5 _legato(0) F5 _legato(20) Ab5 _legato(0) Db6 F6 Ab6 Db7 -},&B1 ---}} [—23—] {_tempo(13/15) _vel(55){2123/480, 4/5 {2/5,Gb3,Db4,Gb4}{853/480,Gb3,Db4,Gb4}{107/240,F3,Ab3,Db4,F4}{F3&,Ab3&,Db4&,F4&}, 1 {1/5,A1,A2}{853/480,A1,A2}{107/240,C2,C3}{C2&,C3&}}} [—24—] {_tempo(13/15) _vel(55){5,{427/480,&F3,&Ab3,&Db4,&F4}{53/480,F3,Ab3,Db4}{4, _legato(20) Db4 _legato(0) C4}, 1 {F3,Ab3}{2,Eb3,G3}1,{427/480,&C2,&C3}{53/480,C2,Bb2,Db3}{2, _legato(20) Bb2,Db3}{2, _legato(0) C3},- {4,C2 -}}} [—25—] {_tempo(67/30) _vel(110){4,{3/2,F4,A4,C5,F5}{1/2,G4,G5}{1/2,A4,A5}{3/2,Bb4,D5,F5,Bb5},{3/2,F2,A2,C3,F3}{1,G3 A3}{3/2,D3,F3,Bb3}}} [—26—] {_tempo(67/30) _vel(55){4,{3/2,C5,F5,A5,C6}{1/2,D5,D6}{1/2,C5,C6}{3/2,Bb4,D5,F5,Bb5},{3/2,A2,F3,C4}{1,D4 C4}{3/2,D3,F3,Bb3}}} [—27—] {_tempo(67/30) _vel(55){19/4, 1/8 {1/4,A4,C5,F5,A5}{2,A4,C5,F5,A5} 1/8 {1/4,G4,Bb4,E5,G5}{2,G4,Bb4,E5,G5},{1/8, _legato(20) C2}{1/4, _legato(0) C3}{2,F3,A3,C4,F4}{1/8, _legato(20) C2}{1/4, _legato(0) C3}{2,E3,G3,C4,E4}}} [—28—] {_tempo(67/30) _vel(55){35/8, 1/8 {1/4,F4,A4,C5,F5}{2,F4,A4,C5,F5} --,{1/8, _legato(20) F1}{1/4, _legato(0) F2}{2,C3,F3,A3,C4} --}} [—29—] {_tempo(67/30) _vel(55){4,{3/2,C5,E5,G5,C6}{1/2,D5,D6}{1/2,E5,E6}{3/2,F5,A5,C6,F6},{1/8, _legato(20) C2}{11/8, _legato(0) C3,E3,G3,C4}{1,D4 E4}{3/2,A3,C4,F4}}} [—30—] {_tempo(67/30) _vel(55){17/4, 1/4 {3/2,G5,C6,G6}{1/2,A5,A6}{1/2,G5,G6}{3/2,F5,A5,D6,F6},{1/4, _legato(20) E2 _legato(0) E3}{3/2,G3,C4,G4}{1,A4 G4}{3/2,F3,A3,D4,F4}}} [—31—] {_tempo(67/30) _vel(55){9/2,{1/4,E5,G5,C6,E6}{2,E5,G5,C6,E6}{1/4,D5,F5,B5,D6}{2,D5,F5,B5,D6},{1/4, _legato(20) G2}{2, _legato(0) E3,G3,C4,E4}{1/4, _legato(20) G2}{2, _legato(0) G3,B3,D4,G4}}} [—32—] {_tempo(67/30) _vel(55){17/4,{1/4,C5,E5,G5,C6}{2,C5,E5,G5,C6} --,{1/4, _legato(20) C2}{2, _legato(0) C3,E3,G3,C4} --}} [—33—] {_tempo(67/30) _vel(110){4,{3/2,F4,D5,F5}{1/2,A4,F5,A5}{1/2,G4,E5,G5}{3/2,F4,D5,F5},{3/2,D3,F3,D4}{1/2,F3,A3,F4}{1/2,E3,G3,E4}{3/2,D3,F3,D4}}} [—34—] {_tempo(67/30) _vel(55){4,{3/2,E4,C5,E5}{1/2,D4,Bb4,D5}{1/2,C4,A4,C5}{3/2,F4,A4,F5},{3/2,C3,E3,C4}{1/2,Bb2,D3,Bb3}{1/2,A2,C3,A3}{3/2,D3,F3,A3}}} [—35—] {_tempo(67/30) _vel(55){9/2,{1/4,Bb3,G4,Bb4}{2,Bb3,G4,Bb4}{1/4,A3,F4,A4}{2,A3,F4,A4},{1/4,E2,C3,G3}{2,E2,C3,G3}{1/4,F2,D3,F3}{2,F2,C3,F3}}} [—36—] {_tempo(67/30) _vel(55){17/4,{1/4,G3,C4,E4,G4}{2,G3,C4,E4,G4} --,{1/4,C2,G2,C3}{2,C2,G2,C3} --}} [—37—] {_tempo(67/30) _vel(55){4,{3/2,C5,E5,C6}{1/2,D5,F5,D6}{1/2,E5,G5,E6}{3/2,F5,A5,F6},{3/2,C3,C4}{1/2,B2,B3}{1/2,Bb2,Bb3}{3/2,A2,A3}}} [—38—] {_tempo(67/30) _vel(55){17/4, 1/4 {3/2,G5,Bb5,C6,G6}{1/2,F5,A5,F6}{1/2,E5,C6,E6}{3/2,D5,Bb5,D6},{1/4, _legato(20) E2 _legato(0) E3}{3/2,Bb3,C4,G4}{1/2,F3,A3,C4,F4}{1/2,C4,E4}{3/2,Bb2,F3,Bb3,D4}}} [—39—] {_tempo(67/30) _vel(55){4,{C5,F5,C6}{F5,F6}{1/2,C5,C6}{3/2,Bb4,F5,Bb5},{A2,F3,C4}F4{1/2,C4}{3/2,D3,F3},{2,C4} 1/2 {3/2,Bb3}}} [—40—] {_tempo(67/30) _vel(55){19/4, 1/8 {1/4,A4,C5,F5,A5}{2,A4,C5,F5,A5} 1/8 {1/4,G4,Bb4,E5,G5}{2,G4,Bb4,E5,G5},{1/8, _legato(20) C2}{1/4, _legato(0) C3}{2,F3,A3,C4,F4}{1/8, _legato(20) C2}{1/4, _legato(0) C3}{2,E3,G3,C4,E4}}} [—41—] {_tempo(67/30) _vel(55){35/8, 1/8 {1/4,F4,A4,C5,F5}{2,F4,A4,C5,F5} --,{1/8, _legato(20) F1}{1/4, _legato(0) F2}{2,C3,F3,A3,C4} --}} [—42—] {_tempo(67/30) _vel(55){4,{3/2,F4,D5,F5}{1/2,A4,F5,A5}{1/2,G4,E5,G5}{3/2,F4,D5,F5},{3/2,D3,F3,D4}{1/2,F3,A3,F4}{1/2,E3,G3,E4}{3/2,D3,F3,D4}}} [—43—] {_tempo(67/30) _vel(55){4,{3/2,E4,C5,E5}{1/2,D4,Bb4,D5}{1/2,C4,A4,C5}{3/2,F4,A4,F5},{3/2,C3,E3,C4}{1/2,Bb2,D3,Bb3}{1/2,A2,C3,A3}{3/2,D3,F3,A3}}} [—44—] {_tempo(67/30) _vel(55){9/2,{1/4,Bb3,G4,Bb4}{2,Bb3,G4,Bb4}{1/4,A3,D4,F#4,A4}{2,A3,D4,F#4,A4},{1/4,G2,C3,G3}{2,G2,C3,G3}{1/4,D2,F#2,D3}{2,D2,F#2,D3}}} [—45—] {_tempo(67/30) _vel(55){17/4,{1/4,G3,Eb4,G4}{3,G3,Eb4,G4} -,{1/4,Eb2,Bb2,Eb3}{3,Eb2,Bb2,Eb3} -}} [—46—] {_tempo(67/30) _vel(55){4,{3/2,C5,Eb5,Ab5,C6}{1/2,D5,F5,Bb5,D6}{1/2,Eb5,G5,C6,Eb6}{3/2,F5,Ab5,Db6,F6},{3/2,A2,Eb3,Ab3,C4}{1/2,F3,B3,D4}{1/2,Ab3,C4,Eb4}{3/2,Ab3,Db4,F4}}} [—47—] {_tempo(67/30) _vel(55){4,{3/2,G5,Bb5,C6,G6}{1/2,F5,A5,F6}{1/2,E5,C6,E6}{3/2,D5,Bb5,D6},{3/2,G3,Bb3,C4,G4}{1/2,F3,A3,C4,F4}{1/2,C4,E4}{3/2,Bb2,F3,Bb3,D4}}} [—48—] {_tempo(67/30) _vel(55){4,{C5,F5,C6}{F5,F6}{1/2,C5,C6}{3/2,Bb4,F5,Bb5},{A2,F3,C4}F4{1/2,C4}{3/2,D3,F3},{2,C4} 1/2 {3/2,Bb3}}} [—49—] {_tempo(67/30) _vel(55){19/4, 1/8 {1/4,A4,C5,F5,A5}{2,A4,C5,F5,A5} 1/8 {1/4,G4,Bb4,E5,G5}{2,G4,Bb4,E5,G5},{1/8, _legato(20) C2}{1/4, _legato(0) C3}{2,F3,A3,C4,F4}{1/8, _legato(20) C2}{1/4, _legato(0) C3}{2,E3,G3,C4,E4}}} [—50—] {_tempo(67/30) _vel(55){35/8, 1/8 {1/4,F4,A4,C5,F5}{2,F4,A4,C5,F5} --,{1/8, _legato(20) F1}{1/4, _legato(0) F2}{2,C3,F3,A3,C4} --}} [—51—] {_tempo(67/30) _vel(110){9/2, 1 {1/2,A3,C4,F4}{1/2,A4,C5,F5}{1/2,G5,C6,E6,G6}{1/2,A5,C6,F6,A6}{3/2,Bb5,D6,F6,Bb6},{1/2, _legato(20) C3 D3 E3}{1/2, _legato(0) F3}{1/2,A2,C3,F3}{1/2,A3,C4,F4}{1/2,G3,C4,E4,G4}{1/2,A3,C4,F4,A4}{3/2,Bb3,D4,F4,Bb4},{1/2, _legato(20) C2 D2 E2}{1/2, _legato(0) F1,F2} 7/2}} [—52—] {_tempo(67/30) _vel(55){9/2, 1 {1/2,C4,F4,A4,C5}{1/2,C5,F5,A5,C6}{1/2,D6,F6,Bb6,D7}{1/2,C6,F6,A6,C7}{3/2,Bb5,D6,F6,Bb6},{1/2, _legato(20) C3 D3 E3}{1/2, _legato(0) F3}{1/2,C3,F3,A3}{1/2,C4,F4,A4}{1/2,D4,F4,Bb4,D5}{1/2,C4,F4,A4,C5}{3/2,Bb3,D4,F4,Bb4},{1/2, _legato(20) C2 D2 E2}{1/2, _legato(0) F1,F2} 7/2}} [—53—] {_tempo(67/30) _vel(55){9/2, 1 {1/2,A5,C6,F6,A6}{A5,C6,F6,A6} 1/2 {1/2,G5,Bb5,E6,G6}{G5,Bb5,E6,G6},{1/2, _legato(20) C3 D3 E3}{1/2, _legato(0) F3}{1/2,C3,F3,A3,C4}{4/5,A3,C4,F4,A4}{1/5,B1,B2}{1/2,C2,C3}{1/2,C3,E3,G3,C4}{G3,C4,E4,G4},{1/2, _legato(20) C2 D2 E2}{1/2, _legato(0) F1,F2} 7/2}} [—54—] {_tempo(67/30) _vel(55){33/8, 1/8 1/2 {1/2,A3,C4,F4}{1/2,A4,C5,F5}{1/2,A5,C6,F6}{1/2,F6,A6,C7,F7} 1/2 -,{1/8, _legato(20) E1,E2}{1/2, _legato(0) F1,F2}{1/2,A2,C3,F3}{1/2,A3,C4,F4}{1/2,A3,C4,F4}{1/2,F4,A4,C5,F5} 1/2 -}} [—55—] {_tempo(67/30) _vel(55){9/2, 1 {1/2,E4,G4,C5}{1/2,E5,G5,C6}{1/2,D6,G6,B6,D7}{1/2,E6,G6,C7,E7}{3/2,F6,A6,C7,F7},{1/2, _legato(20) G3 A3 B3}{1/2, _legato(0) C4}{1/2,E3,G3,C4}{1/2,E4,G4,C5}{1/2,G3,B3,D4,G4}{1/2,C4,E4,G4,C5}{3/2,A3,C4,F4,A4},{1/2, _legato(20) G2 A2 B2}{1/2, _legato(0) C2,C3} 7/2}} [—56—] {_tempo(67/30) _vel(55){9/2, 1 {1/2,C4,F4,A4,C5}{1/2,C5,F5,A5,C6}{1/2,D6,F6,Bb6,D7}{1/2,C6,F6,A6,C7}{3/2,Bb5,D6,F6,Bb6},{1/2, _legato(20) G3 A3 B3}{1/2, _legato(0) C4}{1/2,G3,C4,E4}{1/2,G4,C5,E5}{1/2,F4,A4,D5,F5}{1/2,C4,E4,G4,C5}{3/2,F4,A4,C5,F5},{1/2, _legato(20) G2 A2 B2}{1/2, _legato(0) C2,C3} 7/2}} [—57—] {_tempo(67/30) _vel(55){9/2, 1 {1/2,E5,G5,C6,E6}{E6,G6,C7,E7} 1/2 {1/2,D5,F5,B5,D6}{D6,F6,B6,D7},{1/2, _legato(20) G3 A3 B3}{1/2, _legato(0) C4}{1/2,G3,C4,E4,G4}{4/5,E4,G4,C5,E5}{1/5, _legato(20) F#2,F#3}{1/2, _legato(0) G2,G3}{1/2,G3,B3,D4,G4}{D4,G4,B4,D5},{1/2, _legato(20) G2 A2 B2}{1/2, _legato(0) C2,C3} 7/2}} [—58—] {_tempo(67/30) _vel(94){33/8, 1/8 1/2 {1/2,E3,G3,C4}{1/2,E4,G4,C5}{1/2,E5,G5,C6}{1/2,C6,E6,G6,C7} 1/2 -,{1/8, _legato(20) B1,B2}{1/2, _legato(0) C2,C3}{1/2,E2,G2,C3}{1/2,E3,G3,C4}{1/2,E4,G4,C5}{1/2,C4,E4,G4,C5} 1/2 -}} [—59—] {_tempo(2) _vel(67){4, 1/2 {1/6,C5}{1/6,F5,C6}{1/6,C6}{1/6,F6,C7}{1/6,C6}{1/6,F5,C6}{1/6,C5}{1/6,A5,C6}{1/6,C6}{1/6,G6,C7}{1/6,C6}{1/6,G5,C6}{1/6,C5}{1/6,F5,C6}{1/6,C6}{1/2,F6,C7} 1/2,{3/2,A3,C4,F4}{1/2,C4,A4}{1/2,Bb3,C4,G4}{3/2,A3,C4,F4}}} [—60—] {_tempo(2) _vel(55){4, 1/2 {1/6,C5}{1/6,E5,C6}{1/6,C6}{1/6,E6,C7}{1/6,C6}{1/6,E5,C6}{1/2,C5 C6 C6}{1/6,G6,C7}{1/2,C6 C6 C5}{1/6,F5,C6}{1/6,C6}{1/2,F6,C7} 1/2,{3/2,G3,C4,E4}{1/2,F3,C4,D4}{1/2,E3,C4}{3/2,A3,C4,F4}}} [—61—] {_tempo(2) _vel(55){4,{1/2,C4,G4,Bb4} 1/2 {1/6, _legato(20) G6,Bb6}{1/3,E6 C6}{1/6,G5,Bb5}{1/3,E5 C5}{1/2, _legato(0) F4,A4} 1/2 {1/6, _legato(20) F6,A6}{1/3,D6 Bb5}{1/6,F5,A5}{1/3,D5 Bb4},{1, _legato(20) E2 C3 E3 G3 Bb3 C4}{1/2, _legato(0) G4,Bb4} 1/2 {1, _legato(20) F2 C3 F3 A3 C4 F4}{1, _legato(0) A4 -}}} [—62—] {_tempo(2) _vel(55){4,{1/2, _legato(0) E4,G4} 1/2 {1/6,E6,G6}{1/3,C6 G5}{1/6,G5,C6}{1/3,E5 C5}{1/6,E5,G5}{1/3,C5 G4}{1/6,G4,C5}{1/3,E4 C4}{1/6,E4,G4}{1/3,C4 G3} 1/2,{1, _legato(20) C2 G2 C3 E3 G3 C4}{3/2, _legato(0) G4 --} - {1/2,E3 C3 G2}}} [—63—] {_tempo(2) _vel(55){4, 1/2 {1/2,E4,G4,C5}{1/2,E5,G5,C6}{1/2,D6,F6,D7}{1/2,E6,G6,E7}{3/2,F6,A6,F7},{1/2,C1}{1/2,E3,G3,C4}{1/2,E4,G4,C5}{1/2,D4,F4,B4,D5}{1/2,E4,G4,Bb4,E5}{3/2,F4,A4,F5}}} [—64—] {_tempo(2) _vel(55){4,{1/2,G3,Bb3,G4}{1/2,G4,Bb4,G5}{1/2,G6,Bb6,G7}{1/2,F6,A6,F7}{1/2,E6,C7,E7}{3/2,D5,Bb5,D6},{1/2,E2,A2,C3}{1/2,E3,C4,E4}{1/2,E4,C5,E5}{1/2,F4,A4,F5}{1/2,C5,E5}{3/2,Bb3,F4,Bb4,D5}}} [—65—] {_tempo(2) _vel(55){4,{1/3,C6,F6,C7}{1/3,F6,F7}{1/3,C6,C7}{1/3,F6,F7}{1/3,C6,C7}{1/3,F5,F6}{1/3,C5,C6}{1/3,F4,F5}{1/3,C4,C5}{Bb3,F4,Bb4},{3,A5 D6 C5 F5 C5 F4 C4 F3 C3}{D2,Bb2},{F4,D5} ---}} [—66—] {_tempo(2) _vel(55){21/5,{1/2,A3,F4,A4}{1/2,A4,F5,A5}{4/5,A5,F6,A6}{2/5,G3,C4,G4}{1/2,G3,C4,G4}{1/2,G4,C5,G5}{G5,C6,G6},{1/2,C2,A2,C3}{1/2,C3,A3,C4}{4/5,C4,F4,A4,C5}{2/5,C2,E2,G2,C3}{1/2,C2,E2,G2,C3}{1/2,C3,E3,G3,C4}{C4,E4,G4,C5}}} [—67—] {_tempo(2) _vel(55){17/4,{1/4, _legato(20) F3,A3,C4,F4}{1/2, _legato(0) F3,A3,C4,F4}{1/2,F4,A4,C5,F5}{1/2,F5,A5,C6,F6}{1/2,F6&,A6&,C7&,F7&}{&F6,&A6,&C7,&F7} -,{1/4, _legato(20) F1,A1,C2,F2}{1/2, _legato(0) F1,A1,C2,F2}{1/2,F2,A2,C3,F3}{1/2,F3,A3,C4,F4}{1/2,F4&,A4&,C5&,F5&}{&F4,&A4,&C5,&F5} -}} [—68—] {_tempo(5/3) _vel(67){4, 1/2 {7/2,C5 C6 D6 C6 C7 D7 C7 C6 D6 C6 C5 C6 D6 C6 C7 D7 C7 C6 D6 C6 C5 C6 D6 C6 C7 D7 C7 C6},{3/2,A3,C4,F4}{1/2,C4,A4}{1/2,Bb3,C4,G4}{3/2,A3,C4,F4}}} [—69—] {_tempo(5/3) _vel(55){4,{4,D6 C6 C5 C6 D6 C6 C7 D7 C7 C6 D6 C6 C5 C6 D6 C6 C7 D7 C7 C6 D6 C6 C5 C6 D6 C6 C7 D7 C7 C6 F6 A6},{3/2,G3,C4,E4}{1/2,F3,C4,D4}{1/2,E3,C4}{3/2,A3,C4,F4}}} [—70—] {_tempo(4/3) _vel(55){643/160,{2,D7 C#7 C7 B6 Bb6 A6 Ab6 G6 F#6 F6 E6 Eb6 D6 C#6 C6 B5 Bb5 A5 Ab5 G5}{323/160,F#5 F5 E5 Eb5 D5 C#5 C5 B4 Bb4 A4 Ab4 G4 F#4 F4 E4 Eb4 D4 C#4 D4}, 3/160 {2,Bb2,G3,D4}{2,D3,A3,C4,F#4}}} [—71—] {_tempo(4/3) _vel(55){33/8,{1/8,G3,E4,G4}{4,D4 C#4 C4 B3 Bb3 A3 Ab3 G3 F#3 F3 E3 Eb3 D3 Db3 C3 B2 Bb2 A2 Ab2 G2 F#2 F2 E2 Eb2 E2 F2 F#2 G2 Ab2 A2 Bb2 B2},{1/8,G2,E3,G3}{4,D3 C#3 C3 B2 Bb2 A2 Ab2 G2 F#2 F2 E2 Eb2 D2 Db2 C2 B1 Bb1 A1 Ab1 G1 F#1 F1 E1 Eb1 E1 F1 F#1 G1 Ab1 A1 Bb1 B1}}} [—72—] {_tempo(5/3) _vel(110){4,{1/2,C3}{1/2,C4,E4,G4,C5}{1/2,C5,E5,G5,C6}{1/2,D6,F6,D7}{1/2,E6,G6,E7}{3/2,F6,A6,F7},{1/2,C1,C2}{1/2,C3,E3,G3,C4}{1/2,C4,E4,G4,C5}{1/2,B3,Ab4,B4}{1/2,Bb3,G4,Bb4}{3/2,A3,F4,A4}}} [—73—] {_tempo(5/3) _vel(55){4,{1/2,G3,Bb3,G4}{1/2,G4,Bb4,G5}{1/2,G5,Bb5,G6}{1/2,F6,A6,F7}{1/2,E6,C7,E7}{3/2,D6,Bb6,D7},{1/2,E2,A2,C3}{1/2,E3,C4,E4}{1/2,E4,C5,E5}{1/2,F5,A5,C6,F6}{1/2,C6,E6}{3/2,Bb4,F5,Bb5,D6}}} [—74—] {_tempo(5/3) _vel(55){4,{1/3,C6,F6,C7}{1/3,F6,F7}{1/3,C6,C7}{1/3,F6,F7}{1/3,C6,C7}{1/3,F5,F6}{1/3,C5,C6}{1/3,F4,F5}{1/3,C4,C5}{Bb3,F4,Bb4},{1/3,F4,D5,A5}{8/3,D6 C5 F5 C5 F4 C4 F3 C3}{D2,Bb2}}} [—75—] {_tempo(5/3) _vel(94){4,{1/2,A3,F4,A4}{1/2,A4,F5,A5}{7/8,A5,F6,A6}{1/8,G3,C4,G4}{1/2,G3,C4,G4}{1/2,G4,C5,G5}{7/8,G5,C6,G6}{1/8,F3,A3,C4,F4},{1/2,C2,A2,C3}{1/2,C3,A3,C4}{7/8,C4,A4,C5}{1/8,C2,E2,G2,C3}{1/2,C2,E2,G2,C3}{1/2,C3,E3,G3,C4}{7/8,C4,E4,G4,C5}{1/8,F1,A1,C2,F2}}} [—76—] {_tempo(5/3) _vel(55){4,{1/2,F3,A3,C4,F4}{1/2,F4,A4,C5,F5}{1/2,F5,A5,C6,F6}{1/2,F6&,A6&,C7&,F7&}{&F6,&A6,&C7,&F7} -,{1/2,F1,A1,C2,F2}{1/2,F2,A2,C3,F3}{1/2,F3,A3,C4,F4}{1/2,F4&,A4&,C5&,F5&}{&F4,&A4,&C5,&F5} -, 31/8 1/8}} [—X1—] {_tempo(8/5) _vel(35){1/2,{1/2, _legato(20) A3&}}} [—77—] {_tempo(8/5) _vel(55){2,{1/2, _legato(0) &A3,D4,A4}{1/2, _legato(20) A3,D4,A4}{1/2, _legato(0) A3,D4,A4}{1/4, _legato(20) A3,D4,G#4}{1/4,B4},{1/10, _legato(20) D2& F#3&}{2/5,&D2,&F#3}{1/2,A2,F#3}{1/2,D3,F#3}{1/2, _legato(0) A2,F#3}}} [—78—] {_tempo(8/5) _vel(55){5/2,{1/2, _legato(0) A4}{1/2, _legato(20) G4 B4}{1/2, _legato(0) A4} _legato(20) D4&,{1/2,A3,D4}{1/2,A3,D4}{1/2,A3,D4}1,{1/2, _legato(20) D2,F#3}{1/2,A2,F#3}{1/2, _legato(0) D3,F#3} -}} [—79—] {_tempo(8/5) _vel(55){2,{1/2, _legato(0) &D4,F#4,C5}{1/2,D4,F#4,C5}{1/2,D4,F#4,C5}{1/2, _legato(20) B4 D5}, 3/2 {1/2,D4,F#4},{1/2, _legato(20) D2,A3}{1/2,A2,A3}{1/2,D3,A3}{1/2, _legato(0) A2,A3}}} [—80—] {_tempo(8/5) _vel(55){5/2,{1/2, _legato(0) C5}{1/2, _legato(20) B4 D5}{1/2, _legato(0) C5} _legato(20) D4&,{1/2,D4,F#4}{1/2,D4,F#4}{1/2,D4,F#4}1,{1/2, _legato(20) D2,A3}{1/2,A2,A3}{1/2, _legato(0) D3,A3} -}} [—81—] {_tempo(8/5) _vel(55){2,{1/2, _legato(0) &D4,G4,B4}{1/2, _legato(20) D4,G4,B4}{1/2, _legato(0) D4,G4,B4}{1/2,A#4 C5}, 3/2 {1/2,D4,F#4},{1/2, _legato(20) G2,B3}{1/2,D3,B3}{1/2,G3,B3}{1/2, _legato(0) D3,B3}}} [—82—] {_tempo(8/5) _vel(55){2,{1/2,B4}{1/2, _legato(20) A#4 _legato(0) C5}B4,{1/2,D4,G4}{1/2,D4,F#4}{D4,G4},{1/2, _legato(20) G2,B3}{1/2, _legato(0) D3,B3}{G3,B3}}} [—83—] {_tempo(8/5) _vel(55){2,{1/2,B4,G5,B5}{1/2,B4,G5,B5}{1/2,B4,G5,B5}{1/2,A#4,F#5}, 3/2 {1/2,A#5 C6},{1/10, _legato(20) G2& D4&}{2/5,&G2,&D4}{1/2,D3,D4}{1/2,B3,D4}{1/2, _legato(0) D3,D4}}} [—84—] {_tempo(8/5) _vel(55){2,{1/2,B4,G5}{1/2,A#4,F#5}{B4,G5},{1/2,B5}{1/2,A#5 C6}B5,{1/10, _legato(20) G2& D4&}{2/5,&G2,&D4}{1/2, _legato(0) D3,D4}{G3,D4}}} [—85—] {_tempo(2) _vel(35){4,{3/2, _legato(20) D5,B5}{1/2,D5,D6}{1/2,D5,C#6}{3/2, _legato(0) D5,B5},{3/2, _legato(20) G4}{1,B4 A4}{3/2, _legato(0) G4}}} [—86—] {_tempo(7/15) _vel(55){1081/240,{3/2, _legato(20) D5,A5}{1/2,D5,G5}{1/2, _legato(0) D5,F#5}{1,G5 A5 G5 A5 G5 A5 G5 A5} - 1/240,--- {1/2,C#5}{7/160,F#5}{147/160,G5 A#5 B5 E6 E#6 F#6 A6 G6 E6 C#6 A#5 G5 E5 E#5 F#5 A5 G5 B#4 C#5 F#5 E5}{1/24,- D5},{3/2, _legato(20) F#4,A4}{1/2,E4,A4}{1/2, _legato(0) D4,A4}{2,A#3,E4,G4}1/240}} [—87—] {_tempo(12/5) _vel(67){2,B4 1/2 {1/2,D4},D5 1,{B3,F#4}1/2 1/8 3/8}} [—88—] {_tempo(12/5) _vel(55){2,{1, _legato(20) F#4 G4 A4 _legato(0) B4}{1,A4 C#5},{1,D4}{1/2,D4,F#4}{1/2,C#4,G4},{A2,F#3,A3}{1/2,A2,F#3,A3}{1/2,A2,E3,A3}}} [—89—] {_tempo(12/5) _vel(55){2,D5{1,- D5},{D4,F#4}1,{D3,A3} -}} [—90—] {_tempo(12/5) _vel(55){2,{1, _legato(20) F#5 G5 A5 _legato(0) B5}{1,A5 C#6},{1,D5}{1/2,D5,F#5}{1/2,C#5,G5},{A3,F#4,A4}{1/2,A3,F#4,A4}{1/2,A3,E4,A4}}} [—91—] {_tempo(12/5) _vel(55){5/2,D6 - {1/2, _legato(20) A5},{D5,F#5}3/2,{D4,A4} - 1/2}} [—92—] {_tempo(8/5) _vel(55){2,{1/2, _legato(0) A5,F#6,A6}{1/2,A5,F#6,A6}{1/2,A5,F#6,A6}{1/2, _legato(20) G#6 B6}, 3/2 {1/2,G#5,E#6},{1/2,G2,G3}{1/2, _legato(20) A3,F#4,A4}{1/2,C#4,F#4,A4}{1/2,A3,F#4,A4}}} [—93—] {_tempo(8/5) _vel(55){5/2,{1/2, _legato(0) A6}{1/2, _legato(20) G#6 B6}{1/2, _legato(0) A6} _legato(20) D6,{1/2,A5,F#6}{1/2,G#5,E#6}{1/2,A5,F#6}1,{1/2,D4,F#4,A4}{1/2,A3,F#4,A4}{1/2, _legato(0) D4,F#4,A4} -}} [—94—] {_tempo(8/5) _vel(55){2,{1/2, _legato(0) C6,A6,C7}{1/2,C6,A6,C7}{1/2,C6,A6,C7}{1/2, _legato(20) B6 D7}, 3/2 {1/2,B5,G#6},{1/2,D2,D3}{1/2, _legato(20) C4,A4,C5}{1/2,E4,A4,C5}{1/2,C4,A4,C5}}} [—95—] {_tempo(8/5) _vel(55){5/2,{1/2, _legato(0) C7}{1/2, _legato(20) B6 D7}{1/2, _legato(0) C7}F#6,{1/2,C6,A6}{1/2,B5,G#6}{1/2,C6,A6}1,{1/2,F#4,A4,C5}{1/2,C4,A4,C5}{1/2, _legato(0) F#4,A4,C5} -}} [—96—] {_tempo(8/5) _vel(55){2,{1/2,B5,G6,B6}{1/2,B5,G6,B6}{1/2,B5,G6,B6}{1/2, _legato(20) A#6 C7}, 3/2 {1/2,A#5,F#6},{1/2,G2,G3}{1/2, _legato(20) B3,G4,B4}{1/2,D4,G4,B4}{1/2,B3,G4,B4}}} [—97—] {_tempo(8/5) _vel(55){2,{1/2, _legato(0) B6}{1/2, _legato(20) A#6 _legato(0) C7}B6,{1/2,B5,G6}{1/2,A#5,F#6}{B5,G6},{1/2,D4,G4,B4}{1/2, _legato(0) B3,G4,B4}{D4,G4,B4}}} [—98—] {_tempo(8/5) _vel(55){2,{1/2,D6,B6,D7}{1/2,D6,B6,D7}{1/2,D6,B6,D7}{1/2, _legato(20) C#7 E7}, 3/2 {1/2,C#6,A#6},{1/2,G2,G3}{1/2, _legato(20) D4,B4,D5}{1/2,F#4,B4,D5}{1/2,D4,B4,D5}}} [—99—] {_tempo(8/5) _vel(55){5/2,{1/2, _legato(0) D7}{1/2, _legato(20) C#7 E7}{1/2, _legato(0) D7} -,{1/2,D6,B6}{1/2,C#6,A#6}{1/2,D6,B6}1,{1/2,G4,B4,D5}{1/2,D4,B4,D5}{1/2, _legato(0) G4,B4,D5} -}} [—100—] {_tempo(8/5) _vel(110){2,{1/2,C#4,D4,F#4,A4}{1/2,C#4,D4,F#4,A4}{1/2,C#4,D4,F#4,A4}{1/2,A#3 C4},{1/2,B1,B2}{1/2,B1,B2}{1/2,B1,B2}{1/2,A#2 C3}}} [—101—] {_tempo(8/5) _vel(55){2,{1/2,C4,D4,F#4,A4}{1/2, _legato(20) A#3 _legato(0) C4}{1/2,C4,D4,F#4,A4} 1/2,{1/2,B1,B2}{1/2, _legato(20) A#2 _legato(0) C3}{1/2,B1,B2} 1/2}} [—102—] {_tempo(8/5) _vel(55){2,{1/2,C#4,D4,F#4,A4,D5}{1/2,C#4,D4,F#4,A4,D5}{1/2,C#4,D4,F#4,A4,D5}{1/2,A#3 C4},{1/2,B1,B2}{1/2,B1,B2}{1/2,B1,B2}{1/2,A#2 C3}}} [—103—] {_tempo(8/5) _vel(55){2,{1/2,A3,B3,D#4,F#4,B4}{1/2, _legato(20) A#3 _legato(0) C4}{1/2,A3,B3,D#4,F#4,B4} 1/2,{1/2,G1,G2}{1/2, _legato(20) A#2 _legato(0) C3}{1/2,B1,B2} 1/2}} [—104—] {_tempo(12/5) _vel(67){2,{1/2,B4,G#5,B5}{1/2,B4,G#5,B5}{1/2,B4,G#5,B5}{1/2, _legato(20) A#4 G5 _legato(0) C#6},{1/2,E2,E3}{1/2,G#3,E4}{1/2,B3,G#4}{1/2,G#3,E4}}} [—105—] {_tempo(12/5) _vel(55){2,{1/2,B4,G#5,B5}{1/2, _legato(20) A#4 G5 _legato(0) C#6}{1/2,B4,G#5,B5} 1/2,{1/2,E2,E3}{1/2,G#3,E4}{1/2,B3,G#4}{1/2,G#3,E4}}} [—106—] {_tempo(12/5) _vel(67){2,{1/2,D5,B5,D6}{1/2,D5,B5,D6}{1/2,D5,B5,D6}{1/2, _legato(20) C#5 A#5 _legato(0) E6},{1/2,E2,E3}{1/2,B3,G#4}{1/2,D4,B4}{1/2,B3,G#4}}} [—107—] {_tempo(12/5) _vel(55){2,{1/2,D5,B5,D6}{1/2, _legato(20) C#5 A#5 _legato(0) E6}{1/2,D5,B5,D6} 1/2,{1/2,E2,E3}{1/2,B3,G#4}{1/2,D4,B4}{1/2,B3,G#4}}} [—108—] {_tempo(12/5) _vel(55){2,{1/2,C#5,A5,C#6}{1/2,C#5,A5,C#6}{1/2,C#5,A5,C#6}{1/2, _legato(20) B#4 G#5 _legato(0) D6},{1/2,A2,A3}{1/2,A3,E4}{1/2,C#4,A4}{1/2,A3,E4}}} [—109—] {_tempo(12/5) _vel(55){2,{1/2,C#5,A5,C#6}{1/2, _legato(20) B#4 G#5 _legato(0) D6}{1/2,C#5,A5,C#6} 1/2,{1/2,A2,A3}{1/2,A3,E4}{1/2,C#4,A4}{1/2,A3,E4}}} [—110—] {_tempo(12/5) _vel(55){2,{1/2,E5,C#6,E6}{1/2,E5,C#6,E6}{1/2,E5,C#6,E6}{1/2, _legato(20) D#5 B5 _legato(0) F#6},{1/2,A2,A3}{1/2,C#4,A4}{1/2,E4,C#5}{1/2,C#4,A4}}} [—111—] {_tempo(12/5) _vel(55){2,{1/2,E5,C#6,E6}{1/2, _legato(20) D#5 B5 _legato(0) F#6}{1/2,E5,C#6,E6} 1/2,{1/2,A2,A3}{1/2,C#4,A4}{1/2,E4,C#5} 1/2}} [—112—] {_tempo(12/5) _vel(35){4,{3/2, _legato(20) E5,C#6}{1/2,E5,E6}{1/2,E5,D#6}{3/2, _legato(0) E5,C#6},{3/2, _legato(20) G4}{1,B4 A4}{3/2, _legato(0) G4}}} [—113—] {_tempo(7/15) _vel(55){361/80,{3/2, _legato(20) D5,A5}{1/2,D5,G5}{1/2, _legato(0) D5,F#5}{1/8, _legato(20) B5}{7/8, _legato(0) {1,A5 B5 A5 B5 A5 B5 A5 B5}}{39/40,G5 A5 B#5 D6 F#6 G6 G6 B6 A6 F#6 D6 B#5 A5 F#5 D5 E5 E#5 F#5 G5 G5 B5 A5 D5 D5 G5 F#5}{3/80,- E5}, 1/80 {3/2, _legato(20) F#4,A4}{1/2,E4,A4}{1/2, _legato(0) D4,A4}{A#3,E4,G4} -}} [—114—] {_tempo(12/5) _vel(67){5/2,_tempo(25/36) _tempo(25/36){C#5,E5} - {1/2,E4},_tempo(25/36){C#4,G#4} - 1/8 3/8}} [—115—] {_tempo(12/5) _vel(55){2,{1, _legato(20) G#4 A4 B4 _legato(0) C#5}{1,B4 D#5},{1,E4}{1/2,E4,G#4}{1/2,D#4,A4},{B2,G#3,B3}{1/2,B2,G#3,B3}{1/2,B2,F#3,B3}}} [—116—] {_tempo(12/5) _vel(55){2,{E4,G#4,E5}{1,- E5},{E3,B3} -}} [—117—] {_tempo(12/5) _vel(55){2,{1, _legato(20) G#5 A5 B5 _legato(0) C#6}{1/2,E5,B5}{1/2,D#5,A5,D#6},E5 1,{B3,G#4}{1/2,B3,G#4,B4}{1/2,B3,F#4,B4}}} [—118—] {_tempo(12/5) _vel(55){2,{E5,G#5,E6} -,{E4,B4}{1,- E2}}} [—119—] {_tempo(12/5) _vel(55){2,{B3,E4,B4}{1/2,B3,E4,G#4}{1/2,A3,D#4},{1, _legato(20) G#2 A2 B2 _legato(0) C#3}{1,B2 B1}}} [—120—] {_tempo(12/5) _vel(55){3,{G#3,E4} --,E2 --}} [—121—] {_tempo(8/5) _vel(55){2,{1/8, _legato(20) D#5}{3/8, _legato(20) E5&}{1/4, _legato(0) &E5,D6} 1/4 {1/8, _legato(20) E5&}{3/8, _legato(0) &E5,D6}{1/8, _legato(20) E5&}{3/8, _legato(0) &E5,D6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—122—] {_tempo(8/5) _vel(55){2,{1/8, _legato(20) E5}{1/4, _legato(0) D6}{1/8,C6}{3/8,B5}{1/8, _legato(20) A5}{3/8, _legato(0) G#5}{1/8, _legato(20) A5}{3/8, _legato(0) B5}{1/8, _legato(20) G5},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—123—] {_tempo(8/5) _vel(55){2,{1/8, _legato(20) B5}{1/4, _legato(0) A5}{1/8, _legato(20) G#5}{3/8, _legato(0) A5}{1/8,B5}{1/8, _legato(20) D6}{1/4, _legato(0) C6}{1/8, _legato(20) B5}{3/8, _legato(0) C6}{1/8, _legato(20) D6},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}} [—124—] {_tempo(8/5) _vel(55){2,{3/8, _legato(0) D#6}{1/8,E6}{3/8,F6}{1/8, _legato(20) E6}{3/8, _legato(0) D6}{1/8, _legato(20) C6}{3/8, _legato(0) B5}{1/8,A5},{3/8,A3}{1/8,D4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}} [—125—] {_tempo(8/5) _vel(55){2,{1/2, _legato(20) E5&}{1/4, _legato(0) &E5,D6} 1/4 {1/8, _legato(20) E5&}{3/8, _legato(0) &E5,D6}{1/8, _legato(20) E5&}{3/8, _legato(0) &E5,D6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—126—] {_tempo(8/5) _vel(55){2,{1/8, _legato(20) E5}{1/4, _legato(0) D6}{1/8,C6}{3/8,B5}{1/8, _legato(20) A5}{3/8, _legato(0) G#5}{1/8, _legato(20) E5}{3/8, _legato(0) F#5}{1/8, _legato(20) G#5},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—127—] {_tempo(8/5) _vel(55){2,{1/8, _legato(20) B5}{1/4, _legato(0) A5}{1/8, _legato(20) G#5}{3/8, _legato(0) A5}{1/8, _legato(20) B5}{1/8, _legato(20) D#6}{1/4, _legato(0) C6}{1/8, _legato(20) E5}{3/8, _legato(0) F#5}{1/8,G#5},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,D4}{3/8,B4}{1/8,E4}}} [—128—] {_tempo(8/5) _vel(55){2,{1/3,A5}{1/6, _legato(20) A5 B5}{3/8, _legato(20) A5}{1/8,G#5} _legato(0) A5,{3/8,A3}{1/8,C4}{3/8,A4}{1/8,E4}{3/8,A3,C4}{1/8,D4}{1/2,A4}}} [—129—] {_tempo(8/5) _vel(55){2,{1/8,D#5,D#6}{1/2, _legato(20) E5,E6}{1/4, _legato(0) D6,D7} 1/4 {3/20,D6& E6& D7&}{7/20,&D6,&E6,&D7}{1/2,D6,E6,D7},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—130—] {_tempo(8/5) _vel(55){2,{3/20,D6& E6& D7&}{9/40,&D6,&E6,&D7}{1/8,C6,C7}{3/8,B5,B6}{1/8, _legato(20) A5,A6}{3/8, _legato(0) G#5,G#6}{1/8, _legato(20) A5,A6}{3/8, _legato(0) B5,B6}{1/8, _legato(20) G#5,G#6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—131—] {_tempo(8/5) _vel(55){2,{3/8, _legato(0) A5,A6}{1/8, _legato(20) G#5,G#6}{3/8, _legato(0) A5,A6}{1/8,B5,B6}{3/8,C6,C7}{1/8, _legato(20) B5,B6}{3/8, _legato(0) C6,C7}{1/8, _legato(20) D6,D7},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}} [—132—] {_tempo(8/5) _vel(55){2,{3/8, _legato(0) D#6,D#7}{1/8,E6,E7}{3/8,F6,F7}{1/8, _legato(20) E6,E7}{3/8, _legato(0) D6,D7}{1/8, _legato(20) C6,C7}{3/8, _legato(0) B5,B6}{1/8,A5,A6},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}} [—133—] {_tempo(8/5) _vel(55){2,{1/2, _legato(20) E5,E6}{1/4, _legato(0) D6,D7} 1/4 {3/20,D6& E6& D7&}{7/20,&D6,&E6,&D7}{1/2,D6,E6,D7},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—134—] {_tempo(8/5) _vel(55){2,{3/20,D6& E6& D7&}{9/40,&D6,&E6,&D7}{1/8, _legato(20) C6,C7}{3/8, _legato(0) B5,B6}{1/8, _legato(20) A5,A6}{3/8, _legato(0) G#5,G#6}{1/8, _legato(20) E5,E6}{3/8, _legato(0) F#5,F#6}{1/8, _legato(20) G#5,G#6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—135—] {_tempo(8/5) _vel(55){2,{3/8, _legato(0) A5,A6}{1/8, _legato(20) G#5,G#6}{3/8, _legato(0) A5,A6}{1/8, _legato(20) B6}{3/8, _legato(0) C6,C7}{1/8, _legato(20) E5,E6}{3/8, _legato(0) F#5,F#6}{1/8, _legato(20) G#5,G#6},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,D4}{3/8,B4}{1/8,E4}}} [—136—] {_tempo(8/5) _vel(55){2,{1/2, _legato(0) A5,A6}{3/8, _legato(20) A5,A6}{1/8,G5,G#6}{1/2, _legato(0) A5,A6} 1/2, 1/3 {1/6,A6 B6}3/2,{3/8,F5}{1/8,C4}{3/8,A4}{1/8,E4}{1/5,A3& C4& E4& A4&}{3/10,&A3,&C4,&E4,&A4} 1/2}} [—137—] {_tempo(38/15) _vel(94){9/4,{1/4,A4,F5,A5}{A4,F5,A5}{Bb4,E5,Bb5},{1/4,F3,C4,F4}{F3,C4,F4}{C3,G3,C4}}} [—138—] {_tempo(38/15) _vel(55){2,{3/2,A4,F5,A5}{1/4, _legato(20) A5,F6}{1/4, _legato(0) Bb5,D6},{3/2,F2,C3,F3} 1/2}} [—139—] {_tempo(38/15) _vel(55){2,{1/4, _legato(20) A5,F6}{1/4, _legato(0) Bb5,D6}{1/4, _legato(20) Bb5,D6}{1/4, _legato(0) A5,C6}{1/4, _legato(20) A5,C6}{1/4, _legato(0) G5,Bb5}{1/4, _legato(20) G5,Bb5}{1/4, _legato(0) G#5,B5},{1/2,C2,C3}{1/2,G3,Bb3,E4}{1/2,G3,Bb3,E4}{1/2,G3,Bb3,E4}}} [—140—] {_tempo(38/15) _vel(55){2,{1/4, _legato(20) Bb5,D6}{1/4, _legato(0) A5,C6}{1/4, _legato(20) A5,C6}{1/4, _legato(0) G5,Bb5}{F5,A5},{1/2,F2,F3}{1/2,A3,C4,F4}{A3,C4,F4}}} [—141—] {_tempo(38/15) _vel(94){9/4,{1/4,A4,F5,A5}{A4,F5,A5}{Bb4,E5,Bb5},{1/4,F3,C4,F4}{F3,C4,F4}{C3,G3,C4}}} [—142—] {_tempo(38/15) _vel(55){2,{A4,F5,A5}{1,- _legato(20) A5 _legato(0) A6 _legato(20) G#5},{3/2,F2,C3,F3} 1/2}} [—143—] {_tempo(38/15) _vel(55){2,{2, _legato(0) G#6 _legato(20) G5 _legato(0) G6 _legato(20) F5 _legato(0) F6 _legato(20) E5 _legato(0) E6 _legato(20) D5},{1/2,A2}{1/2,D4,F4}{1/2,A3}{1/2,C#4,G4}}} [—144—] {_tempo(38/15) _vel(55){2,{1, _legato(0) D6 _legato(20) C#5 _legato(0) C#6 _legato(20) D5&}{1/2, _legato(0) &D5,D6} 1/2,{1/2,D4,F4}{1/2,A3,E4,G4}{1/2,D4,F4} 1/2}} [—145—] {_tempo(38/15) _vel(94){9/4,{1/4,A4,F5,A5}{A4,F5,A5}{Bb4,E5,Bb5},{1/4,F3,C4,F4}{F3,C4,F4}{C3,G3,C4}}} [—146—] {_tempo(38/15) _vel(55){2,{3/2,A4,F5,A5}{1/4, _legato(20) A5,F6}{1/4, _legato(0) Bb5,D6},{3/2,F2,C3,F3} 1/2}} [—147—] {_tempo(38/15) _vel(55){2,{1/4, _legato(20) A5,F6}{1/4, _legato(0) Bb5,D6}{1/4, _legato(20) Bb5,D6}{1/4, _legato(0) A5,C6}{1/4, _legato(20) A5,C6}{1/4, _legato(0) G5,Bb5}{1/4, _legato(20) G5,Bb5}{1/4, _legato(0) G#5,B5},{1/2,C2,C3}{1/2,G3,Bb3,E4}{1/2,G3,Bb3,E4}{1/2,G3,Bb3,E4}}} [—148—] {_tempo(38/15) _vel(55){2,{1/4, _legato(20) Bb5,D6}{1/4, _legato(0) A5,C6}{1/4, _legato(20) A5,C6}{1/4, _legato(0) G5,Bb5}{F5,A5},{1/2,F2,F3}{1/2,A3,C4,F4}{A3,C4,F4}}} [—149—] {_tempo(38/15) _vel(94){9/4,{1/4,A4,F5,A5}{A4,F5,A5}{Bb4,E5,Bb5},{1/4,F3,C4,F4}{F3,C4,F4}{C3,G3,C4}}} [—150—] {_tempo(38/15) _vel(55){2,{A4,F5,A5} 1/2 {1/4,A3,A4} 1/4,{F2,C3,F3} 1/4 {1/4,A1,A2} 1/4 {1/4,Bb1,A2}}} [—151—] {_tempo(38/15) _vel(55){2,{1/4,G#3,G#4} 1/4 {1/4,G3,G4} 1/4 {1/4,F3,F4} 1/4 {1/4,E3,E4} 1/4, 1/4 {1/4,Bb1,A2} 1/4 {1/4,C2,A2} 1/4 {1/4,C#2,A2} 1/4 {1/4,A1,A2}}} [—152—] {_tempo(38/15) _vel(55){5/2,{1/4,D3,D4} 1/4 {1/4,C#3,C#4} 1/4 {1/4,D3,D4} 1/4 -, 1/4 {1/4,D2,A2} 1/4 {1/4,C2,A2} 1/4 {1/4,D2,A2} -}} [—153—] {_tempo(8/5) _vel(55){2,{1/8, _legato(20) D#5}{3/8, _legato(20) E5&}{1/4, _legato(0) &E5,D6} 1/4 {1/8, _legato(20) E5&}{3/8, _legato(0) &E5,D6}{1/8, _legato(20) E5&}{3/8, _legato(0) &E5,D6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—154—] {_tempo(8/5) _vel(55){2,{1/8, _legato(20) E5}{1/4, _legato(0) D6}{1/8,C6}{3/8,B5}{1/8, _legato(20) A5}{3/8, _legato(0) G#5}{1/8, _legato(20) A5}{3/8, _legato(0) B5}{1/8, _legato(20) G5},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—155—] {_tempo(8/5) _vel(55){2,{1/8, _legato(20) B5}{1/4, _legato(0) A5}{1/8, _legato(20) G#5}{3/8, _legato(0) A5}{1/8,B5}{1/8, _legato(20) D6}{1/4, _legato(0) C6}{1/8, _legato(20) B5}{3/8, _legato(0) C6}{1/8, _legato(20) D6},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}} [—156—] {_tempo(8/5) _vel(55){2,{3/8, _legato(0) D#6}{1/8, _legato(20) E6}{3/8, _legato(0) F6}{1/8, _legato(20) E6}{3/8, _legato(0) D6}{1/8, _legato(20) C6}{3/8, _legato(0) B5}{1/8,A5},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}} [—157—] {_tempo(8/5) _vel(55){2,{1/2, _legato(20) E5&}{1/4, _legato(0) &E5,D6} 1/4 {1/8, _legato(20) E5&}{3/8, _legato(0) &E5,D6}{1/8, _legato(20) E5&}{3/8, _legato(0) &E5,D6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—158—] {_tempo(8/5) _vel(55){2,{1/8, _legato(20) E5}{1/4, _legato(0) D6}{1/8, _legato(20) C6}{3/8, _legato(0) B5}{1/8, _legato(20) A5}{3/8, _legato(0) G#5}{1/8, _legato(20) E5}{3/8, _legato(0) F#5}{1/8, _legato(20) G#5},{3/8,A3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—159—] {_tempo(8/5) _vel(55){2,{1/8, _legato(20) B5}{1/4, _legato(0) A5}{1/8, _legato(20) G#5}{3/8, _legato(0) A5}{1/8, _legato(20) B5}{1/8, _legato(20) D#6}{1/4, _legato(0) C6}{1/8, _legato(20) E5}{3/8, _legato(0) F#5}{1/8,G#5},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,D4}{3/8,B4}{1/8,E4}}} [—160—] {_tempo(8/5) _vel(55){2,{1/3,A5}{1/6, _legato(20) A5 B5}{3/8, _legato(20) A5}{1/8,G#5} _legato(0) A5,{3/8,A3}{1/8,C4}{3/8,A4}{1/8,E4}{3/8,A3,C4}{1/8,D4}{1/2,A4}}} [—161—] {_tempo(8/5) _vel(35){2,{2,D#6 E6 F6 E6 D7 E6 F6 E6 D7 E6 F6 E6 D7 E6 F6 E6},{2,- D7 D7 D7},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—162—] {_tempo(8/5) _vel(55){2,{2,D7 E6 C7 E6 B6 E6 A6 E6 G#6 E6 A6 E6 B6 E6 G#6 E6},{2,D7 C7 B6 A6 G#6 A6 B6 G#6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—163—] {_tempo(8/5) _vel(55){2,{2,A6 E6 G#6 E6 A6 E6 B6 E6 C7 E6 B6 E6 C7 E6 D7 E6},{2,A6 G#6 A6 B6 C7 B6 C7 D7},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}} [—164—] {_tempo(8/5) _vel(55){2,{2,D#7 E6 E7 E6 F7 E6 E7 E6 D7 E6 C7 E6 B6 E6 A6 E6},{2,D#7 E7 F7 E7 D7 C7 B6 A6},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}} [—165—] {_tempo(8/5) _vel(55){2,{2,D#6 E6 F6 E6 D7 E6 F6 E6 D7 E6 F6 E6 D7 E6 F6 E6},{2,- D7 D7 D7},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—166—] {_tempo(8/5) _vel(55){2,{2,D7 E6 C7 E6 B6 E6 A6 E6 G#6 E6 A6 E6 B6 E6 G#6 E6},{2,D7 C7 B6 A6 G#6 A6 B6 G#6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}} [—167—] {_tempo(8/5) _vel(55){2,{1/64, _legato(20) B6}{7/64, _legato(0) A6}{15/8,E6 G#6 E6 A6 E6 C7 E6 E7 E6 D#6 E6 F#6 E6 G#6 E6},{2,A6 G#6 A6 C7 E7 D#6 F#6 G#6},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}} [—168—] {_tempo(8/5) _vel(24){2,{2,A6 E6 C#7 E6 E7 E6 C#7 E6 A6 E6 C#7 E6 E7 E6 C#7 E6},{1/10,A#3& C4& A4&}{9/10,&A#3,&C4,&A4} 427/480 {53/480,A4}}} [—169—] {_tempo(8/5) _vel(55){2,{2,A6 E6 C#7 E6 E7 E6 C#7 E6 A6 E6 C#7 E6 E7 E6 C#7 E6},{2, _legato(20) A4 _legato(0) G5 G5 G5}}} [—170—] {_tempo(8/5) _vel(55){2,{2,A6 E6 C#7 E6 E7 E6 C#7 E6 A6 E6 C#7 E6 E7 E6 C#7 E6},{3/8,G5}{1/8,F5}{3/8,E5}{1/8,D5}{3/8,C#5}{1/8,D5}{3/8,E5}{1/8,C5}}} [—171—] {_tempo(8/5) _vel(55){2,{2,A6 F6 D7 F6 F7 F6 D7 F6 A6 F6 D7 F6 F7 F6 D7 F6},{1/8, _legato(20) E5}{1/4, _legato(0) D5}{1/8,C#5}{3/8,D5}{1/8,E5}{1/8, _legato(20) G5}{1/4, _legato(0) F5}{1/8,E5}{3/8,F5}{1/8,G5}}} [—172—] {_tempo(8/5) _vel(55){2,{2,A6 F6 D7 F6 F7 F6 D7 F6 A6 F6 D7 F6 F7 F6 D7 F6},{3/8,G#5}{1/8,A5}{3/8,Bb5}{1/8,A5}{3/8,G5}{1/8,F5}{3/8,E5}{1/8,D5}}} [—173—] {_tempo(8/5) _vel(55){2,{2,G#6 E6 B6 E6 E7 E6 B6 E6 G#6 E6 B6 E6 E7 E6 B6 E6},{2, _legato(20) E4 _legato(0) D5 D5 D5}}} [—174—] {_tempo(8/5) _vel(55){2,{2,G#6 E6 B6 E6 E7 E6 B6 E6 G#6 E6 B6 E6 E7 E6 B6 E6},{3/8,D5}{1/8,C5}{3/8,B4}{1/8,A4}{3/8,G#4}{1/8,A4}{3/8,B4}{1/8,G#4}}} [—175—] {_tempo(8/5) _vel(55){2,{2,A6 E6 C7 E6 E7 E6 C7 E6 A6 E6 C7 E6 E7 E6 C7 E6},{1/8, _legato(20) B4}{1/4, _legato(0) A4}{1/8,G#4}{3/8,A4}{1/8,B4}{1/8, _legato(20) D5}{1/4, _legato(0) C5}{1/8,B4}{3/8,C5}{1/8,D5}}} [—176—] {_tempo(8/5) _vel(55){2,{2,A6 E6 C7 E6 E7 E6 C7 E6 A6 E6 C7 E6 E7 E6 C7 E6},{3/8,D#5}{1/8,E5}{3/8,F5}{1/8,E5}{3/8,D5}{1/8,C5}{3/8,B4}{1/8,A4}}} [—177—] {_tempo(8/5) _vel(55){2,{2,A6 E6 C#7 E6 E7 E6 C#7 E6 A6 E6 C#7 E6 E7 E6 C#7 E6},{2, _legato(20) E4 _legato(0) D5 D5 D5}}} [—178—] {_tempo(8/5) _vel(55){2,{2,A6 E6 C#7 E6 E7 E6 C#7 E6 A6 E6 C#7 E6 E7 E6 C#7 E6},{3/8,{1/8,G4 A4}{7/8,G4}}{1/8,F4}{3/8,E4}{1/8,D4}{3/8,C#4}{1/8,D4}{3/8,E4}{1/8,C#4}}} [—179—] {_tempo(8/5) _vel(55){2,{2,A6 F6 D7 F6 F7 F6 D7 F6 A6 F6 D7 F6 F7 F6 D7 F6},{1/8, _legato(20) E4}{1/4, _legato(0) D4}{1/8,C#4}{3/8,D4}{1/8,E4}{1/8, _legato(20) G4}{1/4, _legato(0) F4}{1/8,E4}{3/8,F4}{1/8,G4}}} [—180—] {_tempo(8/5) _vel(55){2,{2,A6 F6 D7 F6 F7 F6 D7 F6 A6 F6 D7 F6 F7 F6 D7 F6},{3/8,G#4}{1/8,A4}{3/8,Bb4}{1/8,A4}{3/8,G4}{1/8,F4}{3/8,E4}{1/8,D4}}} [—181—] {_tempo(8/5) _vel(55){2,{2,A6 F6 D7 F6 F7 F6 D7 F6 A6 F6 D7 F6 F7 F6 D7 F6},{2, _legato(20) F3 _legato(0) Eb4 Eb4 Eb4}}} [—182—] {_tempo(8/5) _vel(55){2,{2,A6 F6 C7 F6 F7 F6 D7 F6 A6 F6 C7 F6 F7 F6 C7 F6},{3/8,{1/8,Eb4 E4}{7/8,Eb4}}{1/8,D4}{3/8,C4}{1/8,Bb3}{3/8,A3}{1/8,Bb3}{3/8,C4}{1/8,A3}}} [—183—] {_tempo(8/5) _vel(55){2,{2,Bb6 F6 D7 F6 F7 F6 D7 F6 Bb6 F6 D7 F6 F7 F6 D7 F6},{2, _legato(20) B3 _legato(0) Ab4 Ab4 Ab4}}} [—184—] {_tempo(8/5) _vel(55){2,{2,Bb6 F6 D7 F6 F7 F6 D7 F6 Bb6 F6 D7 F6 F7 F6 D7 F6},{3/8,Ab4,Bb4}{1/8,G4}{3/8,F4}{1/8,Eb4}{3/8,D4}{1/8,Eb4}{3/8,F4}{1/8,D4}}} [—185—] {_tempo(8/5) _vel(55){2,{2,Bb6 G6 Eb7 G6 G7 G6 Eb7 G6 Bb6 G6 Eb7 G6 G7 G6 Eb7 G6},{2, _legato(20) Eb4 _legato(0) Db5 Db5 Db5}}} [—186—] {_tempo(8/5) _vel(55){2,{2,Bb6 G6 Eb7 G6 G7 G6 Eb7 G6 Bb6 G6 Eb7 G6 G7 G6 Eb7 G6},{3/8,Db5,Eb5}{1/8,C5}{3/8,Bb4}{1/8,Ab4}{3/8,G4}{1/8,Ab4}{3/8,Bb4}{1/8,G4}}} [—187—] {_tempo(8/5) _vel(55){2,{2,C7 G6 E7 G6 G7 G6 E7 G6 G6 E6 C7 E6 E7 E6 C7 E6},{1/2, _legato(20) C2,C3}{1/2, _legato(0) Bb2,Bb3}{1/2,Bb2,Bb3}{1/2,Bb2,Bb3}}} [—188—] {_tempo(8/5) _vel(55){2,{2,E6 C6 G6 C6 C7 C6 G6 C6 C6 G5 E6 G5 G6 G5 E6 G5},{3/8,Bb2,Bb3}{1/8,Ab2,Ab3}{3/8,G2,G3}{1/8,F2,F3}{3/8,E2,E3}{1/8,F2,F3}{3/8,G2,G3}{1/8,E2,E3}}} [—189—] {_tempo(8/5) _vel(55){2,{2,C6 Ab5 E6 Ab5 Ab6 Ab5 E6 Ab5 Ab5 F5 C6 F5 F6 F5 C6 F5},{1/4,F2,F3}{1/4,E2,E3}{1/4,F2,F3}{1/4,G2,G3}{1/4,Ab2,Ab3}{1/4,G2,G3}{1/4,Ab2,Ab3}{1/4,Bb2,Bb3}}} [—190—] {_tempo(8/5) _vel(55){2,{2,F5 C5 Ab5 C5 C6 C5 Ab5 C5 C5 Ab4 F5 Ab4 Ab5 Ab4 F5 Ab4},{1/4,B2,B3}{1/4,C3,C4}{1/4,Db3,Db4}{1/4,C3,C4}{1/4,Bb2,Bb3}{1/4,Ab2,Ab3}{1/4,G2,G3}{1/4,F2,F3}}} [—191—] {_tempo(8/5) _vel(55){2,{2,G5 E5 C6 E5 E6 E5 C6 E5 E5 C5 G5 C5 C6 C5 G5 C5},{1/2, _legato(20) C2,C3}{1/2, _legato(0) Bb2,Bb3}{1/2,Bb2,Bb3}{1/2,Bb2,Bb3}}} [—192—] {_tempo(8/5) _vel(55){2,{2,C5 G4 E5 G4 G5 G4 E5 G4 G4 E4 C5 E4 E5 E4 C5 E4},{1/4,Bb2,Bb3}{1/4,Ab2,Ab3}{1/4,G2,G3}{1/4,F2,F3}{1/4,E2,E3}{1/4,F2,F3}{1/4,G2,G3}{1/4,F2,F3}}} [—193—] {_tempo(8/5) _vel(55){2,{2,C5 Ab4 F5 Ab4 Ab5 Ab4 F5 Ab4 Ab4 F4 C5 F4 F5 F4 C5 F4},{1/4,F2,F3}{1/4,E2,E3}{1/4,F2,F3}{1/4,G2,G3}{1/4,Ab2,Ab3}{1/4,G2,G3}{1/4,Ab2,Ab3}{1/4,Bb2,Bb3}}} [—194—] {_tempo(8/5) _vel(55){2, 1/8 {7/4,B3 C4 Db4 C4 Bb3 Ab3 G3}{1/8,F3},{2,B2 C3 Db3 C3 Bb2 Ab2 G2 F2}}} [—195—] {_tempo(7/5) _vel(110){2,{3/4,F3,Ab3,Db4}{1/4,Ab3,C4,Eb4}{1/4,Ab3,Db4,F4}{3/4,Gb3,Db4,Gb4},{3/4,Db2,Db3}{1/4,Ab1,Ab2}{1/4,Db2,Db3}{3/4,Bb1,Bb2}}} [—196—] {_tempo(7/5) _vel(55){2,{3/4,Ab3,Db4,Ab4}{1/4,Bb3,Db4,Bb4}{1/4,Ab3,Db4,Ab4}{3/4,Gb3,Db4,Gb4},{3/4,F1,F2}{1/4,Gb1,Gb2}{1/4,F1,F2}{3/4,Bb1,Bb2}}} [—197—] {_tempo(7/5) _vel(55){3,{1/2,F3,Db4,F4}{F3,Db4,F4}{1/2,Eb3,Gb3,C4,Eb4}{Eb3,Gb3,C4,Eb4},{1/2,Ab1,F2,Ab2}{Ab1,F2,Ab2}{1/2,Ab1,Eb2,Ab2}{Ab1,Eb2,Ab2}}} [—198—] {_tempo(7/5) _vel(55){3,{1/2,F3,Db4}{F3,Db4}{1/2,Db4,F4,Db5}{1/2,Db5,F5,Db6}{1/2,Db6,F6,Db7},{1/2,Db2,Ab2,Db3}{Db2,Ab2,Db3}{1/2,Db3,Ab3}{1/2,Db4,Ab4}{1/2,Db5,Ab5}}} [—199—] {_tempo(7/5) _vel(55) 2} [—200—] {_tempo(7/5) _vel(55){2,{3/4,C4,Eb4,Ab4}{1/4,Bb3,Eb4,Bb4}{1/4,C4,Eb4,Bb4}{3/4,Db4,Ab4,Db5},{3/4,Ab2,Eb3,Ab3}{1/4,G2,G3}{1/4,Ab2,Eb3,Ab3}{3/4,F2,F3}}} [—201—] {_tempo(7/5) _vel(55){2,{3/4,Eb4,Ab4,Eb5}{1/4,F4,Ab4,F5}{1/4,Eb4,Ab4,Eb5}{3/4,Db4,Ab4,Db5},{3/4,C2,C3}{1/4,Db2,Db3}{1/4,C2,C3}{3/4,F2,F3}}} [—202—] {_tempo(7/5) _vel(55){3,{1/2,C4,Eb4,Ab4,C5}{C4,Eb4,Ab4,C5}{1/2,Bb3,Db4,Gb4,Bb4}{Bb3,Db4,Gb4,Bb4},{1/2,Eb2,C3,Eb3}{Eb2,C3,Eb3}{1/2,Eb2,Bb2,Eb3}{Eb2,Bb2,Eb3}}} [—203—] {_tempo(7/5) _vel(55){5/2,{1/2,Ab3,C4,Eb4,Ab4}{1/2,Ab3,C4,Eb4,Ab4}{1/2,Ab4,C5,Eb5,Ab5}{Ab5,C6,Eb6,Ab6},{1/2,Ab1,C2,Eb2,Ab2}{1/2,Ab1,C2,Eb2,Ab2}{1/2,Ab2,C3,Eb3,Ab3}{Ab3,C4,Eb4,Ab4}}} [—204—] {_tempo(7/5) _vel(67){2,- 1/2 {1/2,- C4}}} [—205—] {_tempo(7/5) _vel(55){2,{3/4, _legato(20) C4,F4}{1/4,Ab4}{1/4,C4,Gb4}{3/4, _legato(0) C4,F4},{3/4, _legato(20) C3,Ab3}{1/4,C3,C4}{1/4,C3,Bb3}{3/4, _legato(0) C3,Ab3}}} [—206—] {_tempo(7/5) _vel(55){2,{3/4, _legato(20) Bb3,Eb4}{1/4,Ab3,Db4}{1/4,G3,C4}{3/4, _legato(0) Ab3,F4},{3/4, _legato(20) C3,G3}{1/4,C3,F3}{1/4,C3,E3}{3/4, _legato(0) F2,C3,F3}}} [—207—] {_tempo(7/5) _vel(55){3,{1/2,G3,Bb3}{G3,Bb3}{1/2,F3,Ab3}{F3,Ab3},{1/2,E2,C3}{E2,C3}{1/2,F2,C3}{F2,C3}}} [—208—] {_tempo(7/5) _vel(55){5/2,{1/2,F3,Ab3,Db4}{2,F3,Ab3,Db4}, 767/480 433/480,{1/2,Bb1}Bb1&{473/480,&Bb1 F2 Ab2 Bb2 Db3 F3 Ab3 Bb3 Eb4 Db4 Ab3 F3 Ab3 Bb3 Db4 E4 F4 Ab4 Bb4 Eb5 Db5 Bb4 Ab4 F4 Ab4 Bb4 Db5 Eb5 F5 Ab5 Bb5 Eb6 Db6 Bb5 Ab5 F5 Ab5 Bb5 Db6 E6 F6 Ab6 Bb6}7/480}} [—X2—] {_tempo(2) _vel(55){6,{6,Eb7 Db7 Bb6 Ab6 E6 F6 Ab6 Bb6 Eb7 Db7 Bb6 Ab6 E6 F6 Ab6 Bb6 Eb7 Db7 Bb6 Ab6 E6 F6 Ab6 Bb6 Eb7 Db7 Bb6 Ab6 E6 F6 Ab6 Bb6 Eb7 Db7 Bb6 Ab6 E6 F6 Ab6 Bb6 Eb7 Db7 Bb6 Ab6 E6 F6 Ab6 Bb6}}} [—X3—] {_tempo(2) _vel(55){45/8,{1/2,C7 Db7 Eb7}{3,{1,G7 F7 G7 F7 G7 F7 G7 F7&}}{3/4,&F7}{1/4,C7 Db7}_tempo(1/3){1,F7 Db7 E7 C7 Eb7 Cb7 D7 Bb6 Db7 A6 C7 Ab6 B6 G6 Bb6 Gb6 A6 F6 Ab6 E6 G6 Eb6 Gb6 D6} 1/8,{1,-- B1}{5/2,B2 F3 Ab3 Db4 F4 Ab4 Db5 F5 Ab5 Db6}{1/2,F6}1/2 _tempo(1/3) 1 1/8}} [—X4—] {_tempo(5/12) _vel(55){19/8,_tempo(28/25) _tempo(28/25) 1/8 {15/16,F6 Db6 E6 C6 Eb6 Cb6 D6 Bb5 Db6 A5 C6 Ab5 B5 G5 Bb5 Gb5 A5 F5 Ab5 E5 G5 Eb5 Gb5 D5 F5 Db5 E5 C5 Eb5 Cb5}{1/8,D5 Bb4 Db5 A4}_tempo(4/5){1/8,C5 Ab4 B4 G4}_tempo(3/5){1/8,Bb4 Gb4 A4 F4}_tempo(2/5){1/8,Ab4 E4 G4 D4}_tempo(1/5){1/16,F4 Db4} 3/4,1/8 _tempo(28/25) 15/16 1/8 _tempo(4/5) 1/8 _tempo(3/5) 1/8 _tempo(2/5) 1/8 _tempo(1/5) 1/16 3/4}} [—209—] {_tempo(5/12) _vel(55)}{_tempo(11/4) _vel(67){4,{2, _legato(20) C4 _legato(0) Bb4 _legato(20) Bb4 _legato(0) A4 _legato(20) A4 _legato(0) G4 _legato(20) G4 _legato(0) G#4}2, 1/2 {1/2,C3}{1/2,Bb3,E4}{2,C3 F4 --}{1/2,- C5},-- 1/2 {1/2,A3,C4}{1,C3 -}}} [—210—] {_tempo(11/4) _vel(67){2,{1,A4 C4}{1,A4 Bb4 A4 Bb4 A4 Bb4 A4 Bb4},{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}} [—211—] {_tempo(11/4) _vel(67){2,{1,G4 C4}{1,G4 A4 G4 A4 G4 A4 G4 A4},{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}} [—212—] {_tempo(11/4) _vel(67){2,{1/2,F4}{1/3,C4}{1/6,F4 G4}{1/2,{1/8,F4 G4}{7/8,F4}}{1/2,E4 D4},{1/2,A3,C4}{1/2,C3}{1/2,Ab3,B3}{1/2,C3}}} [—213—] {_tempo(11/4) _vel(67){2,{2, _legato(20) C4 _legato(0) Bb4 _legato(20) Bb4 _legato(0) A4 _legato(20) A4 _legato(0) G4 _legato(20) G4 _legato(0) G#4},{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}} [—214—] {_tempo(11/4) _vel(67){2,{1,A4 C4}{1,A4 Bb4 A4 Bb4 A4 Bb4 A4 Bb4},{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}} [—215—] {_tempo(11/4) _vel(67){2,{1,A4 C4}{1,G4 A4 G4 A4 G4 A4 G4 A4},{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}} [—217—] {_tempo(11/4) _vel(67){2,{2, _legato(20) C5 _legato(0) Bb5 _legato(20) Bb5 _legato(0) A5 _legato(20) A5 _legato(0) G5 _legato(20) G5 _legato(0) G#5},C5 C5,{1,- C3}{1/2,Bb3,E4}{1/2,C3}}} [—218—] {_tempo(11/4) _vel(67){2,{1,A5 C5}{1,A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5},- C5,{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}} [—219—] {_tempo(11/4) _vel(67){2,{1,A5 C5}{1,G5 A5 G5 A5 G5 A5 G5 A5},- C5,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}} [—220—] {_tempo(11/4) _vel(67){2,{3/2,F5 C5 _legato(20) {1/8,F5 G5}{7/8,F5}}{1/2, _legato(0) E5 _legato(0) D5},- {1/3,F5}{1/6, _legato(20) G5 F5}1/2,- Ab4,{1/2,A3,F4}{1/2,C3}{1/2,B3,D4}{1/2,C3}}} [—221—] {_tempo(11/4) _vel(67){2,{2, _legato(20) C5 _legato(0) Bb5 _legato(20) Bb5 _legato(0) A5 _legato(20) A5 _legato(0) G5 _legato(20) G5 _legato(0) G#5},C5 C5,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}} [—222—] {_tempo(11/4) _vel(67){2,{1,A5 C5}{1,A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5},- C5,{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}} [—223—] {_tempo(11/4) _vel(67){2,{1,A5 C5}{1,G5 A5 G5 A5 G5 A5 G5 A5},- C5,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}} [—224—] {_tempo(11/4) _vel(67){2,F5 1/2 {1/2,- A5},A4 1,{1/2,F3,A3,D4}{1/2,F2,F3}{1/2,F3,F4} 1/2}} [—225—] {_tempo(11/4) _vel(67){2,{2, _legato(20) F6 E6 D6 C#6 D6 E6 F6 _legato(0) D6},{1/2,F5}3/2,{1/2,D2,D3}{1/2, _legato(20) A3 D4 F4}{1, _legato(0) A4 -}}} [—226—] {_tempo(11/4) _vel(67){2,{3/4,E6}{1/4, _legato(20) A5}{3/4, _legato(0) E6}{1/4, _legato(20) D6},{3/2,E5 - E5}1/2,{1/2,A2}{1/2, _legato(20) A3 C#4 E4}{1, _legato(0) A4 -}}} [—227—] {_tempo(11/4) _vel(67){2,{3/4, _legato(0) C#6}{1/4, _legato(20) A5}{3/4, _legato(0) C#6}{1/4, _legato(20) A5},{3/2,C#5 - C#5}1/2,{1/2,A2}{1/2, _legato(20) A3 C#4 E4}{1, _legato(0) A4 -}}} [—228—] {_tempo(11/4) _vel(67){2,{3/4, _legato(0) D6}{1/4, _legato(20) A5}{3/4, _legato(0) A6}{1/4,A5},{3/2,D5 - A5}1/2,{1/2,D3}{1/2, _legato(20) A3 D4 F#4}{1, _legato(0) A4 -}}} [—229—] {_tempo(11/4) _vel(67){2,{2, _legato(20) F6 E6 D6 C#6 D6 E6 F6 _legato(0) D6},{1/2,F5}3/2,{1/2,D3}{1/2, _legato(20) A3 D4 F4}{1, _legato(0) A4 -}}} [—230—] {_tempo(11/4) _vel(67){2,{3/4,E6}{1/4, _legato(20) A5}{3/4, _legato(0) E6}{1/4, _legato(20) D6},{3/2,E5 - E5}1/2,{1/2,A2}{1/2, _legato(20) A3 C#4 E4}{1, _legato(0) A4 -}}} [—231—] {_tempo(11/4) _vel(67){2,{3/4, _legato(0) C#6}{1/4, _legato(20) A5}{3/4, _legato(0) C#6}{1/4, _legato(20) A5},{3/2,C#5 - C#5}1/2,{1/2,A2}{1/2, _legato(20) A3 C#4 E4}{1, _legato(0) A4 -}}} [—232—] {_tempo(11/4) _vel(67){2,{ _legato(0) D5,D6} 1/2 {1/2,- A5},{1/2,D3}{1/2, _legato(20) A3 D4 F#4}{1, _legato(0) A4 -}}} [—233—] {_tempo(11/4) _vel(67){2,{2, _legato(20) F7 E7 D7 C#7 D7 E7 F7 _legato(0) D7},{1/2,F6}3/2,{1/2,D4}{1/2, _legato(20) A4 D5 F5}{1, _legato(0) A5 -}}} [—234—] {_tempo(11/4) _vel(67){2,{3/4,E7}{1/4, _legato(20) A6}{3/4, _legato(0) E7}{1/4, _legato(20) D7},{3/2,E6 - E6}1/2,{1/2,A3}{1/2, _legato(20) A4 C#5 E5}{1, _legato(0) A5 -}}} [—235—] {_tempo(11/4) _vel(67){2,{3/4, _legato(0) C#7}{1/4, _legato(20) A6}{3/4, _legato(0) C#7}{1/4, _legato(20) A6},{3/2,C#6 - C#6}1/2,{1/2,A3}{1/2, _legato(20) A4 C#5 E5}{1, _legato(0) A5 -}}} [—236—] {_tempo(11/4) _vel(67){2,{3/4, _legato(0) D7}{1/4, _legato(20) A6}{3/4, _legato(0) F#7}{1/4,A6},{3/2,D6 - F#6}1/2,{1/2,D4}{1/2, _legato(20) A4 D5 F#5}{1, _legato(0) A5 -}}} [—237—] {_tempo(11/4) _vel(67){2,{2, _legato(20) F7 E7 D7 C#7 D7 E7 F7 _legato(0) D7},{1/2,F6}3/2,{1/2,D4}{1/2, _legato(20) A4 D5 F5}{1, _legato(0) A5 -}}} [—238—] {_tempo(11/4) _vel(67){2,{3/4,E7}{1/4, _legato(20) A6}{3/4, _legato(0) E7}{1/4, _legato(20) D7},{3/2,E6 - E6}1/2,{1/2,A3}{1/2, _legato(20) A4 C#5 E5}{1, _legato(0) A5 -}}} [—239—] {_tempo(11/4) _vel(67){2,{3/4, _legato(0) C#7}{1/4, _legato(20) A6}{3/4, _legato(0) C#7}{1/4, _legato(20) A6},{3/2,C#6 - C#6}1/2,{1/2,A3}{1/2, _legato(20) A4 C#5 E5}{1, _legato(0) A5 -}}} [—240—] {_tempo(11/4) _vel(67){3,{1/4, _legato(0) D6,D7}{3/4,Bb6 A6 Bb6}{2,{1,A6 Bb6 A6 Bb6 A6 Bb6 A6 Bb6}},{1/2,D4}{1/2, _legato(20) A4 D5 F5}{3/2, _legato(0) A5} 1/2}} [—241—] {_tempo(1/4) _vel(67){41/15,_tempo(16/3) _tempo(16/3){4/3,{1,A6 Bb6 A6 Bb6 A6 Bb6 A6 Bb6}}{1/3,G#6 A6 Bb6 D7}{16/15,F7 E7 D7 C#7 D7 C#7 Bb6 A6 Bb6 A6 G#6 F6 A6 G#6 F6 E6 G#6 F6 E6 D6 F6 E6 D6 C#6 D6 C#6 Bb5 A5 Bb5 A5 G#5 F5 A5 G#5 F5 E5 G#5 F5 E5 D5 F5 E5 D5 C#5 D5 C#5 Bb4 A4 Bb4 A4 G#4 F4 A4 G#4 F4 E4 G#4 F4 E4 D4 F4 E4 D4 C4}, 1/15 19/15 _tempo(16/3) 1/3 16/15}}{_tempo(11/4) _vel(67){4,{2, _legato(20) C4 _legato(0) Bb4 _legato(20) Bb4 _legato(0) A4 _legato(20) A4 _legato(0) G4 _legato(20) G4 _legato(0) G#4}2, 1/2 {1/2,C3}{1/2,Bb3,E4}{2,C3 F4 --}{1/2,- C5},-- 1/2 {1/2,A3,C4}{1,C3 -}}} [—210—] {_tempo(11/4) _vel(67){2,{1,A4 C4}{1,A4 Bb4 A4 Bb4 A4 Bb4 A4 Bb4},{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}} [—211—] {_tempo(11/4) _vel(67){2,{1,G4 C4}{1,G4 A4 G4 A4 G4 A4 G4 A4},{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}} [—212—] {_tempo(11/4) _vel(67){2,{1/2,F4}{1/3,C4}{1/6,F4 G4}{1/2,{1/8,F4 G4}{7/8,F4}}{1/2,E4 D4},{1/2,A3,C4}{1/2,C3}{1/2,Ab3,B3}{1/2,C3}}} [—213—] {_tempo(11/4) _vel(67){2,{2, _legato(20) C4 _legato(0) Bb4 _legato(20) Bb4 _legato(0) A4 _legato(20) A4 _legato(0) G4 _legato(20) G4 _legato(0) G#4},{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}} [—214—] {_tempo(11/4) _vel(67){2,{1,A4 C4}{1,A4 Bb4 A4 Bb4 A4 Bb4 A4 Bb4},{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}} [—215—] {_tempo(11/4) _vel(67){2,{1,A4 C4}{1,G4 A4 G4 A4 G4 A4 G4 A4},{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}} [—217—] {_tempo(11/4) _vel(67){2,{2, _legato(20) C5 _legato(0) Bb5 _legato(20) Bb5 _legato(0) A5 _legato(20) A5 _legato(0) G5 _legato(20) G5 _legato(0) G#5},C5 C5,{1,- C3}{1/2,Bb3,E4}{1/2,C3}}} [—218—] {_tempo(11/4) _vel(67){2,{1,A5 C5}{1,A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5},- C5,{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}} [—219—] {_tempo(11/4) _vel(67){2,{1,A5 C5}{1,G5 A5 G5 A5 G5 A5 G5 A5},- C5,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}} [—220—] {_tempo(11/4) _vel(67){2,{3/2,F5 C5 _legato(20) {1/8,F5 G5}{7/8,F5}}{1/2, _legato(0) E5 _legato(0) D5},- {1/3,F5}{1/6, _legato(20) G5 F5}1/2,- Ab4,{1/2,A3,F4}{1/2,C3}{1/2,B3,D4}{1/2,C3}}} [—221—] {_tempo(11/4) _vel(67){2,{2, _legato(20) C5 _legato(0) Bb5 _legato(20) Bb5 _legato(0) A5 _legato(20) A5 _legato(0) G5 _legato(20) G5 _legato(0) G#5},C5 C5,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}} [—222—] {_tempo(11/4) _vel(67){2,{1,A5 C5}{1,A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5},- C5,{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}} [—223—] {_tempo(11/4) _vel(67){2,{1,A5 C5}{1,G5 A5 G5 A5 G5 A5 G5 A5},- C5,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}} [—224—] {_tempo(11/4) _vel(67){2,F5 1/2 {1/2,- A5},A4 1,{1/2,F3,A3,D4}{1/2,F2,F3}{1/2,F3,F4} 1/2}} [—225—] {_tempo(11/4) _vel(67){2,{2, _legato(20) F6 E6 D6 C#6 D6 E6 F6 _legato(0) D6},{1/2,F5}3/2,{1/2,D2,D3}{1/2, _legato(20) A3 D4 F4}{1, _legato(0) A4 -}}} [—226—] {_tempo(11/4) _vel(67){2,{3/4,E6}{1/4, _legato(20) A5}{3/4, _legato(0) E6}{1/4, _legato(20) D6},{3/2,E5 - E5}1/2,{1/2,A2}{1/2, _legato(20) A3 C#4 E4}{1, _legato(0) A4 -}}} [—227—] {_tempo(11/4) _vel(67){2,{3/4, _legato(0) C#6}{1/4, _legato(20) A5}{3/4, _legato(0) C#6}{1/4, _legato(20) A5},{3/2,C#5 - C#5}1/2,{1/2,A2}{1/2, _legato(20) A3 C#4 E4}{1, _legato(0) A4 -}}} [—228—] {_tempo(11/4) _vel(67){2,{3/4, _legato(0) D6}{1/4, _legato(20) A5}{3/4, _legato(0) A6}{1/4,A5},{3/2,D5 - A5}1/2,{1/2,D3}{1/2, _legato(20) A3 D4 F#4}{1, _legato(0) A4 -}}} [—229—] {_tempo(11/4) _vel(67){2,{2, _legato(20) F6 E6 D6 C#6 D6 E6 F6 _legato(0) D6},{1/2,F5}3/2,{1/2,D3}{1/2, _legato(20) A3 D4 F4}{1, _legato(0) A4 -}}} [—230—] {_tempo(11/4) _vel(67){2,{3/4,E6}{1/4, _legato(20) A5}{3/4, _legato(0) E6}{1/4, _legato(20) D6},{3/2,E5 - E5}1/2,{1/2,A2}{1/2, _legato(20) A3 C#4 E4}{1, _legato(0) A4 -}}} [—231—] {_tempo(11/4) _vel(67){2,{3/4, _legato(0) C#6}{1/4, _legato(20) A5}{3/4, _legato(0) C#6}{1/4, _legato(20) A5},{3/2,C#5 - C#5}1/2,{1/2,A2}{1/2, _legato(20) A3 C#4 E4}{1, _legato(0) A4 -}}} [—232—] {_tempo(11/4) _vel(67){2,{ _legato(0) D5,D6} 1/2 {1/2,- A5},{1/2,D3}{1/2, _legato(20) A3 D4 F#4}{1, _legato(0) A4 -}}} [—233—] {_tempo(11/4) _vel(67){2,{2, _legato(20) F7 E7 D7 C#7 D7 E7 F7 _legato(0) D7},{1/2,F6}3/2,{1/2,D4}{1/2, _legato(20) A4 D5 F5}{1, _legato(0) A5 -}}} [—234—] {_tempo(11/4) _vel(67){2,{3/4,E7}{1/4, _legato(20) A6}{3/4, _legato(0) E7}{1/4, _legato(20) D7},{3/2,E6 - E6}1/2,{1/2,A3}{1/2, _legato(20) A4 C#5 E5}{1, _legato(0) A5 -}}} [—235—] {_tempo(11/4) _vel(67){2,{3/4, _legato(0) C#7}{1/4, _legato(20) A6}{3/4, _legato(0) C#7}{1/4, _legato(20) A6},{3/2,C#6 - C#6}1/2,{1/2,A3}{1/2, _legato(20) A4 C#5 E5}{1, _legato(0) A5 -}}} [—236—] {_tempo(11/4) _vel(67){2,{3/4, _legato(0) D7}{1/4, _legato(20) A6}{3/4, _legato(0) F#7}{1/4,A6},{3/2,D6 - F#6}1/2,{1/2,D4}{1/2, _legato(20) A4 D5 F#5}{1, _legato(0) A5 -}}} [—237—] {_tempo(11/4) _vel(67){2,{2, _legato(20) F7 E7 D7 C#7 D7 E7 F7 _legato(0) D7},{1/2,F6}3/2,{1/2,D4}{1/2, _legato(20) A4 D5 F5}{1, _legato(0) A5 -}}} [—238—] {_tempo(11/4) _vel(67){2,{3/4,E7}{1/4, _legato(20) A6}{3/4, _legato(0) E7}{1/4, _legato(20) D7},{3/2,E6 - E6}1/2,{1/2,A3}{1/2, _legato(20) A4 C#5 E5}{1, _legato(0) A5 -}}} [—239—] {_tempo(11/4) _vel(67){2,{3/4, _legato(0) C#7}{1/4, _legato(20) A6}{3/4, _legato(0) C#7}{1/4, _legato(20) A6},{3/2,C#6 - C#6}1/2,{1/2,A3}{1/2, _legato(20) A4 C#5 E5}{1, _legato(0) A5 -}}} [—240—] {_tempo(11/4) _vel(67){3,{1/4, _legato(0) D6,D7}{3/4,Bb6 A6 Bb6}{2,{1,A6 Bb6 A6 Bb6 A6 Bb6 A6 Bb6}},{1/2,D4}{1/2, _legato(20) A4 D5 F5}{3/2, _legato(0) A5} 1/2}} [—241—] {_tempo(1/4) _vel(67){41/15,_tempo(16/3) _tempo(16/3){4/3,{1,A6 Bb6 A6 Bb6 A6 Bb6 A6 Bb6}}{1/3,G#6 A6 Bb6 D7}{16/15,F7 E7 D7 C#7 D7 C#7 Bb6 A6 Bb6 A6 G#6 F6 A6 G#6 F6 E6 G#6 F6 E6 D6 F6 E6 D6 C#6 D6 C#6 Bb5 A5 Bb5 A5 G#5 F5 A5 G#5 F5 E5 G#5 F5 E5 D5 F5 E5 D5 C#5 D5 C#5 Bb4 A4 Bb4 A4 G#4 F4 A4 G#4 F4 E4 G#4 F4 E4 D4 F4 E4 D4 C4}, 1/15 19/15 _tempo(16/3) 1/3 16/15}}{_tempo(169/60) _vel(67){2,{D6,D7} 1/2 {1/2,A5 Bb5 C#6 D6},{1/2,C4}{1/2, _legato(20) A4 D5 F5}{1, _legato(0) A5 -}}} [—243—] {_tempo(169/60) _vel(110){2,{3/4, _legato(20) E5,E6}{1/4, _legato(0) F#5,F#6}{3/4, _legato(20) E5,E6}{1/4, _legato(0) F#5,F#6},{1/2,E2,E3}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}}} [—244—] {_tempo(169/60) _vel(110){2,{3/4, _legato(20) E5,E6}{1/4, _legato(0) F#5,F#6}{1/3,E5,E6}{1/3,F#5,F#6}{1/3,E5,E6},{1/2,E2,E3}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}}} [—245—] {_tempo(169/60) _vel(110){2,{1/3,F#5,F#6}{1/3,E5,E6}{1/3,F#5,F#6}{1/3,E5,E6}{1/3,F#5,F#6}{1/3,E5,E6},{1/2,E2,E3}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}}} [—246—] {_tempo(169/60) _vel(110){2,{1/3,F#5,F#6}{1/3,E5,E6}{1/3,F#5,F#6}{1/3,G5,G6}{1/3,F#5,F#6}{1/3,E5,E6},{1/2,E2,E3}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}}} [—247—] {_tempo(169/60) _vel(110){2,{3/4, _legato(20) D5,D6}{1/4, _legato(0) F#5,A5}{3/4, _legato(20) D5,D6}{1/4, _legato(0) F#5,A5},{1/2,D2,D3}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}}} [—248—] {_tempo(169/60) _vel(110){2,{3/4, _legato(20) D5,D6}{1/4, _legato(0) F#5,A5}{1/4, _legato(20) D6}{1/4,D5,A5}{1/4,D6}{1/4, _legato(0) D5,A5},{1/2,D2,D3}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}}} [—249—] {_tempo(169/60) _vel(110){2,{3/4, _legato(20) D6}{1/4, _legato(0) F#5,A5}{1/4, _legato(20) D6}{1/4,D5,A5}{1/4,D6}{1/4, _legato(0) D5,A5},{1/2,D2,D3}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}}} [—250—] {_tempo(169/60) _vel(110){2,{1/4, _legato(20) D6}{1/4,D5,A5}{1/4,D6}{1/4,D5,A5}{1/4,D6}{1/4,D5,A5}{1/4,D6}{1/4, _legato(0) D5,A5},{1/2,D2,D3}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}}} [—251—] {_tempo(169/60) _vel(110){2,{1/3,E5,E6}{1/3,D5,D6}{1/3,C5,C6}{3/4, _legato(20) B4,B5}{1/4, _legato(0) D#5,F#5},{1/2,B1,B2}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}}} [—252—] {_tempo(169/60) _vel(110){2,{3/4, _legato(20) B4,B5}{1/4, _legato(0) D#5,F#5}{1/4, _legato(20) B5}{1/4,Bb4,F#5}{1/4,B5}{1/4, _legato(0) Bb4,F#5},{1/2,B1,B2}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}}} [—253—] {_tempo(169/60) _vel(110){2,{1/4, _legato(20) B5}{1/4,B4,F#5}{1/4,B5}{1/4,B4,F#5}{1/4,B5}{1/4,B4,F#5}{1/4,B5}{1/4,B4,F#5},{1/2,B1,B2}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}}} [—254—] {_tempo(169/60) _vel(110){2,{1/4,B5}{1/4,B4,F#5}{1/4,B5}{1/4,B4,F#5}{1/4,B5}{1/4,B4,F#5}{1/4,B5}{1/4, _legato(0) B4,F#5},{1/2,B1,B2}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}}} [—255—] {_tempo(169/60) _vel(110){2,{1/3,D5,D6}{1/3,C5,C6}{1/3,B4,B5}{3/4, _legato(20) A4,A5}{1/4, _legato(0) C#5,E#5},{1/2,A1,A2}{1/2,E3,A3,C#4,E4}{1/2,E3,A3,C#4,E4}{1/2,E3,A3,C#4,E4}}} [—256—] {_tempo(169/60) _vel(110){2,{3/4, _legato(20) A4,A5}{1/4, _legato(0) C#5,E#5}{1/4,A5}{1/4,A4,E#5}{1/4,A5}{1/4,A4,E#5},{1/2,A1,A2}{1/2,E3,A3,C#4,E4}{1/2,E3,A3,C#4,E4}{1/2,E3,A3,C#4,E4}}} [—257—] {_tempo(169/60) _vel(110){2,{1/4, _legato(20) A5}{1/4,A4,E5}{1/4,A5}{1/4,A4,E5}{1/4,A5}{1/4,A4,E5}{1/4,A5}{1/4, _legato(0) A4,E5},{1/2,A1,A2}{1/2,E3,A3,C#4,E4}{1/2,E3,A3,C#4,E4}{1/2,E3,A3,C#4,E4}}} [—258—] {_tempo(169/60) _vel(94){2,{1/2,A4,C#5,A5}{143/96,A5 Bb5 C#6 D6 E6 F6 G#6 A6 Bb6 C#7 D7}1/96,{1/2,A2,E3,A3} 1/2 -}} [—259—] {_tempo(149/60) _vel(35){2,{1/2,E7}{1/4, _legato(20) A6,C#7,E7}{1/4,F#7}{1/2, _legato(0) E7}{1/4, _legato(20) A6,C#7,E7}{1/4,F#7},{1/4, _legato(20) E3}{7/4,C#4 _legato(0) E4 - _legato(20) A4 C#5 _legato(0) E5 -}}} [—260—] {_tempo(149/60) _vel(110){2,{1/2, _legato(0) A6,C#7,E7}{1/4, _legato(20) A6,C#7,E7}{1/4,F#7}{1/2, _legato(0) A6,C#7,E7}{1/4,A6,C#7,E7}{1/4,F#7},{2, _legato(20) A5 C#6 _legato(0) E6 - _legato(20) A4 C#5 _legato(0) E5 -}}} [—261—] {_tempo(149/60) _vel(110){2,{1/4, _legato(20) A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7},{2, _legato(20) E3 C#4 _legato(0) E4 - _legato(20) A4 C#5 _legato(0) E5 -}}} [—262—] {_tempo(149/60) _vel(110){2,{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{3/4,F#7 G7 _legato(0) F#7}}} [—263—] {_tempo(149/60) _vel(110){2,{3/4, _legato(20) D7}{1/4, _legato(0) D6,F#6,A6}{1/4, _legato(20) D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4, _legato(0) D6,F#6,A6},{2, _legato(20) D3 A3 _legato(0) D4 - _legato(20) F#4 A4 _legato(0) D5 -}}} [—264—] {_tempo(149/60) _vel(110){2,{3/4, _legato(20) D7}{1/4, _legato(0) D6,F#6,A6}{1/4, _legato(20) D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4, _legato(0) D6,F#6,A6},{2, _legato(20) F#5 A5 _legato(0) D6 - _legato(20) F#4 A4 _legato(0) D5 -}}} [—265—] {_tempo(149/60) _vel(110){2,{1/4, _legato(20) D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6},{2, _legato(20) D3 A3 _legato(0) D4 - _legato(20) F#4 A4 _legato(0) D5 -}}} [—266—] {_tempo(149/60) _vel(110){2,{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4, _legato(0) D6,F#6,A6}}} [—267—] {_tempo(149/60) _vel(110){2,{1,D7 E7 D7 C7}{3/4, _legato(20) B6}{1/4, _legato(0) B5,D#6,F#6},{2, _legato(20) B2 F#3 _legato(0) B3 - _legato(20) D#4 F#4 _legato(0) B4 -}}} [—268—] {_tempo(149/60) _vel(110){2,{3/4, _legato(20) B6}{1/4, _legato(0) B5,D#6,F#6}{1/4, _legato(20) B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4, _legato(0) B5,D#6,F#6},{2, _legato(20) D#5 F#5 _legato(0) B5 - _legato(20) D#4 F#4 _legato(0) B4 -}}} [—269—] {_tempo(149/60) _vel(110){2,{1/4, _legato(20) B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4, _legato(0) B5,D#6,F#6}{1/4, _legato(20) B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4, _legato(0) B5,D#6,F#6},{2, _legato(20) B2 F#3 _legato(0) B3 - _legato(20) D#4 F#4 _legato(0) B4 -}}} [—270—] {_tempo(149/60) _vel(110){2,{1/4, _legato(20) B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4, _legato(0) B5,D#6,F#6}{1/4, _legato(20) B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4, _legato(0) B5,D#6,F#6}}} [—271—] {_tempo(149/60) _vel(110){2,{1/8,B6}{1/8,D7}{3/4,C7 B6 C7}{3/4, _legato(20) A6}{1/4, _legato(0) A5,C#6,E6},{2, _legato(20) A2 E3 _legato(0) A3 - _legato(20) C#4 E4 _legato(0) A4 -}}} [—272—] {_tempo(149/60) _vel(110){2,{3/4, _legato(20) A6}{1/4, _legato(0) A5,C#6,E6}{1/4, _legato(20) A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4, _legato(0) A5,C#6,E6},{2, _legato(20) C#5 E5 _legato(0) A5 - _legato(20) C#4 E4 _legato(0) A4 -}}} [—273—] {_tempo(149/60) _vel(110){2,{1/4, _legato(20) A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4, _legato(0) A5,C#6,E6},{2, _legato(20) A2 E3 _legato(0) A3 - _legato(20) C#4 E4 _legato(0) A4 -}}} [—274—] {_tempo(3/2) _vel(110){2,{1,A6 -}{95/96,G7 F7 E7 D7 C7 B6 A6 G6 F6 E6 D6 C6 B5 A5 G5 F5 E5 D5 C5 B4 A4 G4 F4 E4 D4}, --}} [—275—] {_tempo(11/4) _vel(35){2,{2, _legato(20) C4 _legato(0) Bb4 _legato(20) Bb4 _legato(0) A4 _legato(20) A4 _legato(0) G4 _legato(20) G4 _legato(0) G#4},{1/2,C3}{1/2,G3,E4}{1/2,Bb2}{1/2,G3,E4}}} [—276—] {_tempo(11/4) _vel(110){2,{1,A4 E4}{1,A4 Bb4 A4 Bb4 A4 Bb4 A4 Bb4},{1/2,A2}{1/2,E3,C#4}{1/2,A2}{1/2,E3,C#4}}} [—277—] {_tempo(11/4) _vel(110){2,{1,G4 D4}{1,G4 A4 G4 A4 G4 A4 G4 A4},{1/2,G2}{1/2,D3,B3}{1/2,G2}{1/2,D3,Bb3}}} [—278—] {_tempo(11/4) _vel(110){2,{3/2,F4 C4{1/8,F4 G4}{7/8,F4}}{1/2,E4 D4},{1/2,F2}{1/2,C3,A3}{1/2,B2}{1/2,F3,Ab3}}} [—279—] {_tempo(11/4) _vel(110){2,{2, _legato(20) C4 _legato(0) Bb4 _legato(20) Bb4 _legato(0) A4 _legato(20) A4 _legato(0) G4 _legato(20) G4 _legato(0) G#4},{1/2,C3}{1/2,G3,E4}{1/2,Bb2}{1/2,G3,D4}}} [—280—] {_tempo(11/4) _vel(110){2,{1,A4 C4}{1,A4 Bb4 A4 Bb4 A4 Bb4 A4 Bb4},{1/2,A2}{1/2,E3,C#4}{1/2,A2}{1/2,E3,C4}}} [—281—] {_tempo(11/4) _vel(110){2,{1,G4 D4}{1,G4 A4 G4 A4 G4 A4 G4 A4},{1/2,G2}{1/2,D3,B3}{1/2,G2}{1/2,D3,Bb3}}} [—282—] {_tempo(11/4) _vel(110){2,F4 1/2 {1/2,- C5},{1/2,F2}{1/2,C3,A3}{1,F4 -}}} [—283—] {_tempo(11/4) _vel(110){2,{2, _legato(20) C5 _legato(0) Bb5 _legato(20) Bb5 _legato(0) A5 _legato(20) A5 _legato(0) G5 _legato(20) G5 _legato(0) G#5},C5 C5,{1/2,C3}{1/2,G3,C4,E4}{1/2,Bb2}{1/2,Bb3,D4,E4}}} [—284—] {_tempo(11/4) _vel(110){2,{1,A5 E5}{1,A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5},C#5 C5,{1/2,C3}{1/2,A3,C#4,E4}{1/2,D3}{1/2,A3,C#4,F4}}} [—285—] {_tempo(11/4) _vel(110){2,{1,G5 D5}{1,G5 A5 G5 A5 G5 A5 G5 A5},B4 Bb4,{1/2,G2}{1/2,B3,D4,G4}{1/2,C3}{1/2,Bb3,C4,E4}}} [—286—] {_tempo(11/4) _vel(110){2,{3/2,F5 C5 _legato(20) F5}{1/2,E5 _legato(0) D5},A4 Ab4,{1/2,F2}{1/2,A3,C4,F4}{1/2,B2}{1/2,Ab3,D4,F4}}} [—287—] {_tempo(11/4) _vel(110){2,{2, _legato(20) C5 _legato(0) Bb5 _legato(20) Bb5 _legato(0) A5 _legato(20) A5 _legato(0) G5 _legato(20) G5 _legato(0) G#5},C5 C5,{1/2,C3}{1/2,G3,C4,E4}{1/2,Bb2}{1/2,Bb3,D4,E4}}} [—288—] {_tempo(11/4) _vel(110){2,{1,A5 E5}{1,A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5},C#5 C5,{1/2,C3}{1/2,A3,C#4,E4}{1/2,A3,C#4,F4}{1/2,C3}}} [—289—] {_tempo(11/4) _vel(110){2,{1,G5 D5}{1,G5 A5 G5 A5 G5 A5 G5 A5},B4 Bb4,{1/2,C3}{1/2,B3,D4,G4}{1/2,Bb2}{1/2,Bb3,C4,E4}}} [—290—] {_tempo(11/4) _vel(110){2,{A4,F5} 1/2 1/4 {1/4,C5,C6},{1/2,F2}{1/2,A3,C4,F4}{1/2,A3,C4,F4} 1/2}} [—291—] {_tempo(11/4) _vel(110){2,{1/2,C5,C6}{3/2,Bb5 Bb6 A5 A6 G#5 G#6},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}} [—292—] {_tempo(11/4) _vel(110){2,{1/2,A5,A6}{1/2,C5,C6}{A5,A6},{1/2,C2,C3}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}}} [—293—] {_tempo(11/4) _vel(110){2,{1/2,G5,G6}{1/2,C5,C6}{G5,G6},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}} [—294—] {_tempo(11/4) _vel(110){2,{1/2,F5,F6}{1/2,C5,C6}{Db5,Db6},{1/2,C2,C3}{1/2,F3,A3,C4,F4}{1/2,Ab3,B3,F4}{1/2,Ab3,B3,F4}}} [—295—] {_tempo(11/4) _vel(110){2,{1/2,C5,C6}{3/2,Bb4 Bb5 A4 A5 G#4 G#5},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}} [—296—] {_tempo(11/4) _vel(110){2,{1/2,A5,A6}{1/2,C5,C6}{A5,A6},{1/2,C2,C3}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}}} [—297—] {_tempo(11/4) _vel(110){2,{1/2,G5,G6}{1/2,C5,C6}{G5,G6},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}} [—298—] {_tempo(10/3) _vel(110){321/160,{1/2,F5,F6} 1/2 {161/160,F4 G4 A4 B4 C5 D5 E5},{3/20,F2& C3& A3&}{7/20,&F2,&C3,&A3}1/2 1/8 7/8 1/160}} [—299—] {_tempo(10/3) _vel(110){481/240,{481/240,F5 G5 A5 B5 C6 D6 E6 F6 G6 A6 B6 C7 D7},-- 1/240}} [—300—] {_tempo(11/4) _vel(35){2,{1/2,E7}{1/4, _legato(20) A6,C#7,E7}{1/4,F#7}{1/2, _legato(0) E7}{1/4, _legato(20) A6,C#7,E7}{1/4,F#7},{1/4, _legato(20) E3}{7/4,C#4 _legato(0) E4 - _legato(20) A4 C#5 _legato(0) E5 -}}} [—301—] {_tempo(11/4) _vel(110){2,{1/2, _legato(0) A6,C#7,E7}{1/4, _legato(20) A6,C#7,E7}{1/4,F#7}{1/2, _legato(0) A6,C#7,E7}{1/4,A6,C#7,E7}{1/4,F#7},{2, _legato(20) A5 C#6 _legato(0) E6 - _legato(20) A4 C#5 _legato(0) E5 -}}} [—302—] {_tempo(11/4) _vel(110){2,{1/4, _legato(20) A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7},{2, _legato(20) E3 C#4 _legato(0) E4 - _legato(20) A4 C#5 _legato(0) E5 -}}} [—303—] {_tempo(11/4) _vel(110){2,{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{3/4,F#7 G7 _legato(0) F#7}}} [—304—] {_tempo(11/4) _vel(110){2,{3/4, _legato(20) D7}{1/4, _legato(0) D6,F#6,A6}{1/4, _legato(20) D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4, _legato(0) D6,F#6,A6},{2, _legato(20) D3 A3 _legato(0) D4 - _legato(20) F#4 A4 _legato(0) D5 -}}} [—305—] {_tempo(11/4) _vel(110){2,{3/4, _legato(20) D7}{1/4, _legato(0) D6,F#6,A6}{1/4, _legato(20) D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4, _legato(0) D6,F#6,A6},{2, _legato(20) F#5 A5 _legato(0) D6 - _legato(20) F#4 A4 _legato(0) D5 -}}} [—306—] {_tempo(11/4) _vel(110){2,{1/4, _legato(20) D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6},{2, _legato(20) D3 A3 _legato(0) D4 - _legato(20) F#4 A4 _legato(0) D5 -}}} [—307—] {_tempo(11/4) _vel(110){2,{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4, _legato(0) D6,F#6,A6}}} [—308—] {_tempo(11/4) _vel(110){2,{1,D7 E7 D7 C7}{3/4, _legato(20) B6}{1/4, _legato(0) B5,D#6,F#6},{2, _legato(20) B2 F#3 _legato(0) B3 - _legato(20) D#4 F#4 _legato(0) B4 -}}} [—309—] {_tempo(11/4) _vel(110){2,{3/4, _legato(20) B6}{1/4, _legato(0) B5,D#6,F#6}{1/4, _legato(20) B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4, _legato(0) B5,D#6,F#6},{2, _legato(20) D#5 F#5 _legato(0) B5 - _legato(20) D#4 F#4 _legato(0) B4 -}}} [—310—] {_tempo(11/4) _vel(110){2,{1/4, _legato(20) B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4, _legato(0) B5,D#6,F#6}{1/4, _legato(20) B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4, _legato(0) B5,D#6,F#6},{2, _legato(20) B2 F#3 _legato(0) B3 - _legato(20) D#4 F#4 _legato(0) B4 -}}} [—311—] {_tempo(11/4) _vel(110){2,{1/4, _legato(20) B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4, _legato(0) B5,D#6,F#6}{1/4, _legato(20) B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4, _legato(0) B5,D#6,F#6}}} [—312—] {_tempo(11/4) _vel(110){2,{1/8,B6}{1/8,D7}{3/4,C7 B6 C7}{3/4, _legato(20) A6}{1/4, _legato(0) A5,C#6,E6},{2, _legato(20) A2 E3 _legato(0) A3 - _legato(20) C#4 E4 _legato(0) A4 -}}} [—313—] {_tempo(11/4) _vel(110){2,{3/4, _legato(20) A6}{1/4, _legato(0) A5,C#6,E6}{1/4, _legato(20) A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4, _legato(0) A5,C#6,E6},{2, _legato(20) C#5 E5 _legato(0) A5 - _legato(20) C#4 E4 _legato(0) A4 -}}} [—314—] {_tempo(11/4) _vel(110){2,{1/4, _legato(20) A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4, _legato(0) A5,C#6,E6},{2, _legato(20) A2 E3 _legato(0) A3 - _legato(20) C#4 E4 _legato(0) A4 -}}} [—315—] {_tempo(3/2) _vel(110){2,{1,A6 -}{95/96,G7 F7 E7 D7 C7 B6 A6 G6 F6 E6 D6 C6 B5 A5 G5 F5 E5 D5 C5 B4 A4 G4 F4 E4 D4}, --}} [—316—] {_tempo(11/4) _vel(35){2,{2, _legato(20) C4 _legato(0) Bb4 _legato(20) Bb4 _legato(0) A4 _legato(20) A4 _legato(0) G4 _legato(20) G4 _legato(0) G#4},{1/2,C3}{1/2,G3,E4}{1/2,Bb2}{1/2,G3,E4}}} [—317—] {_tempo(11/4) _vel(110){2,{1,A4 E4}{1,A4 Bb4 A4 Bb4 A4 Bb4 A4 Bb4},{1/2,A2}{1/2,E3,C#4}{1/2,A2}{1/2,E3,C#4}}} [—318—] {_tempo(11/4) _vel(110){2,{1,G4 D4}{1,G4 A4 G4 A4 G4 A4 G4 A4},{1/2,G2}{1/2,D3,B3}{1/2,G2}{1/2,D3,Bb3}}} [—319—] {_tempo(11/4) _vel(110){2,{3/2,F4 C4{1/8,F4 G4}{7/8,F4}}{1/2,E4 D4},{1/2,F2}{1/2,C3,A3}{1/2,B2}{1/2,F3,Ab3}}} [—320—] {_tempo(11/4) _vel(110){2,{2, _legato(20) C4 _legato(0) Bb4 _legato(20) Bb4 _legato(0) A4 _legato(20) A4 _legato(0) G4 _legato(20) G4 _legato(0) G#4},{1/2,C3}{1/2,G3,E4}{1/2,Bb2}{1/2,G3,D4}}} [—321—] {_tempo(11/4) _vel(110){2,{1,A4 C4}{1,A4 Bb4 A4 Bb4 A4 Bb4 A4 Bb4},{1/2,A2}{1/2,E3,C#4}{1/2,A2}{1/2,E3,C4}}} [—322—] {_tempo(11/4) _vel(110){2,{1,G4 D4}{1,G4 A4 G4 A4 G4 A4 G4 A4},{1/2,G2}{1/2,D3,B3}{1/2,G2}{1/2,D3,Bb3}}} [—323—] {_tempo(11/4) _vel(110){2,F4 1/2 {1/2,- C5},{1/2,F2}{1/2,C3,A3}{1,F4 -}}} [—324—] {_tempo(11/4) _vel(110){2,{2, _legato(20) C5 _legato(0) Bb5 _legato(20) Bb5 _legato(0) A5 _legato(20) A5 _legato(0) G5 _legato(20) G5 _legato(0) G#5},C5 C5,{1/2,C3}{1/2,G3,C4,E4}{1/2,Bb2}{1/2,Bb3,D4,E4}}} [—325—] {_tempo(11/4) _vel(110){2,{1,A5 E5}{1,A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5},C#5 C5,{1/2,C3}{1/2,A3,C#4,E4}{1/2,D3}{1/2,A3,C#4,F4}}} [—326—] {_tempo(11/4) _vel(110){2,{1,G5 D5}{1,G5 A5 G5 A5 G5 A5 G5 A5},B4 Bb4,{1/2,G2}{1/2,B3,D4,G4}{1/2,C3}{1/2,Bb3,C4,E4}}} [—327—] {_tempo(11/4) _vel(110){2,{3/2,F5 C5 _legato(20) F5}{1/2,E5 _legato(0) D5},A4 Ab4,{1/2,F2}{1/2,A3,C4,F4}{1/2,B2}{1/2,Ab3,D4,F4}}} [—328—] {_tempo(11/4) _vel(110){2,{2, _legato(20) C5 _legato(0) Bb5 _legato(20) Bb5 _legato(0) A5 _legato(20) A5 _legato(0) G5 _legato(20) G5 _legato(0) G#5},C5 C5,{1/2,C3}{1/2,G3,C4,E4}{1/2,Bb2}{1/2,Bb3,D4,E4}}} [—329—] {_tempo(11/4) _vel(110){2,{1,A5 E5}{1,A5 Bb5 A5 Bb5 A5 Bb5 A5 Bb5},C#5 C5,{1/2,C3}{1/2,A3,C#4,E4}{1/2,A3,C#4,F4}{1/2,C3}}} [—330—] {_tempo(11/4) _vel(110){2,{1,G5 D5}{1,G5 A5 G5 A5 G5 A5 G5 A5},B4 Bb4,{1/2,C3}{1/2,B3,D4,G4}{1/2,Bb2}{1/2,Bb3,C4,E4}}} [—331—] {_tempo(11/4) _vel(110){2,{A4,F5} 1/2 1/4 {1/4,C5,C6},{1/2,F2}{1/2,A3,C4,F4}{1/2,A3,C4,F4} 1/2}} [—332—] {_tempo(11/4) _vel(110){2,{1/2,C5,C6}{3/2,Bb5 Bb6 A5 A6 G#5 G#6},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}} [—333—] {_tempo(11/4) _vel(110){2,{1/2,A5,A6}{1/2,C5,C6}{A5,A6},{1/2,C2,C3}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}}} [—334—] {_tempo(11/4) _vel(110){2,{1/2,G5,G6}{1/2,C5,C6}{G5,G6},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}} [—335—] {_tempo(11/4) _vel(110){2,{1/2,F5,F6}{1/2,C5,C6}{Db5,Db6},{1/2,C2,C3}{1/2,F3,A3,C4,F4}{1/2,Ab3,B3,F4}{1/2,Ab3,B3,F4}}} [—336—] {_tempo(11/4) _vel(110){2,{1/2,C5,C6}{3/2,Bb4 Bb5 A4 A5 G#4 G#5},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}} [—337—] {_tempo(11/4) _vel(110){2,{1/2,A5,A6}{1/2,C5,C6}{A5,A6},{1/2,C2,C3}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}}} [—338—] {_tempo(11/4) _vel(110){2,{1/2,G5,G6}{1/2,C5,C6}{G5,G6},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}} [—339—] {_tempo(41/15) _vel(94){2,{1/2,F5,F6} 1/2 -,{1/2,F2,C3,F3}{1/4, _legato(20) A3,C4,F4}{1/4,G4,C5,G5}{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,F3,C4,F4}{1/4,G4,C5,G5}}} [—340—] {_tempo(41/15) _vel(110){2,{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,F3,C4,F4}{1/4,G4,C5,G5}{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,F3,C4,F4}{1/4, _legato(0) G4,C5,G5}}} [—341—] {_tempo(41/15) _vel(94){2,{1/2,Db5,F5,Db6} 3/2,{1/2,D2,A2,D3}{1/4, _legato(20) F3,Ab3,Db4}{1/4,Eb4,Ab4,Eb5}{1/4,F3,Ab3,Db4}{1/4,Eb4,Ab4,Eb5}{1/4,D3,Ab3,Db4}{1/4,E4,Ab4,Eb5}}} [—342—] {_tempo(41/15) _vel(110){2,{1/4,F3,Ab3,Db4}{1/4,Eb4,Ab4,Eb5}{1/4,Db3,Ab3,Db4}{1/4,Eb4,Ab4,Eb5}{1/4,F3,Ab3,Db4}{1/4,Eb4,Ab4,Eb5}{1/4,Db3,Ab3,Db4}{1/4, _legato(0) Eb4,Ab4,Eb5}}} [—343—] {_tempo(41/15) _vel(94){2,{1/2,F5,A5,F6} 3/2,{1/2,F2,C3,F3}{1/4, _legato(20) A3,C4,F4}{1/4,G4,C5,G5}{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,F3,C4,F4}{1/4,G4,C5,G5}}} [—344—] {_tempo(41/15) _vel(110){2,{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,F3,C4,F4}{1/4,G4,C5,G5}{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,F3,C4,F4}{1/4, _legato(0) Eb4,Eb5}}} [—345—] {_tempo(41/15) _vel(94){2,{1/2,D5,F#5,D6} 3/2,{1/2,D2,A2,D3}{1/4, _legato(20) F#3,A3,D4}{1/4,E4,A4,E5}{1/4,F#3,A3,D4}{1/4,E4,A4,E5}{1/4,D3,A3,D4}{1/4,E4,A4,E5}}} [—346—] {_tempo(41/15) _vel(110){2,{1/4,F3,A3,D4}{1/4,E4,A4,E5}{1/4,D3,A3,D4}{1/4,E4,A4,E5}{1/4,F3,A3,D4}{1/4,E4,A4,E5}{1/4,D3,A3,D4}{1/4, _legato(0) E4,A4,E5}}} [—347—] {_tempo(41/15) _vel(94){2,{1/2,F#5,A#5,F#6} 3/2,{1/2,F#2,C#3,F#3}{1/4, _legato(20) A#3,C#4,F#4}{1/4,G#4,C#5,G#5}{1/4,A#3,C#4,F#4}{1/4,G#4,C#5,G#5}{1/4,F#3,C#4,F#4}{1/4,G#4,C#5,G#5}}} [—348—] {_tempo(41/15) _vel(110){2,{1/4,A#3,C#4,F#4}{1/4,G#4,C#5,G#5}{1/4,F3,C#4,F#4}{1/4, _legato(0) G#4,C#5,G#5}{1/4, _legato(20) Db4,Gb4,Bb4}{1/4,C5,Gb5,C6}{1/4,Bb3,Gb4,Bb4}{1/4, _legato(0) C5,Gb5,C6}}} [—349—] {_tempo(41/15) _vel(110){2,{1/4, _legato(20) Gb4,Bb4,Db5}{1/4,Eb5,A5,Eb6}{1/4,Db4,Bb4,Db5}{1/4, _legato(0) Eb5,A5,Eb6}{1/4, _legato(20) Bb4,Db5,G5}{1/4,Ab5,Db6,Ab6}{1/4,Gb4,Db5,G5}{1/4, _legato(0) Ab5,Db6,Ab6}}} [—350—] {_tempo(41/15) _vel(110){2,{1/4, _legato(20) Db5,Gb5,Bb5}{1/4,C6,Gb6,C7}{1/4,Bb4,Gb5,Bb5}{1/4, _legato(0) C6,Gb6,C7}{1/4, _legato(20) Gb5,Bb5,Db6}{1/4,Eb6,A6,Eb7}{1/4,Db5,Bb5,Db6}{1/4, _legato(0) Eb6,A6,Eb7}}} [—351—] {_tempo(41/15) _vel(110){2,{1/4, _legato(20) Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4, _legato(0) Eb6,Bb6,Eb7}{1/4, _legato(20) Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4, _legato(0) Eb6,Gb6,Bb6,Eb7}}} [—352—] {_tempo(41/15) _vel(110){2,{1/4, _legato(20) Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}}} [—353—] {_tempo(41/15) _vel(110){2,{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4, _legato(0) Eb6,Gb6,Bb6,Eb7}}} [—354—] {_tempo(41/15) _vel(110){2,{1/2,Db5,Gb5,Bb5,Db6} 1/2 -}} [—355—] {_tempo(41/15) _vel(35){2,- 1/2 {1/2,- Db5}}} [—356—] {_tempo(41/15) _vel(110){2,{2, _legato(20) Bb5 Ab5 Gb5 F5 Gb5 Ab5 Bb5 _legato(0) Gb5},{1/2,Bb3,Bb4}{1/2,Db4,Gb4}{1/2,Bb3,Bb4}{1/2,Db4,Gb4}}} [—357—] {_tempo(41/15) _vel(110){2,{1/2,F5}{1/2,- _legato(20) Db5}{1/2, _legato(0) Ab5}{1/2,- _legato(20) Gb5},{1/2,C4,A4}{1/2,Db4,F4}{1/2,C4,A4}{1/2,Db4,F4}}} [—358—] {_tempo(41/15) _vel(110){2,{1/2, _legato(0) F5}{1/2,- _legato(20) Db5}{1/2, _legato(0) Db6}{1/2,- _legato(20) F5},{1/2,C4,A4}{1/2,Db4,F4}{1/2,C4,A4}{1/2,Db4,F4}}} [—359—] {_tempo(41/15) _vel(110){2, _legato(0) Gb5 1/2 {1/2,- Db5},{1/2,Bb3,Bb4}{1/2,Db4,Gb4}{1/2,Bb3,Bb4}{1/2,Db4,Gb4}}} [—360—] {_tempo(41/15) _vel(110){2,{2, _legato(20) Bb5 Ab5 Gb5 F5 Gb5 Ab5 Gb5 _legato(0) F5},{1/2,Bb3,Bb4}{1/2,Db4,Gb4}{1/2,Bb3,Bb4}{1/2,Db4,Gb4}}} [—361—] {_tempo(41/15) _vel(110){2,{1/2,E5}{1/2,- _legato(20) C5}{1/2, _legato(0) G5}{1/2,- _legato(20) F5},{1/2,Bb3,G4}{1/2,C4,E4}{1/2,Bb3,G4}{1/2,C4,E4}}} [—362—] {_tempo(41/15) _vel(110){2,{1/2, _legato(0) E5}{1/2,- _legato(20) C5}{1/2, _legato(0) C6}{1/2,- E5},{1/2,Bb3,G4}{1/2,C4,E4}{1/2,G3,E4}{1/2,Bb3,C4}}} [—363—] {_tempo(41/15) _vel(110){2,F5 1/2 {1/2,- C6},{1/2,F3,F4}{1/2,A3,C4}{1/2,Eb3,Eb4}{1/2,A3,C4},{2,F4 - Eb4 -}}} [—364—] {_tempo(41/15) _vel(110){2,{2, _legato(20) Bb6 Ab6 Gb6 F6 Gb6 Ab6 Bb6 _legato(0) Gb6},{1/2,Eb3,Eb4}{1/2,Gb3,Bb3}{1/2,D3,D4}{1/2,Gb3,Bb3},{1/2,Eb4} 3/2}} [—365—] {_tempo(41/15) _vel(110){2,{1/2,F6}{1/2,- _legato(20) Db6}{1/2, _legato(0) Ab6}{1/2,- _legato(20) Gb6},{1/2,Db3,Db4}{1/2,F3,Ab3}{1/2,Db3,Db4}{1/2,F3,Ab3}}} [—366—] {_tempo(41/15) _vel(110){2,{1/2, _legato(0) F6}{1/2,- _legato(20) Db6}{1/2, _legato(0) Db7}{1/2,- _legato(20) F6},{1/2,Db3,Db4}{1/2,F3,Ab3}{1/2,Cb3,Cb4}{1/2,F3,Ab3}}} [—367—] {_tempo(41/15) _vel(110){2, _legato(0) Gb6 1/2 {1/2,- Db4},{1/2,Bb2,Bb3}{1/2,Db3,Gb3}{1/2,Bb2,Bb3}{1/2,Db3,Gb3}}} [—368—] {_tempo(41/15) _vel(110){2,{2, _legato(20) Bb4 Ab4 Gb4 F4 Gb4 Ab4 Gb4 _legato(0) F4},{1/2,Bb2,Bb3}{1/2,Db3,Gb3}{1/2,Bb2,Bb3}{1/2,Db3,Gb3}}} [—369—] {_tempo(41/15) _vel(110){2,{1/2,E4}{1/2,- _legato(20) C4}{1/2, _legato(0) G4}{1/2,- _legato(20) F4},{1/2,Bb2,G3}{1/2,Db3,E3}{1/2,A2,G3}{1/2,C#3,E3},- {1,G3 -}}} [—370—] {_tempo(41/15) _vel(110){2,{1/2, _legato(0) E4}{1/2,- _legato(20) Db4}{1/2, _legato(0) C5}{1/2,- _legato(20) E4},{1/2,G#2,G#3}{1/2,C#3,E3}{1/2,G2,Bb3}{1/2,C3,E3},{2,G#3 - Bb3 -}}} [—371—] {_tempo(187/60) _vel(67){2,{1/2, _legato(0) F4}{1/2,A3,C4}{1/2,A4}{1/2,A3,C4},{1/2,F2}{1/2,C3,F3}{1/2,Eb2}{1/2,C3,Eb3}}} [—372—] {_tempo(187/60) _vel(110){2,{1/2,F#4}{1/2,A3,C4}{1/2,D5}{1/2,D4,F#4,C5},{3/2,D2 Eb3 D3}{1/2,F#3,A3}}} [—373—] {_tempo(187/60) _vel(110){2,{1/2,B4}{1/2,D4,F4}{1/2,G5}{1/2,G4,B4,F5},{3/2,G2 Ab3 G3}{1/2,B3,D4}}} [—374—] {_tempo(187/60) _vel(110){2,{1/2,F#5}{1/2,A4,C5}{1/2,D6}{1/2,D5,F#5,C6},{3/2,C3 Db4 C4}{1/2,E4,G4}}} [—375—] {_tempo(187/60) _vel(110){2,{1/2,A5}{1/2,A4,C5}{1/2,A5}{1/2,A4,C5,G5},{1/2,F3}{1/2,C4,F4}{1/2,Eb3}{1/2,C4,Eb4}}} [—376—] {_tempo(187/60) _vel(110){2,{1/2,F#5}{1/2,A4,C5}{1/2,D6}{1/2,D5,F#5,C6},{3/2,D3 E4 D4}{1/2,F#4,A4}}} [—377—] {_tempo(187/60) _vel(67){2,{1/2,B5}{1/2,D5,F5}{1/2,G6}{1/2,G5,B5,F6},{3/2,G3 Ab4 G4}{1/2,B4,D5}}} [—378—] {_tempo(187/60) _vel(110){2,{1/2,E6}{1/2,G5,Bb5}{1/2,C7}{1/2,C6,E6,Bb6},{3/2,C4 Db5 C5}{1/2,E5,G5}}} [—379—] {_tempo(187/60) _vel(110){2,{1/2,A6}{1/2,A5,D6}{1/2,A6}{1/2,A5,D6},{3/2,A6 - A6}1/2,{1/2,F4}{1/2,C5,F5}{1/2,D4}{1/2,D5,F#5},- {1,D4 -}}} [—380—] {_tempo(187/60) _vel(110){2,{1/2,Bb6}{1/2,Bb5,D6}{1/2,B6}{1/2,B5,E6},{3/2,Bb6 - B6}1/2,{1/2,G4}{1/2,D5,G5}{1/2,E4}{1/2,E5,G#5},{2,G4 - E4 -}}} [—381—] {_tempo(187/60) _vel(110){2,{1/2,C7}{1/2,C6,E6}{1/2,C#7}{1/2,C#6,E6},{3/2,C7 - C#7}1/2,{1/2,A4}{1/2,E5,A5}{1/2,A4}{1/2,C#5,E5,A5},{2,A4 - A4 -}}} [—382—] {_tempo(187/60) _vel(110){2,{1/2,D7}{1/2,D6,F6}{1/2,E7}{1/2,D6,F6},{3/2,D7 - E7}1/2,{1/2,Bb3}{1/2,D4,F4,Bb4}{1/2,A3}{1/2,E4,A4},{2,Bb3 - A3 -}}} [—383—] {_tempo(187/60) _vel(110){2,{1/2,F7}{1/2,F6,A6}{1/2,A6}{1/2,A5,D6},{3/2,F7 - A6}1/2,{1/2,F4}{1/2,A4,C5,F5}{1/2,D4}{1/2,F#4,A4,D5},{2,F4 - D4 -}}} [—384—] {_tempo(187/60) _vel(110){2,{1/2,Bb6}{1/2,Bb5,D6}{1/2,B6}{1/2,B5,E6},{3/2,Bb6 - B6}1/2,{1/2,E3}{1/2,G3,Bb3,E4}{1/2,E3}{1/2,G#3,B3,E4},{2,E3 - E3 -}}} [—385—] {_tempo(187/60) _vel(110){2,{1/2,C7}{1/2,C6,E6}{1/2,C#7}{1/2,C#6,E6},{3/2,C7 - C#7}1/2,{1/2,A3}{1/2,C4,E4,A4}{1/2,A3}{1/2,C#4,E4,A4},{2,A3 - A3 -}}} [—386—] {_tempo(187/60) _vel(110){2,{1/2,D7}{1/2,D6,F6}{1/2,E7}{1/2,E6,G6},{3/2,D7 - E7}1/2,{1/2,D3}{1/2,F3,A3,D4}{1/2,D3}{1/2,G3,C4},{2,D3 - D3 -}}} [—387—] {_tempo(187/60) _vel(110){2,{1/2,F7}{1/2,F6,A6}{1/2,A5,A6}{1/2,D6,F#6},{3/2,F7 - A6}1/2,{1/2,F3}{1/2,A3,C4,F4}{1/2,D3,D4}{1/2,F#3,A3},{2,F3 - D4 -}}} [—388—] {_tempo(187/60) _vel(110){2,{1/2,Bb5,Bb6}{1/2,D6,G6}{1/2,B5,B6}{1/2,E6,G#6},{3/2,Bb6 - B6}1/2,{1/2,G2,G3}{1/2,Bb2,D3}{1/2,E2,E3}{1/2,G#2,B2},{2,G3 - E3 -}}} [—389—] {_tempo(187/60) _vel(110){2,{1/2,C6,C7}{1/2,E6,A6}{1/2,C#6,C#7}{1/2,E6,A6},{3/2,C7 - C#7}1/2,{1/2,A2,A3}{1/2,C3,E3}{1/2,A2,A3}{1/2,C#3,E3},{2,A3 - A3 -}}} [—390—] {_tempo(187/60) _vel(110){2,{1/2,D6,D7}{1/2,F6,A6}{1/2,E6,E7}{1/2,G6,C7},{3/2,D7 - E7}1/2,{1/2,D2,D3}{1/2,F2,A2}{1/2,C2,G2,C3} 1/2,{1/2,D3} 3/2}} [—391—] {_tempo(12/5) _vel(110){2,{1/2,F6,A6,C7,F7}{1/2,F6,F7}{1/2,E6,E7}{1/2,D6,D7},{1/2,F2,A2,C3,F3}{1/2,F2,F3}{1/2,E2,E3}{1/2,D2,D3}}} [—392—] {_tempo(12/5) _vel(110){2,{1/2,C6,C7}{1/4,D6,D7}{1/4,E6,E7}{1/2,F6,F7}{1/2,A6,A7},{1/2,C2,C3}{1/4,D2,D3}{1/4,E2,E3}{1/2,F2,F3}{1/2,A2,A3}}} [—393—] {_tempo(12/5) _vel(110){2,{1/2,G6,G7}{1/2,B4,D5,G5,B5}{C5,E5,G5,C6},{1/2,G2,G3}{1/2,G3,B3,D4,G4}{C3,E3,G3,C4}}} [—394—] {_tempo(12/5) _vel(110){2,{1/2,Bb5,Bb6}{1/2,Bb5,Bb6}{1/2,A5,A6}{1/2,G5,G6},{1/2,Bb2,Bb3}{1/2,Bb2,Bb3}{1/2,A2,A3}{1/2,G2,G3}}} [—395—] {_tempo(12/5) _vel(110){2,{1/2,C6,C7}{1/4,D6,D7}{1/4,E6,E7}{1/2,F6,F7}{1/2,A6,A7},{1/2,F2,F3}{1/4,G2,G3}{1/4,A2,A3}{1/2,Bb2,Bb3}{1/2,D3,D4}}} [—396—] {_tempo(12/5) _vel(110){2,{1/2,C6,C7}{1/2,E5,G5,C6,E6}{F5,A5,C6,F6},{1/2,C3,C4}{1/2,C4,E4,G4,C5}{F3,A3,C4,F4}}} [—397—] {_tempo(12/5) _vel(110){2,{1/2,F3,F4}{1/2,F3,F4}{1/2,E3,E4}{1/2,D3,D4},{1/2,F1,F2}{1/2,F1,F2}{1/2,E1,E2}{1/2,D1,D2}}} [—398—] {_tempo(12/5) _vel(110){2,{1/2,C3,C4}{1/4,D3,D4}{1/4,E3,E4}{1/2,F3,F4}{1/2,A3,A4},{1/2,C1,C2}{1/4,D1,D2}{1/4,E1,E2}{1/2,F1,F2}{1/2,A1,A2}}} [—399—] {_tempo(12/5) _vel(110){2,{1/2,G3,G4}{1/2,B4,D5,G5,B5}{C5,E5,G5,C6},{1/2,G1,G2}{1/2,G3,B3,D4,G4}{C3,E3,G3,C4}}} [—400—] {_tempo(12/5) _vel(110){2,{1/2,Bb3,Bb4}{1/2,Bb3,Bb4}{1/2,A3,A4}{1/2,G3,G4},{1/2,Bb1,Bb2}{1/2,Bb1,Bb2}{1/2,A1,A2}{1/2,G1,G2}}} [—401—] {_tempo(12/5) _vel(110){2,{1/2,C4,C5}{1/4,D4,D5}{1/4,E4,E5}{1/2,F4,F5}{1/2,A4,A5},{1/2,F1,F2}{1/4,G1,G2}{1/4,A1,A2}{1/2,Bb1,Bb2}{1/2,D2,D3}}} [—402—] {_tempo(12/5) _vel(110){2,{1/2,C4,C5}{1/2,E4,G4,C5,E5}{1/2,F4,A4,C5,F5}{1/2,G4,C5,E5,G5},{1/2,C2,C3}{1/2,C3,E3,G3,C4}{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}}} [—403—] {_tempo(12/5) _vel(110){2,{1/2,A4,C5,F5,A5}{1/2,C5,E5,G5,C6}{1/2,C5,F5,A5,C6}{1/2,E4,G4,C5,E5},{1/2,F2,A2,C3,F3}{1/2,C3,E3,G3,C4}{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}}} [—404—] {_tempo(12/5) _vel(110){2,{1/2,F4,A4,C5,F5}{1/2,G4,C5,E5,G5}{1/2,A4,C5,F5,A5}{1/2,C5,E5,G5,C6},{1/2,F2,A2,C3,F3}{1/2,C3,E3,G3,C4}{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}}} [—405—] {_tempo(12/5) _vel(110){2,{1/2,C5,F5,A5,C6}{1/2,E5,G5,C6,E6}{1/2,F5,A5,C6,F6}{1/2,E5,G5,C6,E6},{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}}} [—406—] {_tempo(12/5) _vel(110){2,{1/2,F5,A5,C6,F6}{1/2,E5,G5,C6,E6}{1/2,F5,A5,C6,F6}{1/2,E5,G5,C6,E6},{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}}} [—407—] {_tempo(12/5) _vel(110){11/4,{1/2,F5,A5,C6,F6} 1/4 {1/4,A4,C5,F5,A5}{1/2,A4,C5,F5,A5} 1/4 {1/2,C5,F5,A5,C6} 1/2,{1/2,F2,A2,C3,F3} 1/4 {1/4,F3,A3,C4,F4}{1/2,F3,A3,C4,F4} 1/2 {1/4,C3,F3,A3,C4} 1/2}} [—408—] {_tempo(12/5) _vel(110){5/2, 1/2 {1/2,C5,F5,A5,C6} 1/4 {1/4,F4,A4,C5,F5}{1/2,F4,A4,C5,F5} 1/4 {1/4,A4,C5,F5,A5}, 1/2 {1/2,C3,F3,A3,C4} 1/4 {1/4,A2,C3,F3,A3}{1/2,A2,C3,F3,A3} 1/4 {1/4,F2,A2,C3,F3}}} [—409—] {_tempo(12/5) _vel(110){2,{1/2,A4,C5,F5,A5} 1/4 {1/4,F4,A4,C5,F5}{1/2,F4,A4,C5,F5} 1/4 {1/4,A4,C5,F5,A5},{1/2,F2,A2,C3,F3} 1/4 {1/4,A2,C3,F3,A3}{1/2,A2,C3,F3,A3} 1/4 {1/4,F2,A2,C3,F3}}} [—410—] {_tempo(12/5) _vel(110){2,{1/2,A4,C5,F5,A5} 1/4 {1/4,C5,F5,A5,C6}{1/2,C5,F5,A5,C6} 1/4 {1/4,F5,A5,C6,F6},{1/2,F2,A2,C3,F3} 1/4 {1/4,C2,F2,A2,C3}{1/2,C2,F2,A2,C3} 1/4 {1/4,F1,A1,C2,F2}}} [—411—] {_tempo(12/5) _vel(110){2,{1/2,F5,A5,C6,F6} 1/2 -,{1/2,F1,A1,C2,F2} 1/2 -}} [—412—] {_tempo(12/5) _vel(110){2,{1/2,A4,C5,F5,A5} 1/2 -,{1/2,C3,F3,A3,C4} 1/2 -}} [—413—] {_tempo(12/5) _vel(110){2,{1/2,F3,A3,C4,F4} 1/2 -,{1/2,F1,A1,C2,F2} 1/2 -}}

Velocities have been remapped to aver­age 78 and max­i­mum 110.

Take-away

The inter­pre­ta­tion of com­plex musi­cal works pack­aged in digi­tised musi­cal scores high­lights impor­tant fea­tures of the Bol Processor model:

  1. Any musi­cal work that can be scored dig­i­tal­ly can be encap­su­lat­ed in a sin­gle poly­met­ric expres­sion;
  2. The tim­ings of poly­met­ric expres­sions are sym­bol­ic, here mean­ing human-understandable inte­gers (or inte­ger ratios) that count beats rather than milliseconds;
  3. The sim­ple syn­tax of poly­met­ric expres­sions makes them amenable to reuse and trans­for­ma­tion by human edi­tors (or for­mal grammars);
  4. The lim­i­ta­tions of this mod­el­ling are only "phys­i­cal": mem­o­ry size and com­pu­ta­tion time;
  5. The tem­po­ral accu­ra­cy (typ­i­cal­ly 10 ms) is not affect­ed by the size of the data.

Return to humanity

The exam­ples will hope­ful­ly con­vince the read­er that the Bol Processor for­mat is capa­ble of emu­lat­ing scores in com­mon Western nota­tion, and even cor­rect­ing some irreg­u­lar­i­ties in their tim­ing… Let us admit that it has come a long way from its orig­i­nal ded­i­ca­tion to the beau­ti­ful poet­ry cre­at­ed by drum­mers in India!

These are indeed inter­pre­ta­tions of musi­cal scores. To remem­ber the added val­ue of human artists play­ing real instru­ments, we might end up lis­ten­ing to the same Beethoven Fugue played by the Alban Berg Quartet:

Beethoven's Fugue in B flat major (opus 133). Source: https://youtu.be/13ygvpIg-S0

A multicultural model of consonance

A frame­work for tun­ing just-intonation scales via two series of fifths
Image cre­at­ed by Bol Processor based on a mod­el by Pierre-Yves Asselin

For more than twen­ty cen­turies, musi­cians, instru­ment mak­ers and musi­col­o­gists have devised scale mod­els and tun­ing pro­ce­dures to cre­ate tonal music that embod­ies the con­cept of "con­so­nance".

This does not mean that every style of tonal music aims to achieve con­so­nance. This con­cept is most explic­it in the design and per­for­mance of North Indian raga and Western har­mon­ic music.

There was a com­mon idea that the octave and the major fifth (inter­val 'C' to 'G') were the build­ing blocks of these mod­els, and the har­mon­ic major third (inter­val 'C' to 'E') has recent­ly played an impor­tant role in European music.

Computer-controlled elec­tron­ic instru­ments are open­ing up new avenues for the imple­men­ta­tion of micro­tonal­i­ty, includ­ing just into­na­tion frame­works that divide the octave into more than 12 degrees - see the Microtonality page. For cen­turies, Indian art music claimed to adhere to a divi­sion of 22 inter­vals (the ṣruti-swara sys­tem) the­o­rised in the Nāṭyaśāstra, a Sanskrit trea­tise dat­ing from between 400 BCE and 200 CE. Since con­so­nance (saṃvādī) is the basis of both ancient Indian and European tonal sys­tems, we felt the need for a the­o­ret­i­cal frame­work that encom­passed both models.

Unfortunately, the sub­ject of "just into­na­tion" is pre­sent­ed in a whol­ly con­fus­ing and reduc­tive man­ner (read Wikipedia), with musi­col­o­gists focus­ing on inte­ger ratios that reflect the dis­tri­b­u­tion of high­er par­tials in peri­od­ic sounds. While these spec­u­la­tive mod­els of into­na­tion may sup­port beliefs in the mag­i­cal prop­er­ties of nat­ur­al num­bers — as claimed by Pythagoreanists — they have rarely been teste against undi­rect­ed musi­cal prac­tice. Instrument tuners rely on their own audi­to­ry per­cep­tion of inter­vals rather than on num­bers, despite the avail­abil­i­ty of "elec­tron­ic tuners"…

Interestingly, the ancient Indian the­o­ry of nat­ur­al scales did not rely on arith­metic. This may be sur­pris­ing giv­en that in Vedic times mathematicians/philosophers had laid out the foun­da­tions of cal­cu­lus and infin­i­tes­i­mals which were much lat­er export­ed from Kerala to Europe and borrowed/appropriated by European schol­ars — read C.K. Raju's Cultural Foundations of Mathematics: the nature of math­e­mat­i­cal proof and the trans­mis­sion of the cal­cu­lus from India to Europe in the 16th c. CE. This epis­te­mo­log­i­cal para­dox was an incen­tive to deci­pher the mod­el pre­sent­ed by the author(s) of the Nāṭyaśāstra by means of a thought exper­i­ment: the two-vina exper­i­ment.

Earlier inter­pre­ta­tions of this mod­el, mim­ic­k­ing the Western habit of treat­ing inter­vals as fre­quen­cy ratios, failed to explain the inter­val­ic struc­ture of ragas in Hindustani clas­si­cal music. In real­i­ty, the implic­it mod­el of the Nāṭyaśāstra is a 'flex­i­ble' one because the size of the major third (or equiv­a­lent­ly the pramāņa ṣru­ti) is not pre­de­ter­mined. Read the page on Raga into­na­tion and lis­ten to the exam­ples to under­stand the con­nec­tion between the the­o­ry and prac­tice of into­na­tion in this context.

In Europe, the har­mon­ic major third was final­ly accept­ed as a "heav­en­ly inter­val" after the Council of Trent (1545-1563), end­ing the ban on poly­phon­ic singing in reli­gious gath­er­ings. Major chords—  such as {C, E, G} — are vital ele­ments of Western har­mo­ny, and play­ing a major chord with­out unwant­ed beats requires the sim­plest fre­quen­cy ratio (5/4) for the har­mon­ic major third {C, E}.

A key­board with 19 keys per octave (from “A” to “a”) key­board designed by Gioseffo Zarlino (1517-1590) (source)

With the devel­op­ment of fixed-pitch key­board instru­ments, the search for con­so­nant inter­vals gave way to the elab­o­ra­tion of the­o­ret­i­cal mod­els (and tun­ing pro­ce­dures) that attempt­ed to per­form this inter­val in "pure into­na­tion". Theoretically, this is not pos­si­ble on a chro­mat­ic scale (12 degrees), but it can be worked out and applied to Western har­mo­ny if more degrees (29 to 41) are allowed. Nevertheless, the choice of enhar­mon­ic posi­tions suit­able for a har­mon­ic con­text remains an uncer­tain proposition.

Once again, the Indian mod­el comes to the res­cue, because it can be extend­ed to pro­duce a con­sis­tent series of twelve "opti­mal­ly con­so­nant" chro­mat­ic scales, cor­re­spond­ing to chord inter­vals in west­ern har­mo­ny. Each scale con­tains 12 degrees, which is more than the notes of the chords to which it applies. Sound exam­ples are pro­vid­ed to illus­trate this process — see the Just into­na­tion: a gen­er­al frame­work page.

The tun­ing of mechan­i­cal key­board instru­ments (church organ, harp­si­chord, pianoforte) to 12-degree scales made it nec­es­sary to dis­trib­ute unwant­ed dis­so­nances (the syn­ton­ic com­ma) over series of fifths and fourths in an accept­able man­ner. From the 16th to the 19th cen­turies, many tem­pered tun­ing sys­tems were devel­oped in response to the con­straints of par­tic­u­lar musi­cal reper­toires, with an empha­sis on either "per­fect fifths" or "pure major thirds".

These tech­niques have been exten­sive­ly doc­u­ment­ed by the organ­ist and instru­ment builder Pierre-Yves Asselin, along with meth­ods for achiev­ing into­na­tion on a mechan­i­cal instru­ment such as the harp­si­chord. His book Musique et tem­péra­ment (Paris: Jobert, 2000, to be pub­lished in English) served as a guide for imple­ment­ing a sim­i­lar approach in the Bol Processor — see the pages Microtonality, Creation of just-intonation scales and Comparing tem­pera­ments. This frame­work should make it pos­si­ble to lis­ten to Baroque and clas­si­cal work­son Csound instru­ments in the tun­ings intend­ed by their com­posers, accord­ing to his­tor­i­cal sources.

➡ Sadly, Pierre-Yves Asselin left this world on 4 December 2023. We hope that the English trans­la­tion of his ground­break­ing work will be com­plet­ed soon.

Creation of just-intonation scales

The fol­low­ing is the pro­ce­dure for export­ing just-intonation scales from the mur­ccha­na-s of Ma-grama stored in "-to.12_scales".

➡ Read Just into­na­tion: a gen­er­al frame­work for explanation.

The scale model

From left to right: 1st-order descending-third series, "Pythagorean" series and 1st-order ascending-third series (Asselin 2000 p. 61)

As indi­cat­ed on the page Just into­na­tion: a gen­er­al frame­work, just-intonation chro­mat­ic scales can be derived from a basic frame­work made of two cycles of per­fect fifths (fre­quen­cy ratio 3/2).

These pro­duce the 22-shru­ti frame­work of Indian musi­col­o­gists (read Raga into­na­tion) or the series called "Pythagorean" and "1st-order ascending-third" ("LA-1", "MI-1" etc.) in the approach of west­ern musi­col­o­gists (see pic­ture on the side).

We have found that the "1st-order descending-third cycle" ("LAb+1", "MIb+1" etc.), in which all notes are high­er by a syn­ton­ic com­ma may not be nec­es­sary for the cre­ation of just-intonation chords.

These cycles of fifths are rep­re­sent­ed graph­i­cal­ly (scale "2_cycles_of_fifths" in the tonal­i­ty resource "-to.tryTunings"):

There are some dif­fer­ences between this 29-degree divi­sion of the octave and the Indian frame­work, notably the cre­ation of "DO-1" and "FA-1", two posi­tions one syn­ton­ic com­ma low­er than "DO" ("C" = "Sa" in the Indian con­ven­tion) and "FA" ("F" = "Ma"). Interestingly, these posi­tions appear in ancient texts under the names "cyu­ta Sa" and "cyu­ta Ma". Other addi­tion­al posi­tions are "REb-1", "MIb-1", "SOLb-1", "LAb-1" and "SIb-1".

The rule we fol­low when cre­at­ing chro­mat­ic scales from trans­po­si­tions of Ma-grama is that only the posi­tions shown on this graph are con­sid­ered valid. When export­ing a minor or major chro­mat­ic scale from a trans­po­si­tion of Ma-grama, it may hap­pen that a note posi­tion is not part of this frame­work. In all cas­es of this pro­ce­dure, the invalid posi­tion is one syn­ton­ic com­ma too low. Therefore the export­ed scale is "aligned" by rais­ing all its posi­tions by one comma.

The term "Pythagorean series" is con­fus­ing because any cycle of per­fect fifths is Pythagorean by def­i­n­i­tion. Whether a posi­tion in a scale "is" or "is not" Pythagorean depends on the start­ing note of the series that was announced as "Pythagorean". In Asselin's work the start­ing point of the series in the mid­dle col­umn is "FA". In the Indian sys­tem, the basic frame­works (Ma-grama and Sa-grama) start from "Sa" ("C" or "do") and the Pythagorean/harmonic sta­tus of a posi­tion is deter­mined by fac­tors of its fre­quen­cy ratio with respect to "Sa". If a fac­tor "5" is found in the numer­a­tor or the denom­i­na­tor, the posi­tion is har­mon­ic or, con­verse­ly, Pythagorean.

For exam­ple, "DO#" in Asselin's "Pythagorean" series (two per­fect fifths above "SI") is eval­u­at­ed as a har­mon­ic posi­tion (marked in green) on the Bol Processor graph and its ratio is 16/15. In real­i­ty, "DO#" in Asselin's series has a fre­quen­cy ratio of 243/128 * 9/16 = 2187/1024 = 1.068 which is very close to 16/15 = 1.067. "DO#-1" in Asselin's series is two per­fect fifths above "SI-1" which gives a fre­quen­cy ratio of 15/8 * 9/16 = 135/128 = 1.054 which is close to 256/243 = 1.053 and marked "Pythagorean" on the Indian scheme. Thus, "DO#" and "DO#-1" have exchanged their prop­er­ties, each being the super­po­si­tion of two very close posi­tions belong­ing to dif­fer­ent series.

Ignoring schis­ma dif­fer­ences inn order to take the sim­plest ratios cre­ates this con­fu­sion. For this rea­son, we still pre­fer to use com­ma indi­ca­tions — e.g. "FA" and "FA-1" — to iden­ti­fy posi­tions where the first instance belongs to the series called "Pythagorean" in Asselin's work.

Transposition table

This table sum­maris­es a quick pro­ce­dure for cre­at­ing all the mur­ccha­na-s of the Ma-grama chro­mat­ic scale and export­ing minor and major chro­mat­ic scales from them.

Open the scale "Ma_grama" in the "-to.12_scales" tonal­i­ty resource, and select the Murcchana pro­ce­dure. To cre­ate "Ma01", move note "F" to note "C" and click on TRANSPOSITION.

F moved toMurcchanaMinor scaleRaiseMajor scaleIdentical
scale
Adjust
CMa01AminDCmaj=Emin1/1
FMa02DminGFmaj=Amin1/1
BbMa03GminCBbmaj=Dmin1/1
EbMa04CminFEbmaj=Gmin1/1
AbMa05FminBbAbmaj=Cmin1/1
DbMa06BbminEbDbmaj=Fmin1/1
F#Ma07EbminAbF#maj=Bbmin1/1
BMa08AbminDbBmaj=Ebmin1/1
EMa09DbminF#Emaj=Abmin1/1
AMa10F#minBAmaj=Dbmin81/80
R3Ma11BminEDmaj=F#min81/80
G3Ma12EminAGmaj=Bmin81/80

For exam­ple, this is the "Ma04" mur­ccha­na obtained by plac­ing "F" (M1 on the Indian scale mod­el) of the mov­ing wheel on "Eb" (G1 of the out­er crown):

The result­ing "Ma04" scale is:

The "Ma04" scale, which is a trans­po­si­tion of the "Ma-grama" chro­mat­ic scale

Scale adjustment

In the last col­umn of the table, "Adjust" indi­cates the frac­tion by which the note ratios may need to be mul­ti­plied so that no posi­tion is cre­at­ed out­side the Pythagorean and har­mon­ic cycles of fifths accord­ing to the Indian sys­tem. Practically this is the case when the fre­quen­cy ratio con­tains a mul­ti­ple of 25 in either its numer­a­tor or denom­i­na­tor, as this indi­cates that the posi­tion has been con­struct­ed by at least two suc­ces­sive major thirds (up or down).

A warn­ing is dis­played if this is the case, and a sin­gle click on ADJUST SCALE fix­es the positions:

In this exam­ple, the warn­ing sig­nals an out-of-range posi­tion of "B" (50/27) on the "Ma10" scale. Note also that "F#" has a mul­ti­ple of 25 in its numerator.

After click­ing on ADJUST SCALE, the scale "Ma10" is com­plet­ed with "B" in posi­tion 15/8. This has been done by rais­ing all the notes by one syn­ton­ic com­ma (81/80) :

This pro­ce­dure is known in Indian musi­col­o­gy as sadja-sadharana, which means that all the notes of the scale are raised by a shru­ti — here, a syn­ton­ic com­ma (Shringy & Sharma 1978). In this mod­el, it is also invoked for the scales "Ma11" and "Ma12". The result is (as expect­ed) a cir­cu­lar mod­el because "Ma13" is iden­ti­cal to "Ma01" as shown by the scale com­para­tor at the bot­tom of page "-to.12_scales".

This cir­cu­lar­i­ty is a prop­er­ty of the set of mur­ccha­na-s which has no effect on export­ed minor and major scales, since their posi­tions are aligned accord­ing to the basic rule explained in the first section.

Exporting and aligning minor scales

The "Ma04" mur­ccha­na pro­duces "Cmin" by export­ing notes fac­ing the marks on the inner wheel.

The "Cmin" chro­mat­ic scale export­ed from the "Ma04" transposition

As explained on page Just into­na­tion: a gen­er­al frame­work, the ton­ic and dom­i­nant notes of each minor chord should belong to the "minus-1" posi­tion. In this exam­ple, "C" and "G" are one com­ma low­er in a "C minor" chord than in a "C major" chord (cor­re­spond­ing to "DO-1" and "SOL-1" on the "2_cycles_of_fifths" scale), a fact pre­dict­ed and exper­i­men­tal­ly ver­i­fied by Pierre-Yves Asselin (2000 p. 137).

All chro­mat­ic minor scales export­ed from the mur­chana-s of the Ma-grama are cor­rect­ly posi­tioned with respect to the enhar­mon­ic posi­tions of the main notes in just-intonation chords. This can be eas­i­ly checked by com­par­ing the ratios with those asso­ci­at­ed with the west­ern series on "2_cycles_of_fifths" (top of this page). This con­firms that a tun­ing sys­tem using only two series of per­fect fifths is suit­able for the con­struc­tion of a just-intonation framework.

Exporting and aligning major scales

The "Ma04" mur­ccha­na pro­duces "Ebmaj" by export­ing notes fac­ing the marks on the inner wheel and rais­ing "F":

The "Ebmaj" chro­mat­ic scale export­ed from the "Ma04" transposition

According to a rule explained on the page Just into­na­tion: a gen­er­al frame­work, the root of each major chord should be both in the high posi­tion and in the Pythagorean series (blue mark­ings). This is true for the chord "Eb major" tak­en from the chro­mat­ic scale "Ebmaj", but not for the scales "F#maj", "Bmaj" and "Emaj" shown in bold on the table.

For exam­ple, let us look at "Emaj", which was export­ed from "Ma09" with­out any precautions:

Scale "Emaj" export­ed from "Ma09", before its alignment

The note "E" has a fre­quen­cy ratio of 5/4, which is labelled "MI-1" on the scale "2_cycles_of_fifths" (top of this page). Since "MI-1" belongs to a har­mon­ic series, it can­not be tak­en as a the ton­ic of an "E major chord". The Pythagorean "MI" (ratio 81/64) should be used instead.

After its adjust­ment — rais­ing all notes by 1 syn­ton­ic com­ma — the final "Emaj" scale is obtained:

Scale "Emaj" export­ed from "Ma09", after its alignment

This align­ment of export­ed major scales is done auto­mat­i­cal­ly by the Bol Processor when export­ing a major chro­mat­ic scale.

References

Asselin, P.-Y. Musique et tem­péra­ment. Paris, 1985, repub­lished in 2000: Jobert. Soon avail­able in English.

Shringy, R.K.; Sharma, P.L. Sangita Ratnakara of Sarngadeva: text and trans­la­tion, vol. 1, 5: 7-9. Banaras, 1978: Motilal Banarsidass. doi:10.2307/2054840. Source in the Web Archive.

Raga intonation

Tanpura: the drone of Indian musi­cians
— man­u­fac­tured in Miraj (read paper)

This arti­cle demon­strates the the­o­ret­i­cal and prac­ti­cal con­struc­tion of micro­ton­al scales for the into­na­tion of North Indian ragas, using tools avail­able with the Bol Processor (BP3).

It is intend­ed to com­ple­ment the pages Microtonality and Just into­na­tion, a gen­er­al frame­work and The Two-vina exper­i­ment. However, its under­stand­ing does not require a pri­or study of these relat­ed pages.

This raga into­na­tion exer­cise demon­strates BP3's abil­i­ty to han­dle sophis­ti­cat­ed mod­els of micro-intonation and to sup­port the fruit­ful cre­ation of music embody­ing these models.

Theory versus practice

To sum­marise the back­ground, the frame­work for con­struct­ing 'just into­na­tion' scales is a deci­pher­ing of the first six chap­ters of the Nāṭyaśāstra, a Sanskrit trea­tise on music, dance and dra­ma dat­ing from a peri­od between 400 BC and 200 AD. For con­ve­nience, we call it "Bharata's Model", although there is no his­tor­i­cal record of a sin­gle author by that name.

Using exclu­sive infor­ma­tion dri­ven from the text and its descrip­tion of the Two-vina exper­i­ment, an infi­nite num­ber of valid inter­pre­ta­tions of the ancient the­o­ry are pos­si­ble, as shown in A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra (Bel 1988a). Among these, the one advo­cat­ed by many musi­col­o­gists — influ­enced by west­ern acoustics and scale the­o­ries — is that the fre­quen­cy ratio of the har­mon­ic major third would be 5/4. This is equiv­a­lent to set­ting the fre­quen­cy ratio of the syn­ton­ic com­ma at 81/80.

Although this inter­pre­ta­tion pro­vides a con­sis­tent mod­el for just into­na­tion har­mo­ny - see Just into­na­tion, a gen­er­al frame­work — it would be a stretch to claim that the same applies to raga into­na­tion. Accurate assess­ment of raga per­for­mance using our Melodic Movement Analyser (MMA) in the ear­ly 1980s revealed that melod­ic struc­tures derived from sta­tis­tics (using selec­tive tona­grams, see below) often dif­fer sig­nif­i­cant­ly from the scales pre­dict­ed by the "just into­na­tion" inter­pre­ta­tion of Bharata's mod­el. Part of the expla­na­tion may be the strong har­mon­ic attrac­tion of drones (tan­pu­ra) played in the back­ground of raga performances.

Speaking of gra­ma-s (scale frame­works) in the ancient Indian the­o­ry, E.J. Arnold wrote (1982 p. 40):

Strictly speak­ing the gra­mas belong to that aspect of nada (vibra­tion) which is ana­ha­ta ("unstruck"). That means to say that the "gra­ma" can nev­er be heard as a musi­cal scale [as we did on page Just into­na­tion, a gen­er­al frame­work]. What can be heard as a musi­cal scale is not the gra­ma, but any of its mur­ccha­nas.

Once elec­tron­ic devices such as the Shruti Harmonium (1979) and the Melodic Movement Analyser (1981) became avail­able, the chal­lenge for raga into­na­tion research was to rec­on­cile two method­olo­gies: a top-down approach, test­ing hypo­thet­i­cal mod­els against data, and a data-driven bottom-up approach.

The "micro­scop­ic" obser­va­tion of melod­ic lines (now eas­i­ly ren­dered by soft­ware such as Praat) has con­firmed the impor­tance of note treat­ment (orna­men­ta­tion, alankara) and tem­po­ral dimen­sions of raga that are not tak­en into account by scale the­o­ries. For exam­ple, the ren­der­ing of the note 'Ga' in raga Darbari Kanada (Bel & Bor 1984; van der Meer 2019) and the typ­i­cal treat­ment of notes in oth­er ragas (e.g. Rao & Van der Meer 2009; 2010) have been dis­cussed at length. The visu­al tran­scrip­tion of a phrase from raga Asha illus­trates this:

A brief phrase of raga Asha tran­scribed by the MMA and in west­ern con­ven­tion­al notation
Non-selective tona­gram of raga Sindhura sung by Ms. Bhupender Seetal

To extract scale infor­ma­tion from this melod­ic con­tin­u­um, a sta­tis­ti­cal mod­el was imple­ment­ed to show the dis­tri­b­u­tion of pitch over an octave. The image shows the tona­gram of a 2-minute sketch (cha­lana) of raga Sindhura taught by Pandit Dilip Chandra Vedi.

The same record­ing of Sindhura on a selec­tive tonagram

The same melod­ic data was processed again after fil­ter­ing through 3 win­dows that attempt­ed to iso­late 'sta­ble' parts of the line. The first win­dow, typ­i­cal­ly 0.1 sec­onds, would elim­i­nate irreg­u­lar seg­ments, the sec­ond (0.4 sec­onds) would dis­card seg­ments out­side a rec­tan­gle of 80 cents height, and the third was used for aver­ag­ing. The result is a "skele­ton" of the tonal scale, dis­played as a selec­tive tona­gram.

These results would often not match the scale met­rics pre­dict­ed by the 'just into­na­tion' inter­pre­ta­tion of Bharata's mod­el. Continuing with this data-driven approach, we pro­duced the (non-selective) tona­grams of 30 ragas (again, chalana-s) to com­pute a clas­si­fi­ca­tion based on their tonal mate­r­i­al. Dissimilarities between pairs of graphs (com­put­ed using Kuiper's algo­rithm) were approx­i­mat­ed as dis­tances, from which a 3-dimensional clas­si­cal scal­ing was extracted:

A map of 30 North-Indian ragas con­struct­ed by com­par­ing tona­grams of 2-minute sketch­es (cha­lana-s) of sung per­for­mances (Bel 1988b)

This exper­i­ment sug­gests that con­tem­po­rary North-Indian ragas are amenable to mean­ing­ful auto­mat­ic clas­si­fi­ca­tion on the basis of their (time-independent) inter­val­ic con­tent alone. This approach is anal­o­gous to human face recog­ni­tion tech­niques, which are able to iden­ti­fy relat­ed images from a lim­it­ed set of features.

Setup of Bel's Melodic Movement Analyser MMA2 (black front pan­el) on top of the Fundamental Pitch Extractor
at the National Centre for the Performing Arts (Mumbai) in 1983

This impres­sive clas­si­fi­ca­tion has been obtained by sta­tis­ti­cal analy­sis of sta­t­ic rep­re­sen­ta­tions of raga per­for­mance. This means that the same result would be obtained by play­ing the sound file in reverse, or even by slic­ing it into seg­ments reassem­bled in a ran­dom order… Music is a dynam­ic phe­nom­e­non that can­not be reduced to tonal "inter­vals". Therefore, sub­se­quent research into the rep­re­sen­ta­tion of the melod­ic lines of raga — once it could be effi­cient­ly processed by 100% dig­i­tal com­put­ing — led to the con­cept of Music in Motion, i.e. syn­chro­nis­ing graphs with sounds so that the visu­als reflect the music as it is being heard, arguably the only appropriate"notation" for raga (Van der Meer & Rao 2010; Van der Meer 2020).

This graph mod­el is prob­a­bly a great achieve­ment as an edu­ca­tion­al and doc­u­men­tary tool, indeed the envi­ron­ment I dreamed of when design­ing the Melodic Movement Analyser. However, to pro­mote it as a the­o­ret­i­cal mod­el is the con­tin­u­a­tion of a west­ern selec­tive bias. As far as I know, no Indian music mas­ter has ever attempt­ed to describe the intri­ca­cies of raga using hand-drawn mel­o­grams, although they could. The fas­ci­na­tion with tech­nol­o­gy — and west­ern 'sci­ence' in gen­er­al — is no indi­ca­tion of its rel­e­vance to ancient Indian concepts.

Music is judged by ears. Numbers, charts and graphs are mere­ly tools for inter­pret­ing and pre­dict­ing sound phe­nom­e­na. Therefore, a the­o­ry of music should be judged by its abil­i­ty to pro­duce musi­cal sounds via pre­dic­tive model(s). This approach is called analy­sis by syn­the­sis in Daniel Hirst's book on speech prosody. (Hirst, 2022, forth­com­ing, p. 137):

Analysis by syn­the­sis involves try­ing to set up an explic­it pre­dic­tive mod­el to account for the data which we wish to describe. A mod­el, in this sense, is a sys­tem which can be used for analy­sis — that is deriv­ing a (sim­ple) abstract under­ly­ing rep­re­sen­ta­tion from the (com­pli­cat­ed) raw acoustic data. A mod­el which can do this is explic­it but it is not nec­es­sar­i­ly pre­dic­tive and empir­i­cal­ly testable. To meet these addi­tion­al cri­te­ria, the mod­el must also be reversible, that is it must be pos­si­ble to use the mod­el to syn­the­sise observ­able data from the under­ly­ing representation.

This is the rai­son d'être for the fol­low­ing investigation.

Microtonal framework

The "flex­i­ble" mod­el derived from the the­o­ret­i­cal mod­el of Natya Shastra (see The Two-vina exper­i­ment) rejects the claim of a pre­cise fre­quen­cy ratio for the har­mon­ic major third clas­si­fied in ancient lit­er­a­ture as anu­va­di (aso­nant). This amounts to admit­ting that the syn­ton­ic com­ma (pramāņa ṣru­ti in Sanskrit) could take any val­ue between 0 and 56.8 cents.

Let us look at some graph­i­cal rep­re­sen­ta­tions (from the Bol Processor) to illus­trate these points.

The basic frame­work of musi­cal scales, accord­ing to Indian musi­col­o­gy, is a set of 22 tonal posi­tions in the octave called shru­ti-s in ancient texts. Below is the frame­work dis­played by the Bol Processor (micro­ton­al scale "gra­ma") with a 81/80 syn­ton­ic com­ma. The names of the posi­tions "r1_", "r2_", etc. fol­low the con­straints of low­er case ini­tials and the addi­tion of an under­score to dis­tin­guish octave num­bers. Positions "r1" and "r2" are two ways of locat­ing komal Re ("Db" or "re bemol"), while "r3" and "r4" denote shud­dha Re ("D" or "re"), etc.

The "gra­ma" scale, which dis­plays 22 shruti-s accord­ing to the mod­el of Natya Shastra, with an 81/80 syn­ton­ic comma

These 22 shru­ti-s can be heard on the page Just into­na­tion, a gen­er­al frame­work, bear­ing in mind (see above) that this is a frame­work and not a scale. No musi­cian would ever attempt to play or sing these posi­tions as "notes"!

What hap­pens if the val­ue of the syn­ton­ic com­ma is changed? Below is the same frame­work with a com­ma of 0 cent. In this case, any "har­mon­ic posi­tion" — one whose frac­tion con­tains a mul­ti­ple of 5 — moves to its near­est Pythagorean neigh­bour (only mul­ti­ples of 3 and 2). The result is a "Pythagorean tun­ing". At the top of the cir­cle, the remain­ing gap is a Pythagorean com­ma. The posi­tions are slight­ly blurred because of the mis­match­es asso­ci­at­ed with a very small inter­val (the schis­ma).

The "gra­ma scale" of 22 shruti-s with a syn­ton­ic com­ma of 0 cent.

Below is the frame­work with a syn­ton­ic com­ma of 56.8 cents (its upper limit):

The "gra­ma scale" of 22 shruti-s with a syn­ton­ic com­ma of 56.8 cents.

In this rep­re­sen­ta­tion, "har­mon­ic major thirds" of 351 cents would most like­ly sound "out of tune" because the 5/4 ratio yields 384 cents. In fact, "g2" and "g3" are both dis­tant by a quar­ter tone between Pythagorean "g1" (32/27) and Pythagorean "g4" (81/64). Nevertheless, the inter­nal con­sis­ten­cy of this frame­work (count­ing per­fect fifths in blue) makes it suit­able for con­struct­ing musi­cal scales.

Between these lim­its of 0 and 56.8 cents, the graph­ic rep­re­sen­ta­tion of the scales and their inter­nal tonal struc­ture remain unchanged, bear­ing in mind that the size of the major-third inter­vals is deter­mined by the syn­ton­ic comma.

Construction of scale types

Manuscript of the descrip­tion of Zarlino's "nat­ur­al" scale

The mod­el tak­en from Bharata's Natya Shastra is not an obvi­ous ref­er­ence for pre­scrib­ing raga into­na­tion, as this musi­cal genre came into exis­tence a few cen­turies later.

Most of the back­ground knowl­edge required for the fol­low­ing pre­sen­ta­tion is bor­rowed from Bose (1960) and my late col­league E. James Arnold who pub­lished A Mathematical mod­el of the Shruti-Swara-Grama-Murcchana-Jati System (Journal of the Sangit Natak Akademi, New Delhi 1982). Arnold stud­ied Indian music in Banaras and Delhi in the 1970s and the ear­ly 1980s.

Bose was con­vinced (1960 p. 211) that the scale called Kaishika Madhyama was equiv­a­lent to a "just-intonation" seven-degree scale of west­ern musi­col­o­gy. In oth­er words, he took it for grant­ed that the 5/4 fre­quen­cy ratio (har­mon­ic major third) should be equiv­a­lent to the 7-shru­ti inter­val, but this state­ment had no influ­ence on the rest of his analysis.

Arnold (right) and Bel (left) demon­strat­ing shruti-s at the inter­na­tion­al East-West music con­fer­ence, Bombay 1983

Arnold (1982 p. 17) imme­di­ate­ly used inte­ger ratios to con­struct inter­vals with the fixed syn­ton­ic com­ma (81/80), but, as sug­gest­ed above, this does not affect his mod­el in terms of its struc­tur­al descrip­tion. He insist­ed on set­ting up a "geo­met­ric mod­el" rather than a spec­u­la­tive descrip­tion based on num­bers, as many authors (e.g. Alain Daniélou) had attempt­ed. The most inno­v­a­tive aspect of Arnold's study was the use of a cir­cu­lar slid­ing mod­el to illus­trate the match­ing of inter­vals in trans­po­si­tion process­es (murcchana-s) - see page The Two-vina exper­i­ment.

In real­i­ty, it would be more con­ve­nient to con­tin­ue to express all inter­vals in num­bers of shruti-s, in accor­dance with the ancient Indian the­o­ry, but a machine needs met­ric data to draw graph­ics of scales. For this rea­son, we show graphs with a syn­ton­ic com­ma of 81/80, keep­ing in mind the pos­si­bil­i­ty of chang­ing this val­ue at will.

Sa-grama and Ma-grama accord­ing to Natya Shastra. Red and green seg­ments indi­cate perfect-fifth con­so­nance. Underlined note names indi­cate 'flat' positions.

The 22-shru­ti frame­work offers the pos­si­bil­i­ty of con­struct­ing 211 = 2048 chro­mat­ic scales, of which only 12 are "opti­mal­ly con­so­nant", i.e. con­tain only one wolf fifth (small­er by 1 syn­ton­ic com­ma = 22 cents).

The build­ing blocks of the tonal sys­tem accord­ing to tra­di­tion­al Indian musi­col­o­gy are two seven-degree scales called Ma-grama and Sa-grama. Bose (1960 p. 13) writes: the Shadja Grāma devel­oped from the ancient tetra­chord in which the hymns of the Sāma Veda were chant­ed. Later on anoth­er scale, called the Madhyama Grāma, was added to the sec­u­lar musi­cal sys­tem. The two scales (Dorian modes, in west­ern ter­mi­nol­o­gy) dif­fer in the posi­tion of Pa ("G" or "sol") which may dif­fer by a syn­ton­ic com­ma (pramāņa ṣru­ti). In the Sa-grama, the inter­val Sa-Pa is a per­fect fifth (13 shru­ti-s) where­as in the Ma-grama it is a wolf fifth (12 shru­ti-s). Conversely, the inter­val Pa-Re is a per­fect fifth in Ma-grama and a wolf fifth in Sa-grama.

Bharata used the Sa-grama to expose his thought exper­i­ment (The Two vinas) aimed at deter­min­ing the sizes of shru­ti-s. He then intro­duced two addi­tion­al notes: kakali Nishada (komal Ni or "Bflat") and antara Gandhara (shud­dh Ga or "E") to obtain a nine-degree scale from which "opti­mal­ly con­so­nant" chro­mat­ic scales could be derived from modal trans­po­si­tions (mur­ccha­na). The process of con­struct­ing these 12 chro­mat­ic scales, which we named "Ma01", "Ma02"… "Sa01", "Sa20", etc., is explained on the page Just into­na­tion, a gen­er­al frame­work.

The selec­tion of notes in each chro­mat­ic scale pro­duces 5 to 7 note melod­ic types. In the Natya Shastra these melod­ic types are called jāti. These can be seen as the ances­tors of ragas, although their lin­eages and struc­tures are only spec­u­la­tive (read on). The term thāṭ (pro­nounced 'taat') — trans­lat­ed as 'mode' or 'par­ent scale' — was lat­er adopt­ed, each thāṭ being called by the name of a raga (see Wikipedia). Details of the process, ter­mi­nol­o­gy and sur­veys of sub­se­quent musi­co­log­i­cal lit­er­a­ture can be found in pub­li­ca­tions by Bose and oth­er scholars.

The con­struc­tion of the basic scale types is explained by Arnold (1982 p. 37-38). The start­ing point is the chro­mat­ic Ma-grama in its basic posi­tion — name­ly "Sa_murcchana" in the "-to.12_scales" tonal­i­ty resource file. This scale can be visu­alised, using Arnold's slid­ing mod­el, by plac­ing the S note of the inner wheel on the S of the out­er crown :

The Ma-grama chro­mat­ic scale in its basic posi­tion named "Sa_murcchana'

This yields the fol­low­ing intervals:

The Ma-grama chro­mat­ic scale in its basic posi­tion and with notes labeled in English

"Optimal con­so­nance" is illus­trat­ed by two fea­tures: (1) there is only one wolf fifth (red line) in the scale — between D and G —, and (2) each note is con­nect­ed to anoth­er note by a per­fect fifth (blue line). This con­so­nance is of para­mount impor­tance to Indian musi­cians. Consonant inter­vals are casu­al­ly placed in melod­ic phras­es to enhance the "flavour" of their notes, and there should be no wolf fifth in the scale.

Note that the Ma-grama chro­mat­ic scale has all its notes in their low­er enhar­mon­ic positions.

The Ma-grama chro­mat­ic scale has been renamed "Sa_murcchana" here, because 'S' of the mov­ing wheel is oppo­site the 'S' of the fixed crown. The note names have been con­vert­ed (with a sin­gle click) to the Indian con­ven­tion. Note that the key num­bers have also been (auto­mat­i­cal­ly) fixed to match only the labelled notes. In this way, the upper "sa" is assigned key 72 instead of 83 in the "Ma01" scale shown on the Just into­na­tion, a gen­er­al frame­work page. The tonal con­tent of this "Sa_murchana" is shown in this table:

Tonal con­tent of "Sa_murcchana" (see full image)
Scale type named "kaphi1"

Selecting only "unal­tered" notes in "Sa_murcchana" — sa, re, gak, ma, pa, dha, nik — results in the "kaphi1" scale type named after the raga Kaphi (pro­nounced 'kafi'). This can be asso­ci­at­ed with a D-mode (Dorian) in west­ern musicology.

This scale type is saved under the name "kaphi1" because there will be anoth­er ver­sion of the Kaphi scale type.

In the "Sa_murcchana" the selec­tion of notes can be done in two dif­fer­ent ways:

  • Select antara Gandhara (name­ly "ga") in place of the scale's Gandhara (name­ly "gak"), there­by rais­ing it by 2 shru­ti-s. This will result in a vikrit (mod­i­fied) scale type, name­ly "khamaj1", asso­ci­at­ed with raga Khamaj.
  • Select both antara Gandhara and kakali Nishada (name­ly "ni" in place of "nik" raised by 2 shru­ti-s) which cre­ates the "bilaval1" scale type asso­ci­at­ed with raga Bilaval.
A scale type named "bilaval3" match­ing Zarlino's "nat­ur­al" scale

This "bilaval1" scale type is one of three ver­sions of the Bilaval cre­at­ed by the mur­ccha­na process. Although it cor­re­sponds to the scale of the white keys on a key­board instru­ment, it is not the usu­al "just into­na­tion" dia­ton­ic scale, because of a wolf fifth between "sa" and "pa".

An alter­na­tive Bilaval scale type called "bilaval3" (extract­ed from the "Ni1_murcchana", see below) cor­re­sponds to Giozeffo Zarlino's "nat­ur­al" scale — see Just into­na­tion: a gen­er­al frame­work. This is not to be con­fused with Zarlino's mean­tone tem­pera­ment dis­cussed on the Microtonality page.

An incom­plete­ly con­so­nant scale type

A fourth option: rais­ing "nik" to "ni" and keep­ing "gak", would pro­duce a scale type in which "ni" has no con­so­nant rela­tion­ship with any oth­er note in the scale. This option is there­fore dis­card­ed from the model.

Each mur­ccha­na of the Ma-grama chro­mat­ic scale pro­duces at least three types of scale by select­ing unal­tered notes, antara Gandhara or both antara Gandhara and kakali Nishada.

For exam­ple, to cre­ate the "Ni1_murcchana", open the "Sa_murcchana" page and enter "nik" (i.e. N3) as the note to be placed on "sa".

Raga scale types are stored in the "-to.raga" tonal­i­ty resource file. Images are avail­able with a sin­gle click and scale struc­tures are com­pared on the main page.

The entire process is sum­ma­rized in the fol­low­ing table (Arnold 1982 p. 38):

StepMa-grama chro­mat­ic
mur­ccha­na start­ing from
Shuddha gra­maVikrit gra­ma (antara)Vikrit gra­ma
(antara + kakali)
1Sakaphi1khamaj1bilaval1
2Ma1khamaj2bilaval2kalyan1
3Ni1bilaval3kalyan2marva1
4Ga1kalyan3marva2purvi1
5Dha1marva3purvi2todi1
6Re1purvi3todi2
7Ma3todi3lalit1
bhairao1
8Ni3lalit2
bhairao2
bhairavi1
9Ga3todi4
bhairavi2
10Dha3bhairavi3asavari1
11Re3bhairavi4asavari2kaphi2
12Pa3asavari3kaphi3khamaj3
Scale types of the extend­ed grama-murcchana series (Arnold 1982)

The use of this table deserves a graph­i­cal demon­stra­tion. For exam­ple, let us cre­ate a scale type "kalyan1" based on the "Ma1_murcchana". The table says that both "antara and kakali" should be select­ed. This means "antara Gandhara" which is "ga" in place of "gak" in the Ma-grama scale, and "kakali Nishada" which is "ni" in place of "nik" in the Ma-grama scale. This process is clear in the mov­ing wheel model:

Selecting notes to cre­ate the scale type "kalyan1" from the "Ma1_murcchana" of the chro­mat­ic Ma-grama. "M1" is set to "S". Then take the stan­dard inter­vals from the Ma-grama mov­ing wheel, replac­ing G1 with G3 and N1 with N3 as shown in the table.

To make this selec­tion and export the "kalyan1" scale type, fill in the form on the "Ma1_murcchana" page as shown in the image.

Below is the result­ing scale type.

The "kalyan1" scale type

Remember that note posi­tions expressed as whole-number fre­quen­cy ratios are only a mat­ter of con­ve­nience for read­ers famil­iar with west­ern musi­col­o­gy. It would be more appro­pri­ate to fol­low the Indian con­ven­tion of count­ing inter­vals in num­bers of shruti-s. In this exam­ple, the inter­val between 'sa' and 'ma' is increased from 9 shruti-s (per­fect fourth) to 11 shruti-s (tri­tone).

Arnold's mod­el is an exten­sion of the mur­ccha­na sys­tem described in Natya Shastra because it accepts mur­ccha­na-s start­ing from notes that do not belong to the orig­i­nal (7-degree) Ma-grama, tak­en from its "chro­mat­ic ver­sion": Dha1, Re1, Ma3, Ni3, Ga3. This exten­sion is nec­es­sary to cre­ate scale types for Todi, Lalit and Bhairao that include aug­ment­ed sec­onds.

In his 1982 paper (p. 39-41) Arnold linked his clas­si­fi­ca­tion of scale types to the tra­di­tion­al list of jāti-s, the "ances­tors of ragas" described in Sangita Ratnakara of Śārṅgadeva (Shringy & Sharma, 1978). Seven jāti-s are cit­ed (p. 41), each of them being derived from a mur­ccha­na of the Ma-grama on one of its shud­dha swara-s (basic notes).

Every jāti is asso­ci­at­ed with a note of relax­ation (nyasa swara). In con­tem­po­rary ragas, the nyasa swara is often found at the end of a phrase or a set of phras­es. In Arnold's inter­pre­ta­tion, the same should define the mur­ccha­na from which the melod­ic type (jāti) is born. Since the names of the shud­dha jatis are in fact tied to their nyasa swaras, this also sug­gests that they should be tied to the mur­ccha­nas belong­ing to those nyasa swaras (Arnold 1982 p. 40).

Performance times asso­ci­at­ed with murcchana-s of the Ma-grama, accord­ing to Arnold (1985)

In oth­er pub­li­ca­tions (notably Arnold & Bel 1985), Arnold used the cycle of 12 chro­mat­ic scales to sug­gest that the enhar­mon­ic posi­tions of the notes could express states of ten­sion or release linked to the chang­ing ambi­ence of the cir­ca­di­an cycle, there­by pro­vid­ing an expla­na­tion for the per­for­mance times assigned to tra­di­tion­al ragas. Low enhar­mon­ic posi­tions would be asso­ci­at­ed with dark­ness and high­er ones with day­light. Thus, ragas con­struct­ed using the Sa mur­ccha­na of the Ma-grama chro­mat­ic scale (all low posi­tions, step 1) could be inter­pret­ed as being near mid­night, while those that mix low and high posi­tions (step 7) would car­ry the ten­sions of sun­rise and sun­set. Their sequence is a cycle because in the table above it is pos­si­ble to jump from step 12 to step 1 by low­er­ing all note posi­tions by one shru­ti. This cir­cu­lar­i­ty is implied by the process called sadja-sadharana in musi­co­log­i­cal lit­er­a­ture (Shringy & Sharma 1978).

A list of 85 ragas with per­for­mance times pre­dict­ed by the mod­el can be found in Arnold & Bel (1985). This hypoth­e­sis is indeed inter­est­ing — and it does hold for many well-known ragas — but we have nev­er found the time to under­take a sur­vey of musi­cians' state­ments about per­for­mance times which might have assessed its validity.

Practice

Given scale types stored in the "-to.raga" tonal­i­ty resource file, the Bol Processor can be used to check the valid­i­ty of scales by play­ing melodies of ragas they are sup­posed to embody. It is also inter­est­ing to use these scales in musi­cal gen­res unre­lat­ed with North Indian raga and "dis­tort" them in every con­ceiv­able direction…

Choice of a raga

Todi Ragini, Ragamala, Bundi, Rajasthan, 1591
Public domain

We will take up the chal­lenge of match­ing one of the four "todi" scales with two real per­for­mances of raga Todi.

Miyan ki todi is present­ly the most impor­tant raga of the Todi fam­i­ly and there­fore often sim­ply referred to as Todi […], or some­times Shuddh Todi. Like Miyan ki mal­har it is sup­posed to be a cre­ation of Miyan Tansen (d. 1589). This is very unlike­ly, how­ev­er, since the scale of Todi at the time of Tansen was that of mod­ern Bhairavi (S R G M P D N), and the name Miyan ki todi first appears in 19th cen­tu­ry lit­er­a­ture on music.

Joep Bor (1999)

This choice is chal­leng­ing for a num­ber of rea­sons. Firstly, the four vari­ants of "todi" scales are derived from a (ques­tion­able) exten­sion of the grama-murcchana sys­tem. Then, the notes "ni" and "rek", "ma#" and "dhak" are close to the ton­ic "sa" and the dom­i­nant "pa" and could be "attract­ed" by the ton­ic and dom­i­nant, thus dis­rupt­ing the "geom­e­try" of the the­o­ret­i­cal scales in the pres­ence of a drone.

Finally, and most impor­tant­ly, the performer's style and per­son­al choic­es are expect­ed to be at odds with this the­o­ret­i­cal mod­el. As sug­gest­ed by Rao and van der Meer (2010, p. 693):

[…] it has been observed that musi­cians have their own views on into­na­tion, which are hand­ed down with­in the tra­di­tion. Most of them are not con­scious­ly aware of aca­d­e­m­ic tra­di­tions and hence are not in a posi­tion to express their ideas in terms of the­o­ret­i­cal for­mu­la­tions. However, their ideas are implic­it in musi­cal prac­tice as musi­cians visu­al­ize tones, per­haps not as fixed points to be ren­dered accu­rate­ly every time, but rather as tonal regions or pitch move­ments defined by the gram­mar of a spe­cif­ic raga and its melod­ic con­text. They also attach para­mount impor­tance to cer­tain raga-specific notes with­in phras­es to be intoned in a char­ac­ter­is­tic way.

We had already tak­en up the Todi chal­lenge with an analy­sis of eight occur­rences using the Melodic Movement Analyser (Bel 1988b). The analyser had pro­duced streams of accu­rate pitch mea­sure­ments which, after being fil­tered as selec­tive tona­grams, were sub­ject­ed to sta­tis­ti­cal analy­sis (Bel 1984; Bel & Bor 1984). The events includ­ed 6 per­for­mances of raga Todi and 2 exper­i­ments in tun­ing the Shruti Harmonium.

The four "best" tun­ing schemes for raga Todi (Bel 1988b p. 16)
The sec­ond col­umn is the stan­dard devi­a­tion on inter­vals, and the third col­umn is the stan­dard devi­a­tion on posi­tions rel­a­tive to the tonic

The MMA analy­sis revealed a rel­a­tive­ly high con­sis­ten­cy of note posi­tions, with stan­dard devi­a­tions bet­ter than 6 cents for all notes except "ma#", for which the devi­a­tion rose to 10 cents, still an excel­lent sta­bil­i­ty. Comparison of these results with the 'flex­i­ble' grama-murcchana mod­el showed less than 4 cent stan­dard devi­a­tion of inter­vals for 4 dif­fer­ent scales in which the syn­ton­ic com­ma (pramāņa ṣru­ti) would be set at 6, 18, 5 and 5 cents respec­tive­ly. In dis­cussing tun­ing schemes, Wim van der Meer even sug­gest­ed that musi­cians could "solve the prob­lem" of a "ni-ma#" wolf fifth by tem­per­ing fifths over the "ni-ma#-rek-dhak" cycle (Bel 1988b p. 17).

Our con­clu­sion was that no par­tic­u­lar "tun­ing scheme" could be tak­en for grant­ed on the basis of "raw" data. It would be more real­is­tic to study a par­tic­u­lar per­for­mance by a par­tic­u­lar musician.

Choice of a musician

Kishori Amonkar per­form­ing raga Lalit
Credit সায়ন্তন ভট্টাচার্য্য - Own work, CC BY-SA 4.0

Working with the Shruti Harmonium nat­u­ral­ly led us to meet Kishori Amonkar (1932-2017) in 1981. She was a lead­ing expo­nent of Hindustani music, hav­ing devel­oped a per­son­al style that claimed to tran­scend clas­si­cal schools (gha­ranas).

Most inter­est­ing­ly, she per­formed accom­pa­nied by a swara man­dal (see pic­ture), a zither that she tuned for each raga. Unfortunately we were not equipped to mea­sure these tun­ings with suf­fi­cient accu­ra­cy. So we used the Shruti Harmonium to pro­gramme the inter­vals accord­ing to her instructions.

This exper­i­ment did not go well for two rea­sons. A tech­ni­cal one: on that day, a fre­quen­cy divider (LSI cir­cuit) on the har­mo­ni­um was defec­tive; until it was replaced, some pro­grammed inter­vals were inac­ces­si­ble. A musi­cal one: the exper­i­ment showed that this pre­cise har­mo­ni­um was not suit­able for tun­ing exper­i­ments with Indian musi­cians. The fre­quen­cy ratios had to be entered on a small key­board, a use too far removed from the prac­tice of string tun­ing. This was a major incen­tive to design and build our "micro­scope for Indian music", the Melodic Movement Analyser (MMA) (Bel & Bor 1984).

In the fol­low­ing years (1981-1984) MMA exper­i­ments took up all our time and revealed the vari­abil­i­ty (but not the ran­dom­ness) of raga into­na­tion. For this rea­son we could not return to tun­ing exper­i­ments. Today, a sim­i­lar approach would be much eas­i­er with the help of the Bol Processor BP3… if only the expert musi­cians of that time were still alive!

Choice of a scale type

We need to decide between the four "todi" scale types pro­duced by the mur­ccha­na-s of the Ma-grama chro­mat­ic scale. For this we can use the mea­sure­ments of the Melodic Movement Analyser (Bel 1988b p. 15). Let us take aver­age mea­sure­ments and those of a per­for­mance by Kishori Amonkar. These are note posi­tions (in cents) against the ton­ic "sa".

NoteAverageStandard devi­a­tionKishori Amonkar
rek95496
gak2944288
ma#60610594
pa7021702
dhak7923792
(dhak)8063810
ni110761110
The "dhak" between brack­ets is a mea­sure­ment in the low octave

For the moment we will ignore "dhak" in the low­er octave as it will be dealt with sep­a­rate­ly. Let us com­pare Kishori Amonkar's results with the four scale types:

NoteKishori Amonkartodi1todi2todi3todi4
rek96898989112
gak288294294294294
ma#594590590610610
pa702702702700702
dhak792792792792814
ni11101088110911091109
Scale type "todi2", the best match to a per­for­mance of Kishori Amonkar

There are sev­er­al ways of find­ing the best match for musi­cal scales: either by com­par­ing scale inter­vals or by com­par­ing note posi­tions in rela­tion to the base note (ton­ic). Because of the impor­tance of the drone, we will use the sec­ond method. The choice is sim­ple here. Version "todi1" can be dis­card­ed because of "ni", the same with "todi3" and "todi4" because of "ma#". We are left with "todi2" which has a very good match, even with the mea­sure­ments of per­for­mances by oth­er musicians.

Adjustment of the scale

The largest devi­a­tions are on "rek" which was sung 7 cents high­er than the pre­dict­ed val­ue and "gak" which was sung 6 cents low­er. Even a 10-cent devi­a­tion is prac­ti­cal­ly impos­si­ble to mea­sure on a sin­gle note sung by a human, includ­ing a high-profile singer like Kishori Amonkar; the best res­o­lu­tion used in speech prosody is greater than 12 cents.

Any "mea­sure­ment" of the MMA is an aver­age of val­ues along the rare sta­ble melod­ic steps. It may not be rep­re­sen­ta­tive of the "real" note due to its depen­dence on note treat­ment: if the note's approach is in a range on the lower/higher side, the aver­age will be lower/higher than the tar­get pitch.

Therefore, it would be accept­able to declare that the scale type "todi2" cor­re­sponds to the per­for­mance. However, let us show how the mod­el can be mod­i­fied to reflect the mea­sure­ments more accurately.

First we dupli­cate "todi2" to cre­ate "todi-ka" (see pic­ture). Note posi­tions are iden­ti­cal in both versions.

Looking at the pic­ture of the scale (or the num­bers on its table), we can see that all the note posi­tions except "ma#" are Pythagorean. The series to which a note belongs is indi­cat­ed by the colour of its point­er: blue for Pythagorean and green for harmonic.

Modified "todi2" scale match­es the mea­sured "ma#"

This means that chang­ing the size of the syn­ton­ic com­ma — in strict accor­dance with the grama-murcchana mod­el — will only adjust "ma#". To change the posi­tion of "ma#" from 590 to 594 cents (admit­ted­ly a ridicu­lous adjust­ment) we need to reduce the size of the syn­ton­ic com­ma by the same amount. This can be done at the bot­tom right of the "todi-ka" page, chang­ing the syn­ton­ic com­ma to 17.5 cents, a change con­firmed by the new image.

A table on the "todi-ka" page shows that the "rek-ma#" inter­val is still con­sid­ered a "per­fect" fifth, even though it is small­er by 6 cents.

It may not be obvi­ous whether the syn­ton­ic com­ma needs to be increased or decreased to fix the posi­tion of "ma#", but it is easy to try the oth­er way in case the direc­tion was wrong.

Final ver­sion of "todi2" adjust­ed to Kishori Amonkar's per­for­mance in the medi­um octave (4)

Other adjust­ments devi­ate from the "pure" mod­el. These result in chang­ing fre­quen­cy ratios in the table on the "todi-ka" page. An increase in "rek" from 89 to 96 cents requires an increase of 7 cents, cor­re­spond­ing to a ratio of 2(7/1200) = 1.00405. This changes the posi­tion of "rek" from 1.053 to 1.057.

In the same way, a reduc­tion in "gak" from 294 to 288 cents requires a reduc­tion of 6 cents, giv­ing a ratio of 2(-6/1200) = 0.9965. This brings the posi­tion of "gak" from 1.185 to 1.181.

Fortunately, these cal­cu­la­tions are done by the machine: use the "MODIFY NOTE" but­ton on the scale page.

The pic­ture shows that the infor­ma­tion of "rek" and "gak" belong­ing to Pythagorean series (blue line) is pre­served. The rea­son for this is that when­ev­er a fre­quen­cy ratio is mod­i­fied by its floating-point val­ue, the machine checks whether the new val­ue is close to an inte­ger ratio of the same series. For exam­ple, chang­ing "rek" back to 1.053 would restore its ratio to 256/243. Accuracy bet­ter than 1‰ is required for this adjustment.

A tun­ing scheme for this scale type is sug­gest­ed by the machine. The graph­i­cal rep­re­sen­ta­tion shows that "ni" is not con­so­nant with "ma#" as their inter­val is 684 cents, close to a wolf fifth of 680 cents. Other notes are arranged on two cycles of per­fect fifths. Interestingly, rais­ing "rek" by 7 cents brought the "rek-ma#" fifth back to its per­fect size (702 cents).

Again, these are mean­ing­less adjust­ments for a vocal per­for­mance. We are just show­ing what to do when necessary.

The "todi2" scale type with "dhak" adjust­ed for the low octave (3)

The remain­ing adjust­ment will be that of the "dhak" in the low­er octave. To do this, we will dupli­cate the pre­vi­ous scale, renam­ing it "todi_ka_4" to indi­cate that it is designed for the 4th octave. In the new scale, called "todi_ka_3", we raise "dhak3" by 810 -792 = 18 cents.

This rais­es its posi­tion from 1.58 to 1.597. Note that this puts it exact­ly in a posi­tion in the har­mon­ic series since the syn­ton­ic com­ma is 17.5 cents.

In addi­tion, "dhak-sa" is now a har­mon­ic major third — with a size of 390 cents to match the 17.5 cents com­ma. This is cer­tain­ly sig­nif­i­cant in the melod­ic con­text of this raga, which is one rea­son why all the musi­cians made the same size adjust­ment in their tun­ing experiments.

This case is a sim­ple illus­tra­tion of raga into­na­tion as a trade-off between har­monic­i­ty with respect to the drone and the need for con­so­nant melod­ic inter­vals. It also shows that the Shruti Harmonium could not fol­low the prac­tice of the musi­cians because its scale ratios were repli­cat­ed in all octaves.

Choice of a recording

We don't have the record­ing on which the MMA analy­sis was made. One prob­lem with old tape record­ings is the unre­li­a­bil­i­ty of the speed of tape trans­port. Also, on a long record­ing, the fre­quen­cy of the ton­ic can change slight­ly due to vari­a­tions in room tem­per­a­ture, which affects the instru­ments — includ­ing the dila­tion of the tape…

In order to try to com­pare scales a with real per­for­mances, and to exam­ine extreme­ly small "devi­a­tions" (which have lit­tle musi­cal sig­nif­i­cance, in any case), it is there­fore safer to work with dig­i­tal record­ings. This was the case with Kishori Amonkar's Todi, record­ed in London in ear­ly 2000 for the Passage to India col­lec­tion, and avail­able free of copy­right (link on Youtube). The fol­low­ing is based on this recording.

Setting up the diapason

Let us cre­ate the fol­low­ing "-gr.tryRagas" gram­mar:

-se.tryRagas
-to.raga

S --> _scale(todi_ka_4,0) sa4

Adjusting note con­ven­tion in "-se.tryRagas"

In "-se.tryRagas" the note con­ven­tion should be set to "Indian" so that "sa4" etc. is accept­ed even when no scale is specified.

The gram­mar calls "-to.raga", which con­tains the def­i­n­i­tions of all the scale types cre­at­ed by the pro­ce­dure described above. Unsurprisingly, it does not play the note "sa" at the fre­quen­cy of the record­ing. We there­fore need to mea­sure the ton­ic in order to adjust the fre­quen­cy of "A4" (dia­pa­son) in "-se.tryRagas" accord­ing­ly. There are sev­er­al ways to do this with increas­ing accuracy.

A semi­tone approx­i­ma­tion can be obtained by com­par­ing the record­ing with notes played on a piano or any elec­tron­ic instru­ment tuned with A4 = 440 Hz. Once we have found the key that is clos­est to "sa" we cal­cu­late its fre­quen­cy ratio to A4. If the key is F#4, which is 3 semi­tones low­er than A4, the ratio is r = 2(-3/12) = 0.840. To get this fre­quen­cy on "sa4" we would there­fore have to adjust the fre­quen­cy of the dia­pa­son (in "-se.tryRagas") to:

440 x r x 2(9/12) = 440 x 2((9-3)/12) = 311 Hz

A much bet­ter approx­i­ma­tion is obtained by extract­ing a short occur­rence of "sa4" at the very begin­ning of the performance:

A short occur­rence of "sa4" in the begin­ning of Kishori Amonkar's raga Todi

Then select a seem­ing­ly sta­ble seg­ment and extend the time scale to get a vis­i­ble signal:

Expansion of a very brief "sta­ble" occur­rence of "sa4"

This sam­ple con­tains 9 cycles for a dura­tion of 38.5 ms. The fun­da­men­tal fre­quen­cy is there­fore 9 x 1000 / 38.5 = 233.7 Hz. Consequently, adjust the dia­pa­son in "-se.tryRagas" to 233.7 x 2(9/12) = 393 Hz.

The last step is a fine tun­ing by com­par­ing the pro­duc­tion of the notes in the gram­mar by ear with the record­ing of "sa4" played in a loop. To do this, we pro­duce the fol­low­ing sequence:

S --> _pitchrange(500) _tempo(0.2) Scale _pitchbend(-15) sa4 _pitchbend(-10) sa4 _pitchbend(-5) sa4 _pitchbend(-0) sa4 _pitchbend(+5) sa4 _pitchbend(+10) sa4 _pitchbend(+15) sa4 _pitchbend(+20) sa4

These are eight occur­rences of "sa4" played at slight­ly increas­ing pitch­es adjust­ed by the pitch­bend. First make sure that the pitch­bend is mea­sured in cents: this is spec­i­fied in the instru­ment "Vina" called by "-.raga" and the Csound orches­tra file "new-vina.orc".

Listening to the sequence may not reveal any pitch dif­fer­ences, but these will be appar­ent to a trained ear when super­im­posed on the recording:

Recording on "sa4" over­laid with a sequence of "sa4" at slight­ly ris­ing pitch­es. Which is in tune?
➡ This is a stereo record­ing. Use head­phones to hear the song and the sequence of plucked notes on sep­a­rate channels

One of the four occur­rences sounds best in tune. Let us assume that the best match is on _pitchbend(+10). This means that the dia­pa­son should be raised by 10 cents. Its new fre­quen­cy would there­fore be 393 x 2(10/1200) = 395.27 Hz.

In fact the best fre­quen­cy is 393.22 Hz, which means that the sec­ond eval­u­a­tion (which gave 393 Hz) was fair — and the singers' voic­es very reli­able! Now we can check the fre­quen­cy of "sa4" on the Csound score:

; Csound score
f1 0 256 10 1 ; This table may be changed
t 0.000 60.000
i1 0.000 5.000 233.814 90.000 90.000 0.000 -15.000 -15.000 0.000 ; sa4
i1 5.000 5.000 233.814 90.000 90.000 0.000 -10.000 -10.000 0.000 ; sa4
i1 10.000 5.000 233.814 90.000 90.000 0.000 -5.000 -5.000 0.000 ; sa4
i1 15.000 5.000 233.814 90.000 90.000 0.000 0.000 0.000 0.000 ; sa4
i1 20.000 5.000 233.814 90.000 90.000 0.000 5.000 5.000 0.000 ; sa4
i1 25.000 5.000 233.814 90.000 90.000 0.000 10.000 10.000 0.000 ; sa4
i1 30.000 5.000 233.814 90.000 90.000 0.000 15.000 15.000 0.000 ; sa4
i1 35.000 5.000 233.814 90.000 90.000 0.000 20.000 20.000 0.000 ; sa4
s

These meth­ods could actu­al­ly be sum­marised by the third: use the gram­mar to pro­duce a sequence of notes in a wide range to deter­mine an approx­i­mate pitch of "sa4" until the small range for the pitch­bend (± 200 cents) is reached. Then play sequences with pitch­bend val­ues in increas­ing accu­ra­cy until no dis­crim­i­na­tion is possible.

In a real exer­cise it would be safe to check the mea­sure­ment of "sa4" against occur­rences in sev­er­al parts of the recording.

This approach is too demand­ing in terms of accu­ra­cy for the analy­sis of a vocal per­for­mance, but it will be notice­able when work­ing with a long-stringed instru­ment such as the rudra veena. We will demon­strate this with Asad Ali Kan's per­for­mance.

Matching phrases of the performance

We are now ready to check whether note sequences pro­duced by the mod­el would match sim­i­lar sequences in the recording.

👉  The fol­low­ing demo uses the BP3's inter­face to Csound, which until recent­ly was the only way to cre­ate micro­ton­al inter­vals. The same can now be done using MIDI micro­tonal­i­ty, both in real time and with MIDI files. It is pos­si­ble to cap­ture MIDI mes­sages from a key­board and send them to a MIDI device with cor­rec­tions made by a micro­ton­al scale. In this way, there is no need for the cre­ation of gram­mars for these tests.

First we try a sequence with the empha­sis on "rek". The fol­low­ing sequence of notes is pro­duced by the grammar:

S --> KishoriAmonkar1
KishoriAmonkar1 --> Scale _ {2, dhak3 sa4 ni3 sa4} {7, rek4} _ {2, dhak3 sa4 ni3 dhak3} {2, dhak3 _ ni3 sa4} {5, rek4}
Scale --> _scale(todi_ka_3,0)

Below is the phrase sung by the musi­cians (posi­tion 0'50") then repeat­ed in super­posed form with the sequence pro­duced by the grammar:

A phrase with empha­sis on "rek" sung by Kishori Amonkar, then repro­duced in super­posed form with the sequence of notes pro­duced by the gram­mar using scale "todi_ka_3"
➡ This is a stereo record­ing. Use head­phones to hear the song and sequence of plucked notes on sep­a­rate channels

In this exam­ple, the scale "todi_ka_3" has been used because of the occur­rence of short instances of "dhak3". The posi­tion of "rek" is iden­ti­cal in the 3d and 4th octaves. The blend­ing of the voice with the plucked instru­ment is notable in the last held note.

In the next sequence (loca­tion 1'36") the posi­tion of "gak4" is esti­mat­ed. The gram­mar is as follows:

S --> KishoriAmonkar2
KishoriAmonkar2 --> Scale {137/100, sa4 rek4 gak4 rek4} {31/10, rek4} {18/10, gak4} {75/100,rek4} {44/10, sa4}
Scale --> _scale(todi_ka_4,0)

A phrase tar­get­ing "gak" repeat­ed in super­im­po­si­tion with the sequence of notes pro­duced by the gram­mar using the scale "todi_ka_4"

This time, the scale "todi_ka_4" was cho­sen, even though it had no effect on the into­na­tion since "dhak" is missing.

A word about build­ing the gram­mar: we looked at the sig­nal of the record­ed phrase and mea­sured the (approx­i­mate) dura­tion of the notes: 1.37s, 3.1s, 1.8s, 7.5s, 4.4s. We then con­vert­ed these dura­tions into inte­ger ratios — frac­tions of the basic tem­po whose peri­od is exact­ly 1 sec­ond, as spec­i­fied in "-se.tryRagas": 137/100, 31/10 etc.

Signal of the pre­vi­ous record­ed phrase

Below is a pianoroll of the sequence pro­duced by the grammar:

Pianoroll of the note sequence pro­duced by the grammar

No we try a phrase with a long pause on "dhak3" (loca­tion 3'34"), which proves that the scale "todi_ka_3" per­fect­ly match­es this occur­rence of "dhak":

S --> KishoriAmonkar3
KishoriAmonkar3 --> scale(todi_ka_3,0) 11/10 {19/20, ma#3 pa3} {66/10,dhak3} {24/10, ni3 dhak3 pa3 }{27/10,dhak3} 12/10 {48/100,dhak3}{17/10,ni3}{49/10,dhak3}

A phrase rest­ing on "dhak3" repeat­ed in super­po­si­tion with the sequence of notes pro­duced by the gram­mar using the scale "todi_ka_3"
Pianoroll of the note sequence pro­duced by the gram­mar with a rest on "dhak3"

Early occur­rence of "ma#4" (loca­tion 11'38"):

S --> KishoriAmonkar4
KishoriAmonkar4 --> _scale(todi_ka_4,0) 4/10 {17/10, ni3}{26/100,sa4}{75/100,rek4}{22/100,gak4}{17/10,ma#4}{16/100,gak4}{34/100,rek4}{56/100,sa4}{12/100,rek4}{84/100,gak4}{27/100,rek4}{12/10,sa4}

Early occur­rence of "ma#4"

Reaching "dhak4" (loca­tion 19'46"):

S --> KishoriAmonkar5
KishoriAmonkar5 --> _scale(todi_ka_4,0) 13/10 {16/10,ma#4}{13/10,gak4}{41/100,ma#4}{72/100,ma#4 dhak4 ma#4 gak4 ma#4}{18/10,dhak4}{63/100,sa4}{90/100,rek4}{30/100,gak4}{60/100,rek4}{25/100,sa4}{3/2,rek4}

Hitting "dhak4"…

With a light touch of "pa4" (loca­tion 23'11"):

S --> KishoriAmonkar6
KishoriAmonkar6 --> _scale(todi_ka_4,0) 28/100 {29/100,ma#4}{40/100,dhak4}{63/100,ni4 sa5 ni4}{122/100,dhak4}{64/100,pa4}{83/100,ma#4}{44/100,pa4}{79/100,dhak4}

A light touch of "pa"

Pitch accu­ra­cy is no sur­prise in Kishori Amonkar's per­for­mances. With a keen aware­ness of "shru­ti-s", she would sit on the stage and pluck her swara man­dal, care­ful­ly tuned for each raga.

A test with the rudra veena

Asad Ali Khan play­ing the rudra veena

Asad Ali Khan (1937-2011) was one of the last per­form­ers of the rudra veena at the end of the 20th cen­tu­ry and a very sup­port­ive par­tic­i­pant in our sci­en­tif­ic research on raga intonation.

➡ An out­stand­ing pre­sen­ta­tion of Asad Ali Khan and his idea of music is avail­able in a film by Renuka George.

Pitch accu­ra­cy on this instru­ment is such that we have been able to iden­ti­fy tiny vari­a­tions that are con­trolled and sig­nif­i­cant in the con­text of the raga. Read for exam­ple Playing with Intonation (Arnold 1985). To mea­sure vibra­tions below the audi­ble range, we occa­sion­al­ly placed a mag­net­ic pick­up near the last string.

Below are the sta­tis­tics of the Melodic Movement Analyser mea­sure­ments of the raga Miyan ki Todi inter­pret­ed by Asad Ali Khan in 1981. The sec­ond col­umn con­tains mea­sure­ments of his tun­ing of the Shruti Harmonium dur­ing an exper­i­ment. The columns on the right show the pre­dict­ed note posi­tions accord­ing to the grama-murchana mod­el with a syn­ton­ic com­ma of ratio 81/80. As shown in Kishori Amonkar's per­for­mance above, "dhak" can take dif­fer­ent val­ues depend­ing on the octave.

NoteAsad Ali Khan
per­form­ing
Asad Ali Khan
tun­ing
todi1todi2todi3todi4
rek99100898989112
gak290294294294294294
ma#593606590590610610
pa702702702702700702
dhak3795794792792792814
dhak2802
ni110511081088110911091109

Again, the best match would be the "todi2" scale with a syn­ton­ic com­ma of 17.5 cents. We cre­at­ed two scales, "todi_aak_2" and "todi_aak_3" for the 2nd and 3rd octaves.

Adjustments of the "todi2" scale for Asad Ali Kan's per­for­mance on the rudra veena. Low octave on the left and mid­dle octave on the right.

The scale con­struct­ed dur­ing the Shruti Harmonium exper­i­ment is less rel­e­vant because of the influ­ence of the exper­i­menter play­ing the scale inter­vals with a low-attracting drone (pro­duced by the machine). In his attempt to resolve the dis­so­nance in the scale — which always con­tained a wolf fifth and sev­er­al Pythagorean major thirds — Khan saheb end­ed up with a tun­ing iden­ti­cal to the ini­tial one, but one com­ma low­er. This was not a musi­cal­ly sig­nif­i­cant situation!

Tuning scheme for "todi_aak_2"

The scale "todi_aak_2" (in the low octave) con­tains inter­est­ing inter­vals (har­mon­ic major thirds) which allows us to antic­i­pate effec­tive melod­ic move­ments. The tun­ing scheme sum­maris­es these relationships.

We now take frag­ments of Asad Ali Khan's per­for­mance of Todi (2005) avail­able on Youtube (fol­low this link).

The per­for­mance begins in the low­er octave, so with the scale "todi_aak_2". The fre­quen­cy of Sa was mea­sured at 564.5 Hz using the method described above.

Let us start with a sim­ple melod­ic phrase repeat­ed twice, the sec­ond time super­im­posed on the note sequence pro­duced by the grammar.

A phrase from the raga Todi by Asad Ali Khan repeat­ed twice, the sec­ond time super­im­posed on the sequence of notes pro­duced by the gram­mar.
➡ This is a stereo record­ing. Use head­phones to hear the song and the sequence of plucked notes on sep­a­rate channels

S --> AsadAliKhan1
AsadAliKhan1 --> _scale(todi_aak_2,0) 45/100 {69/10,sa3} {256/100,dhak2} {78/10,dhak2} {12/10,sa3 ni2 rek3&} {48/10,&rek3} {98/100,sa3 ni2 sa3&} {27/10,&sa3}

This gram­mar con­tains an unusu­al char­ac­ter '&', which is used to con­cate­nate sound objects (or notes) across the bound­aries of poly­met­ric expres­sions (between curly brack­ets). This makes it pos­si­ble to play the final "rek3" and "sa3" as con­tin­u­ous notes. This con­ti­nu­ity can be seen in the graph below:

The end of the phrase, show­ing "rek3" and "sa3" as con­tin­u­ous notes

It is time to make sure that fine tun­ing and adjust­ing scales are more than just an intel­lec­tu­al exer­cise… After all, the main dif­fer­ence between scales "todi_aak_2" and "todi_aak_3" is that "dhak" is 7 cents high­er in "todi_aak_2", which means a third of a com­ma! To check the effect of the fine-tuning, lis­ten to the over­lay twice, once with "todi_aak_3" and the sec­ond time with "todi_aak_2":

The same "dhak2" with a note made with "todi_aak_3" and the sec­ond time with "todi_aak_2"

To check the dif­fer­ence between these two ver­sions of "dhak2", we can play them one after the oth­er and then super­im­pose them:

S --> _tempo(1/2) _scale(todi_aak_3,0) dhak2 _scale(todi_aak_2,0) dhak2 {_scale(todi_aak_3,0) dhak2, _scale(todi_aak_2,0) dhak2}

The two ver­sions of "dhak2" in sequence then superimposed

With fun­da­men­tal fre­quen­cies of 132.837 Hz and 133.341 Hz, the beat fre­quen­cy (of the sine waves) would be 133.341 - 132.837 = 0.5 Hz. The per­ceived beat fre­quen­cy is high­er because of the inter­fer­ence between the high­er par­tials. This sug­gests that a dif­fer­ence of 7 cents is not irrel­e­vant in the con­text of notes played by a long-stringed instru­ment (Arnold 1985).

More in the low­er octave:

S --> AsadAliKhan2
AsadAliKhan2 --> scale(todi_aak_2,0) _volume(64) _pitchrange(500) _pitchcont 93/100 {81/10,pa2}{38/10,pa2 gak2 pa2 dhak2 pa2 }{19/10,gak2}{43/10, _pitchbend(0) rek2 _pitchbend(-100) rek2&} _volumecont _volume(64) {2, _pitchbend(-100) &rek2} _volume(0) _volume(64) {23/10,ni2__ dhak2}{103/100,sa3&}{4,&sa3} 15/10 _volume(64) {38/10,sa3} _volume(0)

As "sa2" is out­side the range of the Csound instru­ment "Vina", it is played here as "rek2" with a pitch­bend cor­rec­tion of one semitone.

Low octave phrase repeat­ed with attempt­ed super­im­po­si­tion of a note sequence

The ren­der­ing of phras­es in the low­er octave is very approx­i­mate because of the pre­dom­i­nance of meend (pulling the string). Some effects can be bet­ter imi­tat­ed using per­for­mance con­trols — see Sarasvati Vina, for exam­ple — but this requires a mas­tery of the real instru­ment in order to design pat­terns of musi­cal "ges­tures" rather than sequences of sound events… Imitating the melod­ic intri­ca­cy of a raga is not the sub­ject of this page; we are mere­ly check­ing the rel­e­vance of scale mod­els to the "tonal skele­ton" of ragas.

Accidental notes

Raga scales extract­ed from mur­chana-s of the Ma-grama chro­mat­ic scale (see above) con­tain only notes that are pre­sumed to belong to the raga. They can­not accom­mo­date acci­den­tal notes or the scales used in the com­mon prac­tice of mix­ing ragas.

Let us take, for exam­ple, a frag­ment of the pre­vi­ous exam­ple, which was poor­ly rep­re­sent­ed by the sequence of notes pro­duced by the gram­mar. (We learn from our mis­takes!) We might be tempt­ed to replace the expres­sion {38/10, pa2 gak2 pa2 dhak2 _ pa2 _} with {38/10, pa2 ga2 pa2 dhak2 _ pa2 _}, using "ga2" which does not belong to the scale "todi_aak_2". Unfortunately, this results in an error message:

ERROR Pitch class ‘4’ does not exist in _scale(todi_aak_2). No Csound score produced.

This amounts to say­ing that scale "todi2" con­tains no map­ping of key #64 to "ga" — nor key # 65 to "ma", see figure.

To solve this prob­lem we can recall that the scale "todi2" was extract­ed from "Re1_murcchana". The lat­ter con­tains all the notes of a chro­mat­ic scale in addi­tion to those extract­ed. Therefore it is suf­fi­cient to replace "_scale(todi_aak_2,0)" with "_scale(Re1_murcchana,0)" in this section:

_scale(Re1_murcchana,0) {38/10, pa2 ga2 pa2 dhak2 _ pa2 _} _scale(todi_aak_2,0) etc.

The scale edi­tor takes care of assign­ing a key num­ber to each note based on the chro­mat­ic scale if a stan­dard English, Italian/French or Indian note con­ven­tion is used. In oth­er cas­es this map­ping should be done by hand. Designers of micro­ton­al scales should be aware of key map­pings when using cus­tom names for "notes".

Another prob­lem is that in "todi_aak_2" note "dhak" has been raised from 792 to 810 cents, which is not its val­ue in "Re1_murcchana". This can be fixed by cre­at­ing anoth­er vari­ant of the scale with this cor­rec­tion, or sim­ply using the pitch­bend to mod­i­fy "dhak2" — in which case the same pitch­bend could have been used to raise "gak2" in the first place.

Finally, the best way to avoid this prob­lem would be to use the source chro­mat­ic scale "Re1_murcchana", a mur­ccha­na of Ma-grama, to con­struct raga scales even though some notes will nev­er be used.

To conclude…

This whole dis­cus­sion has been tech­ni­cal. There is no musi­cal rel­e­vance in try­ing to asso­ciate plucked notes with very sub­tly orna­ment­ed melod­ic move­ments. The last excerpt (2 rep­e­ti­tions) will prove — if it is need­ed at all — that the into­na­tion of Indian ragas is much more than a sequence of notes in a scale, what­ev­er its accuracy:

S --> AsadAliKhan3
AsadAliKhan3 --> scale(todi_aak_3,0) 94/100 {26/10,sa3}{23/10,sa3 rek3 gak3}{195/100,ma#3}{111/100,rek3}{24/10,rek3 sa3}{33/10,sa3 sa3}{71/100,rek3}{76/100,gak3}{71/100,dhak3 ma#3}{176/100,dhak3}{75/100,sa4}{27/10,dhak3__ sa4}{620/100,sa4 dhak3 ma#3 dhak3 ma#3 gak3 _ ma#3 dhak3 dhak3&}{266/100,&dhak3}{672/100,pa3____ pa3_ pa3 pa3 pa3__}{210/100,pa3 ma#3 pa3 dhak3}{222/100,dhak3}{163/100,gak3 ma#3}{426/100,gak3_ rek3____}{346/100,sa3}

This melod­ic phrase is repeat­ed 2 times to check its super­po­si­tion with the sequence of notes pro­duced by the gram­mar
➡ This is a stereo record­ing. Use head­phones to hear the song and the sequence of plucked notes on sep­a­rate channels

Listen to Asad Ali Khan's actu­al per­for­mance of raga Todi to appre­ci­ate its expres­sive power!

For a more con­vinc­ing demo, instead of Csound, I rec­om­mend using MIDI micro­tonal­i­ty in real time to cap­ture notes played on a key­board and send them to a MIDI device with cor­rec­tions made by the micro­ton­al scale.

Attempting to fol­low the intri­ca­cies of alankara (note treat­ment) with a sim­plis­tic nota­tion of melod­ic phras­es demon­strates the dis­con­nec­tion between 'model-based' exper­i­men­tal musi­col­o­gy and the real­i­ty of musi­cal prac­tice. This explains why we have relied on descrip­tive mod­els (e.g. auto­mat­ic nota­tion) cap­tured by the Melodic Movement Analyser or com­put­er tools such as Praat, rather than attempt­ing to recon­struct melod­ic phras­es from the­o­ret­i­cal mod­els. Experiments with scales deal with the "skele­tal" nature of into­na­tion, which is a nec­es­sary but not suf­fi­cient para­me­ter for describ­ing melod­ic types.

All exam­ples shown on this page are avail­able in the bp3-ctests-main.zip sam­ple set shared on GitHub. Follow the instruc­tions on Bol Processor ‘BP3’ and its PHP inter­face to install BP3 and learn its basic operation.

Bernard Bel — Dec. 2020


References

Arnold, E.J.; Bel, B. L’intonation juste dans la théorie anci­enne de l’Inde : ses appli­ca­tions aux musiques modale et har­monique. Revue de musi­colo­gie, JSTOR, 1985, 71e (1-2), p.11-38.

Arnold, E.J. A Mathematical mod­el of the Shruti-Swara-Grama-Murcchana-Jati System. Journal of the Sangit Natak Akademi, New Delhi 1982.

Arnold, E.J.; Bel, B. A Scientific Study of North Indian Music. NCPA Quarterly Journal, vol. XII Nos. 2 3, Bombay 1983.

Arnold, W.J. Playing with Intonation. ISTAR Newsletter Nr. 3-4, June 1985 p. 60-62.

Bel, B. Musical Acoustics: Beyond Levy's "Intonation of Indian Music". ISTAR Newsletter Nr 2, April 1984.

Bel, B. A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra. Note interne, Groupe Représentation et Traitement des Connaissances (CNRS), March 1988a.

Bel, B. Raga : approches con­ceptuelles et expéri­men­tales. Actes du col­loque "Structures Musicales et Assistance Informatique", Marseille 1988b.

Bel, B.; Bor, J. Intonation of North Indian Classical Music: work­ing with the MMA. National Center for the Performing Arts. Video on Dailymotion, Mumbai 1984.

Bharata. Natya Shastra. There is no cur­rent­ly avail­able English trans­la­tion of the first six chap­ters of Bharata’s Natya Shastra. However, most of the infor­ma­tion required for this inter­pre­ta­tion has been repro­duced and com­ment­ed by Śārṅgadeva in his Sangita Ratnakara (13th cen­tu­ry AD).

Bor, J.; Rao, S.; van der Meer, W.; Harvey, J. The Raga Guide. Nimbus Records & Rotterdam Conservatory of Music, 1999. (Book and CDs)

Bose, N.D. Melodic Types of Hindustan. Bombay, 1960: Jaico.

Hirst, D. Speech Prosody - Chapter 8. Modelling Speech Melody. Preprint, 2022.

Rao, S.; Van der Meer, W. The Construction, Reconstruction, and Deconstruction of Shruti. Hindustani music: thir­teenth to twen­ti­eth cen­turies (J. Bor). New Delhi, 2010: Manohar.

Shringy, R.K.; Sharma, P.L. Sangita Ratnakara of Sarngadeva: text and trans­la­tion, vol. 1, 5: 7-9. Banaras, 1978: Motilal Banarsidass. Source in the Web Archive.

Van der Meer, W.; Rao, S. Microtonality in Indian Music: Myth or Reality. Gwalior, 2009: FRSM.

Van der Meer, W. Gandhara in Darbari Kanada, The Mother of All Shrutis. Pre-print, 2019.

Van der Meer, W.; Rao, S. MUSIC IN MOTION. The Automated Transcription for Indian Music (AUTRIM) Project by NCPA and UvA, 2010.

Van der Meer, W. The AUTRIM Project, Music in Motion, 2020.

Initial feedback

This project began in 1980 with the found­ing of the International Society for Traditional Arts Research (ISTAR) in New Delhi, India. We had pro­duced joint arti­cles and pro­pos­als which enabled us (Arnold and Bel) to receive a grant from the International Fund for the Promotion of Culture (UNESCO). A book­let of ISTAR projects was then print­ed in Delhi, and a larg­er team received sup­port from the Sangeet Research Academy (SRA, Calcutta/Kolkata), the Ford Foundation (USA) and lat­er the National Centre for the Performing Arts (NCPA, Bombay/Mumbai).

The fol­low­ing are extracts from let­ters of sup­port received dur­ing this ini­tial peri­od — after the con­struc­tion of the Shruti Harmonium and dur­ing the design of the Melodic Movement Analyser. (ISTAR book­let, 1981 pages 20-22)

In fact, the full poten­tial of this approach can only be realised now, tak­ing advan­tage of the (vir­tu­al­ly unlim­it­ed) dig­i­tal devices that are replac­ing the hard­ware we cre­at­ed for this pur­pose 40 years ago!


The work of Mr. Arnold and Mr. Bel, as much from the the­o­ret­i­cal point of view as from the point of view of the prac­ti­cal real­iza­tion, appears to be one of the best of these last years, as con­cerns the musi­cal analy­sis of the clas­si­cal music of India…
Iégor REZNIKOFF, Director, UER of Philosophy, History of Art and Archeology, Mathematics, University of Paris X - Nanterre.

I con­sid­er that this work presents the great­est inter­est and is capa­ble of con­sid­er­ably advanc­ing the under­stand­ing of the prob­lem of the use of micro-intervals in the music of India, and more gen­er­al­ly, that of the inter­vals found in dif­fer­ent modal musics.
Gilbert ROUGET, Director of Research at CNRS, in charge of the Department of Ethnomusicology at the Musée de l'Homme, Paris.

The ideas and con­cep­tions of Mr. Arnold and Mr. Bel seem tome to have the utmost inter­est musi­cal­ly because they rest not just on pure the­o­ries; but on a pro­found under­stand­ing of melod­ic and modal music, etc. The project which Mr. Bel pre­sent­ed to me could bring about a real­iza­tion much more inter­est­ing and effec­tive than that of the var­i­ous "mel­o­graphs" which have been pro­posed…
Émile LEIPP, Director of Research at the CNRS, Director of Laboratoire d'Acoustique, University of Paris VI.

The project enti­tled "A Scientific study of the modal music of North India" under­tak­en by E. James Arnold and Bernard Bel is very inter­est­ing and full of rich poten­tials. This col­lab­o­ra­tion of math­e­mat­ics and phys­i­cal sci­ences as well as engi­neer­ing sci­ences on the one hand, and Indology and Indian lan­guages, musi­col­o­gy, as well as applied music on the oth­er hand can be rea­son­ably expect­ed to yield fas­ci­nat­ing results.
— Dr. Prem Lata SHARMA, Head of the Department of Musicology and Dean of the Faculty of Performing Arts, Banaras Hindu University.

Mr. Arnold's work on the log­ic of the grama-murcchana sys­tem and its 'appli­ca­tions' to cur­rent Indian music is a most stim­u­lat­ing and orig­i­nal piece of inves­ti­ga­tion. Mr. Arnold's research and he and his part­ner (Mr. Bel)'s work have immense impli­ca­tions for music the­o­ry and great val­ue for the­o­ret­i­cal study of Indian music.
Bonnie C. WADE, Associate Professor of Music, University of California

Looking for­ward into the future, it (the Shruti har­mo­ni­um) opens up a new field to com­posers who wish to escape from the tra­di­tion­al frame­work in which they are trapped, by virtue of the mul­ti­plic­i­ty of its pos­si­bil­i­ties for var­i­ous scales, giv­ing hence a new mate­r­i­al.
Ginette KELLER, Grand Prize of Rome, Professor of Musical Analysis and Musical Aesthetics, ENMP and CNSM, Paris.

I was aston­ished to lis­ten to the "shrutis" (micro­tones) pro­duced by this har­mo­ni­um which they played accord­ing to my sug­ges­tion, and I found the 'gand­hars', 'dhai­vats', 'rikhabs' and 'nikhads' (3rds, 6ths, 2nds and 7ths) of ragas Darbari Kanada, Todi, Ramkali and Shankara to be very cor­rect­ly pro­duced exact­ly as they could be pro­duced on my vio­lin.
Prof. V.G. JOG, Violinist, recip­i­ent of the Sangeet Natak Akademi Award.

Once again, bra­vo for your work. When you have a pre­cise idea about the cost of your ana­lyz­er, please let me know. I shall be able to pro­pose it to research insti­tu­tions in Asian coun­tries, and our own research insti­tu­tion, pro­vid­ed that it can afford it, might also acquire such an ana­lyz­er for our own work.
Dr. Tran Van KHE, Director of Research, CNRS, Paris.

The equip­ment which Mr. E.J. Arnold and B. Bel pro­pose to con­struct in the sec­ond stage of the research which they have explained to me seems to be of very great inter­est for the elu­ci­da­tion of the prob­lems con­cern­ing scales, and into­na­tion, as much from the point of view of their artis­tic and musi­co­log­i­cal use, as from the the­o­ry of acoustics.
— Iannis XENAKIS, Composer, Paris.

Musicology

Microtonality
On elec­tron­ic instru­ments such as the Bol Processor, micro­tonal­i­ty is the mat­ter of "micro­ton­al tun­ing", here mean­ing the con­struc­tion of musi­cal scales out­side the con­ven­tion­al one(s) …
Just intonation: a general framework
A frame­work for con­struct­ing scales (tun­ing sys­tems) refer­ring to just into­na­tion in both clas­si­cal Indian and Western approach­es …
The two-vina experiment
A com­pre­hen­sive inter­pre­ta­tion of the exper­i­ment of the two vinas described in Chapter XXVIII.24 of the Natya Shastra …
Melodic types of Hindustan
A scan of Bose, N.D. Melodic Types of Hindustan. Jaico, Bombay 1960 …
A Mathematical Model of the Shruti-Swara-Grama-Murcchana-Jati System
A scan of Arnold, E.J. A Mathematical mod­el of the Shruti-Swara-Grama-Murcchana-Jati System …
A Mathematical Discussion of the Ancient Theory of Scales according to Natyashastra
Bernard Bel Note interne, Groupe Représentation et Traitement des Connaissances (CNRS), Marseille 1988. Download this paper
Raga intonation
This arti­cle demon­strates the the­o­ret­i­cal and prac­ti­cal con­struc­tion of micro­ton­al scales for the into­na­tion of North Indian ragas …
Creation of just-intonation scales
The pro­ce­dure for export­ing just-intonation scales from murcchana-s of Ma-grama …
A multicultural model of consonance
A frame­work for tun­ing just-intonation scales via two series of fifths
Image cre­at­ed by Bol Processor based on a mod­el by …
Comparing temperaments
Images of tem­pered scales cre­at­ed by the Bol Processor The fol­low­ing are Bol Processor + Csound inter­pre­ta­tions of J.-S. Bach's …
Polymetric structures
Polymetric expres­sions are the basic rep­re­sen­ta­tion mod­el for the tim­ing of musi­cal data in the Bol Processor …
Rationalizing musical time: syntactic and symbolic-numeric approaches
Symbolic-numerical approach­es lead to effi­cient and ele­gant solu­tions of con­straint sat­is­fac­tion prob­lems with respect to sym­bol­ic and phys­i­cal dura­tions, …
At the heart of Indian rhythms and their evolution
An inter­view with James Kippen by Antoine Bourgeau …
Au cœur des rythmes indiens
Entretien avec James Kippen, par Antoine Bourgeau …
Bach well-tempered tonal analysis
Tonal analy­sis of the com­plete set of pre­ludes and fugues by J.S. Bach in "The Well-tempered Clavier" …
The Well-tempered Clavier
The com­plete set of pre­ludes and fugues by J.S. Bach known as The Well-tempered Clavier, books II and II, inter­pret­ed with pre­sum­ably "opti­mal" tun­ing schemes …
Time-setting of sound-objects
This paper deals with the sched­ul­ing of “sound-objects”, here­by mean­ing pre­de­fined sequences of ele­men­tary tasks in a sound proces­sor, with each task mapped to a time-point …
Pattern grammars
Bol Processor gram­mars are char­ac­ter­i­sa­tions of sequen­tial events in terms of sub­string rep­e­ti­tions, homo­mor­phisms, etc. Parsing tech­niques, sto­chas­tic pro­duc­tion and recent devel­op­ments of BP gram­mars are briefly described …
Modelling music with grammars
A lin­guis­tic mod­el of tabla impro­vi­sa­tion and eval­u­a­tion derived from pat­tern lan­guages and for­mal gram­mars has been imple­ment­ed in the Bol Processor, a soft­ware sys­tem used in inter­ac­tive field­work with expert musi­cians …

The two-vina experiment

    

The first six chap­ters of Natya Shastra, a Sanskrit trea­tise on music, dance and dra­ma dat­ing from between 400 BCE and 200 CE, con­tain the premis­es of a scale the­o­ry that has long attract­ed the atten­tion of schol­ars in India and the West. Early inter­pre­ta­tions by Western musi­col­o­gists fol­lowed the "dis­cov­ery" of the text in 1794 by the philol­o­gist William Jones. Hermann Helmholtz’s the­o­ry of "nat­ur­al con­so­nance" gave way to many com­par­a­tive spec­u­la­tions based on phe­nom­e­na that Indian authors had ear­li­er observed as inher­ent in the "self-production" (svayamb­hū) of musi­cal notes (Iyengar 2017 p. 8).

Suvarnalata Rao and Wim van der Meer (2009) pub­lished a detailed account of attempts to elu­ci­date the ancient the­o­ry of musi­cal scales in the musi­co­log­i­cal lit­er­a­ture, return­ing to the notions of ṣru­ti and swara which have changed over time up to present-day musi­cal practice.

Accurate set­tings of Bel's Shruti Harmonium (1980)

In the sec­ond half of the 20th cen­tu­ry, exper­i­men­tal work with fre­quen­cy meters led to con­tra­dic­to­ry con­clu­sions from the analy­sis of small sam­ples of musi­cal per­for­mances. It was only after 1981 that sys­tem­at­ic exper­i­ments were car­ried out in India by the ISTAR team (E.J. Arnold, B. Bel, J. Bor and W. van der Meer) with an elec­tron­i­cal­ly pro­gram­ma­ble har­mo­ni­um (the Shruti Harmonium) and lat­er with a "micro­scope" for melod­ic music, the Melodic Movement Analyser (MMA) (Arnold & Bel 1983, Bel & Bor I985), which fed pre­cise pitch data into a com­put­er to process hours of music select­ed from his­tor­i­cal recordings.

After sev­er­al years of exper­i­men­tal work, it had become clear that although the into­na­tion of Indian clas­si­cal music is far from being a ran­dom process, it would be dan­ger­ous to judge an inter­pre­ta­tion of the ancient scale the­o­ry on the basis of today's musi­cal data. There are at least three rea­sons for this:

  1. There are an infi­nite num­ber of valid inter­pre­ta­tions of the ancient the­o­ry, as we will show.
  2. The con­cept of raga, the basic prin­ci­ple of Indian clas­si­cal music, first appeared in lit­er­a­ture around 900 CE in Matanga's Brihaddeshi and under­went grad­ual devel­op­ment until the 13th cen­tu­ry, when Sharangadeva list­ed 264 ragas in his Sangitratnakara.
  3. Drones were (prob­a­bly) not in use at the time of Natya Shastra; the influ­ence of the drone on into­na­tion is con­sid­er­able, if not dom­i­nant, in con­tem­po­rary music performance.

The ancient Indian the­o­ry of scales remains use­ful for its insight into ear­ly melod­ic clas­si­fi­ca­tion (the jāti sys­tem), which may lat­er have giv­en rise to the raga sys­tem. It is there­fore best thought of as a topo­log­i­cal descrip­tion of tonal struc­tures. Read Raga Intonation for a more detailed account of the­o­ret­i­cal and prac­ti­cal issues.

The sub­ject of this page is an inter­pre­ta­tion of the exper­i­ment of the two vinas described in Chapter XXVIII.24 of the Natya Shastra. An analy­sis of the under­ly­ing mod­el has been pub­lished in A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra (Bel 1988) which the fol­low­ing pre­sen­ta­tion will make more comprehensive.

The historical context

Bharata Muni, the author(s) of the Natya Shastra, may have heard of the the­o­ries of musi­cal scales attrib­uted to the "ancient Greeks". At any rate, Indian schol­ars were able to bor­row these mod­els and extend them con­sid­er­ably because of their real knowl­edge of arithmetic.

Readers of C.K. Raju — espe­cial­ly his excel­lent Cultural Foundations of Mathematics (2007) — know that Indian mathematicians/philosophers are not only famous for invent­ing posi­tion­al nota­tion which took six cen­turies to be adopt­ed in Europe… They also laid out the foun­da­tions of cal­cu­lus and infin­i­tes­i­mals, which were lat­er export­ed to Europe by Jesuit priests from Kerala and borrowed/appropriated by European schol­ars (Raju 2007 pages 321-373).

The cal­cu­lus first devel­oped in India as a sophis­ti­cat­ed tech­nique to cal­cu­late pre­cise trigono­met­ric val­ues need­ed for astro­nom­i­cal mod­els. These val­ues were pre­cise to the 9th place after the dec­i­mal point; this pre­ci­sion was need­ed for the cal­en­dar, crit­i­cal to monsoon-driven Indian agri­cul­ture […]. This cal­cu­la­tion involved infi­nite series which were summed using a sophis­ti­cat­ed phi­los­o­phy of ratios of inex­pressed num­bers [today called ratio­nal functions…].

Europeans, how­ev­er, were prim­i­tive and back­ward in arith­meti­cal cal­cu­la­tions […] and bare­ly able to do finite sums. The dec­i­mal sys­tem had been intro­duced in Europe by Simon Stevin only at the end of the 16th c., while it was in use in India since Vedic times, thou­sands of years earlier.

C. K. Raju (2013 p. 161- 162)

This may be cit­ed in con­trast with the state­ments of west­ern his­to­ri­ans, among which:

The his­to­ry of math­e­mat­ics can­not with cer­tain­ty be traced back to any school or peri­od before that of the Greeks […] though all ear­ly races knew some­thing of numer­a­tion […] and though the major­i­ty were also acquaint­ed with the ele­ments of land-surveying, yet the rules which they pos­sessed […] were nei­ther deduced from nor did they form part of any science.

W. W. Rouse Ball, A Short Account of the History of Mathematics. Dover, New York, 1960, p. 1–2.

So, it may seem para­dox­i­cal, giv­en such an intel­lec­tu­al bag­gage, to write an entire chap­ter on musi­cal scales with­out a sin­gle num­ber! In A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra I showed a min­i­mal rea­son: Bharata's descrip­tion leads to an infi­nite set of solu­tions that should be for­malised with alge­bra rather than a set of numbers.

The experiment

The author(s) of Natya Shastra invite(s) the read­er to take two vina-s (plucked stringed instru­ments) and tune them on the same scale.

A word of cau­tion to clar­i­fy the con­text: this chap­ter of Natya Shastra can be read as a thought exper­i­ment rather than a process involv­ing phys­i­cal objects. There is no cer­tain­ty that these two vina-s ever exist­ed — and even that "Bharata Muni", the author/experimenter, was a unique per­son. His/their approach is one of val­i­da­tion (pramāņa) by empir­i­cal evi­dence, in oth­er words dri­ven by the phys­i­cal­ly man­i­fest (pratyakşa) rather than inferred from "axioms" con­sti­tu­tive of a the­o­ret­i­cal mod­el. This can be summed up as a "pref­er­ence for physics over metaphysics".

Constructing and manip­u­lat­ing vina-s in the man­ner indi­cat­ed by the exper­i­menter appears to be an insur­mount­able tech­no­log­i­cal chal­lenge. This has been dis­cussed by a num­ber of authors — see Iyengar (2017 pages 7-sq.) Leaving aside the pos­si­bil­i­ty of prac­ti­cal real­i­sa­tion is not a denial of phys­i­cal real­i­ty, as for­mal math­e­mat­ics would sys­tem­at­i­cal­ly dic­tate. Calling it a "thought exper­i­ment" is a way of assert­ing the con­nec­tion with the phys­i­cal mod­el. Similarly, the use of cir­cu­lar graphs to rep­re­sent tun­ing schemes and alge­bra to describe rela­tion­ships between inter­vals are aids to under­stand­ing that do not reduce the mod­el to spe­cif­ic, ide­al­is­tic inter­pre­ta­tions sim­i­lar to the spec­u­la­tions about inte­gers cher­ished by Western sci­en­tists. These graphs are intend­ed to facil­i­tate the com­pu­ta­tion­al design of instru­ments that mod­el these imag­ined instru­ments — see Raga into­na­tion and Just into­na­tion, a gen­er­al frame­work.

Let us fol­low Bharata's instruc­tions and tune both instru­ments to a scale called "Sa-grama" about which the author explains:

The sev­en notes [svaras] are: Şaḍja [Sa], Ṛşbha [Ri], Gāndhāra [Ga], Madhyama [Ma], Pañcama [Pa], Dhaivata [Dha], and Nişāda [Ni].

It is tempt­ing to iden­ti­fy this scale as the con­ven­tion­al west­ern seven-degree scale do, re, mi, fa, sol, la, si ("C", "D", "E", "F", "A", "B"), which some schol­ars have done despite the erro­neous inter­pre­ta­tion of the intervals.

Intervals are notat­ed in shru­ti-s, which can be thought of as an order­ing device rather than a unit of mea­sure­ment. Experiment will con­firm that a four-shru­ti inter­val is greater than a three-shru­ti, a three-shru­ti greater than a two-shru­ti and the lat­ter greater than a sin­gle shru­ti. In dif­fer­ent con­texts, the word "shru­ti" refers to note posi­tions rather than inter­vals between notes. This ambi­gu­i­ty is also a source of confusion.

The author writes:

Śrutis in the Şaḍja Grāma are shown as fol­lows: three [in Ri], two [in Ga], four [in Ma], four [in Pa], three [in Dha], two [in Ni], and four [in Sa].

Bharata uses 9-shru­ti (con­so­nant) inter­vals: "Sa-Pa", "Sa-Ma", "Ma-Ni", "Ni-Ga" and "Re-Dha". He also defines anoth­er scale called "Ma-grama" in which "Pa" is one shru­ti low­er than "Pa" in the Sa-grama, so that "Sa-Pa" is no longer con­so­nant where­as "Re-Pa" is con­so­nant because it is made up of 9 shru­ti-s.

Intervals of 9 or 13 shru­ti-s are declared "con­so­nant" (sam­va­di). Ignoring the octave, the best con­so­nance in a musi­cal scale is the per­fect fifth with a fre­quen­cy ratio close to 3/2. When tun­ing stringed instru­ments, a ratio oth­er than 3/2 will pro­duce beats indi­cat­ing that a string is out of tune.

Sa-grama and Ma-grama accord­ing to Natya Shastra. Red and green seg­ments indi­cate the two chains of per­fect fifths. Underlined note names denote 'flat' positions.

If the fre­quen­cy ratios are expressed log­a­rith­mi­cal­ly with 1200 cents rep­re­sent­ing an octave, and fur­ther con­vert­ed to angles with a full octave on a cir­cle, the descrip­tion of the Sa-grama and Ma-grama scales can be sum­marised on a cir­cu­lar dia­gram (see figure).

Two cycles of fifths are high­light­ed in red and green col­ors. Note that both the "Sa-Ma" and "Ma-Ni" inter­vals are per­fect fifths, which dis­cards the asso­ci­a­tion of Sa-grama with the con­ven­tion­al west­ern scale: the "Ni" should be mapped to "B flat", not to "B". Furthermore, the per­fect fifth "Ni-Ga" implies that "Ga" is also "E flat" rather than "E". The Sa-grama and Ma-grama scales are there­fore "D modes". This is why "Ga" and "Ni" are under­lined in the diagrams.

Authors eager to iden­ti­fy Sa-grama and Ma-grama as a west­ern scale have claimed that when the text says that there are "3 shruti-s in Re" it should be under­stood as between Re and Ga. However, this inter­pre­ta­tion is incon­sis­tent with the sec­ond low­er­ing of the mov­able vina (see below).

We must avoid jump­ing to con­clu­sions about the inter­vals in these scales. The two cycles of fifths are unre­lat­ed, except that the "dis­tance" between the "Pa" of Ma-grama and that of Sa-grama is "one shru­ti":

The dif­fer­ence which occurs in Pañcama when it is raised or low­ered by a Śruti and when con­se­quen­tial slack­ness or tense­ness [of strings] occurs, will indi­cate a typ­i­cal (pramāņa) Śruti. (XXVIII, 24)

In oth­er words, the size of this pramāņa ṣru­ti is not spec­i­fied. It would there­fore be mis­lead­ing to pos­tu­late its equiv­a­lence to the syn­ton­ic com­ma (fre­quen­cy ratio 81/80). To do so reduces Bharata's mod­el to "just into­na­tion", indeed with inter­est­ing prop­er­ties in its appli­ca­tion to west­ern har­mo­ny (see page), but with a ques­tion­able rel­e­vance to the prac­tice of Indian music. As stat­ed by Arnold (1983 p. 39):

The real phe­nom­e­non of into­na­tion in Hindustani Classical Music as prac­tised is much more amor­phous and untidy than any geom­e­try of course, as recent empir­i­cal stud­ies by Levy (1982), and Arnold and Bel (1983) show.

The des­ig­na­tion of the small­est inter­val as "pramāņa ṣru­ti" is of great epis­temic impor­tance and deserves a brief expla­na­tion. The seman­tics of "slack­ness or ten­sion" clear­ly belong to "pratyakṣa pramāṇa", the means of acquir­ing knowl­edge through per­cep­tu­al expe­ri­ence. More pre­cise­ly, "pramāṇa" (प्रमाण) refers to "valid per­cep­tion, mea­sure and struc­ture" (Wisdom Library), a notion of evi­dence shared by all tra­di­tion­al Indian schools of phi­los­o­phy (Raju 2007 page 63). We will return to this notion in the conclusion.

An equiv­a­lent way of con­nect­ing the two cycles of fifths would be to define a 7-shru­ti inter­val, for exam­ple "Ni-Re". If the pramāņa ṣru­ti were a syn­ton­ic com­ma then this inter­val would be a har­mon­ic major third with a ratioof 5/4. As men­tioned in Just into­na­tion, a gen­er­al frame­work, the inven­tion of the major third as a con­so­nant inter­val dates back to the ear­ly 16th cen­tu­ry in Europe. In Natya Shastra this 7-shru­ti inter­val was clas­si­fied as "asso­nant" (anu­va­di).

In all writ­ings refer­ring to the ancient Indian the­o­ry of scales, I have occa­sion­al­ly used "pramāņa ṣru­ti" and "syn­ton­ic com­ma" as equiv­a­lent terms. This is accept­able if one accepts that the syn­ton­ic com­ma can take val­ues oth­er than 81/80. Consequently, the "har­mon­ic major third" should not auto­mat­i­cal­ly be assigned a fre­quen­cy ratio of 5/4.

The pic­ture above shows the two vina-s tuned iden­ti­cal­ly on Sa-grama. Matching notes are marked with yel­low dots. The inner part of the blue cir­cle will be the mov­ing vina in the fol­low­ing trans­po­si­tions, and the out­er part the fixed vina.

First lowering

Bharata writes:

The two Vīņās with beams (danḍa) and strings of sim­i­lar mea­sure, and with sim­i­lar adjust­ment of the lat­ter in the Şaḍja Grāma should be made [ready]. [Then] one of these should be tuned in the Madhyama Grāma by low­er­ing Pañcama [by one Śruti]. The same (Vīņā) by adding one Śruti (lit. due to the adding of one Śruti) to Pañcama will be tuned in the Şaḍja Grāma.

In short, this is a pro­ce­dure for low­er­ing all the notes of the mov­able vina by one pramāņa ṣru­ti. First low­er its "Pa" — e.g. make it con­so­nant with the "Re" of the fixed vina — to obtain Ma-grama on the mov­able vina. Then read­just its entire scale to obtain Sa-grama. Note that low­er­ing "Re" and "Dha" means revalu­ing the size of a pramāņa ṣru­ti while main­tain­ing the 'Re-Dha' con­so­nant inter­val. The result is as follows:

The two vinas after a low­er­ing of pramāņa ṣru­ti

The pic­ture illus­trates the fact that there is no longer a match between the two vina-s.

Interpreting shruti-s as vari­ables in some metrics

This sit­u­a­tion can be trans­lat­ed into alge­bra. Let "a", "b", "c" … "v" be the unknown sizes of the shru­ti-s in the scale (see pic­ture on the side). A met­ric that "trans­lates" Bharata's mod­el will be nec­es­sary to test it on sound struc­tures pro­duced by an elec­tron­ic instru­ment — the com­put­er. The scope of this trans­la­tion remains valid as long as no addi­tion­al asser­tion is made that is not root­ed in the orig­i­nal model.

Using the sym­bol "#>" to indi­cate that two notes do not match, this first low­er­ing can be sum­marised by the fol­low­ing set of inequalities:

s + t + u + v > m 
a + b + c > m 
d + e > m 
f + g + h + i > m 
n + o + p > m 
q + r > m 
Sa #> Ni
Re #> Sa
Ga #> Re
Ma #> Ga
Dha #> Pa
Ni #> Dha

Second lowering

The next step is anoth­er low­er­ing by one shru­ti using a dif­fer­ent procedure.

Again due to the decrease of a Śruti in anoth­er [Vīņā], Gāndhāra and Nişāda will merge with Dhaivata and Ṛşbha respec­tive­ly, when there is an inter­val of two Śrutis between them.

Note that it is no longer pos­si­ble to rely on a low­ered "Pa" to eval­u­ate a pramāņa ṣru­ti for the low­er­ing. The instruc­tion is to low­er the tun­ing of the mov­able vina until either "Re" and "Ga" or "Dha" and "Ni" merge, which is claimed to be the same because of the final low­er­ing of two shru­ti-s (from the ini­tial state):

The two vina-s after the sec­ond low­er­ing (2 shru­ti-s)

Now we have an equa­tion which tells us that the two-shru­ti inter­vals are equal in size:

q + r = d + e

and five more inequa­tions indi­cat­ing the non-matching of oth­er notes:

f + g + h + i > d + e
a + b + c > d + e
s + t + u + v > d + e
n + o + p > d + e
j + k + l + m > d + e
Ma #> Ga
Re #> Sa
Sa #> Ni
Dha #> Pa
Pa #> Ma

We should bear in mind that the author is describ­ing a phys­i­cal process, not an abstract "move­ment" by which the mov­ing wheel (or vina) would "jump" in space from its ini­tial to final posi­tion. Therefore, we pay atten­tion to what hap­pens and what does not hap­pen dur­ing the tun­ing of the vina or the rota­tion of the wheel by look­ing at the tra­jec­to­ries of the dots rep­re­sent­ing the note posi­tions (along the blue cir­cle). Things that do not hap­pen (mis­matched notes) give rise to inequa­tions that are nec­es­sary to make sense of the alge­bra­ic model.

This step of the exper­i­ment con­firms that it is wrong to place Sa in the posi­tion of Ni in order to iden­ti­fy Sa-grama with the Western scale. In this case the cor­re­spond­ing notes would not be Re-Ga and Dha-Ni, but Ga-Ma and Ni-Sa.

Third lowering

Bharata writes:

Again due to the decrease of a Śruti in anoth­er [Vīņā], Ṛşbha and Dhaivata will merge with Şaḍja and Pañcama respec­tive­ly, when there is an inter­val of three Śrutis between them.

The two vinas after the third low­er­ing (3 shruti-s)

This leads to equation

n + o + p = a + b + c

and inequa­tions:

s + t + u + v > a + b + c
f + g + h + i > a + b + c
j + k + l + m > a + b + c
Sa #> Ni
Ma #> Ga
Pa #> Ma

Fourth lowering

The pro­ce­dure:

Similarly the same [one] Śruti being again decreased, Pañcama, Madhyama and Şaḍja will merge with Madhyama, Gāndhāra and Nişāda respec­tive­ly when there is an inter­val of four Śrutis between them.

The two vinas after the fourth low­er­ing (4 shruti-s)

This yields 2 equations:

j + k + l + m = f + g + h + i
s + t + u + v = f + g + h + i

Algebraic interpretation

After elim­i­nat­ing redun­dant equa­tions and inequa­tions, the con­straints are sum­marised as follows:

(S1) d + e > m
(S2) a + b + c > d + e
(S3) f + g + h + i > a + b + c
(S4) j + k + l + m = f + g + h + i
(S5) s + t + u + v = f + g + h + i
(S6) n + o + p = a + b + c
(S7) q + r = d + e

The three inequa­tions illus­trate the fact that the num­bers of shru­ti-s denote an order­ing of the sizes of the inter­vals between notes.

We still have 22 vari­ables and only 4 equa­tions. These vari­ables can be "packed" into a set of 8 vari­ables rep­re­sent­ing the "macro-intervals", i.e. the steps of the gra­ma-s. In this approach the shru­ti-s are a kind of "sub­atom­ic" par­ti­cles of which these "macro-intervals" are made… Now we need only 4 aux­il­iary equa­tions to deter­mine the scale. These can be pro­vid­ed by acoustic infor­ma­tion where the inter­vals are count­ed in cents. First we express that the sum of the vari­ables, the octave, is equal to 1200 cents. (A larg­er val­ue, e.g. 1204, could be used to devise extend­ed octaves).

(S8) (a + b + c) + (d + e) + (f + g + h + i) + (j + k + l) + m + (n + o + p) + (q + r) + (s + t + u + v) = 1200

Then we inter­pret all sam­va­di ratios as per­fect fifths (ratio 3/2 = 701.9 cents):

(S9) (a + b + c) + (d + e) + (f + g + h + i) + (j + k + l) + m = 701.9 (Sa-Pa)
(S10) (j + k + l) + m + (n + o + p) + (q + r) + (s + t + u + v) = 701.9 (Ma-Sa)
(S11) (d + e) + (f + g + h + i) + (j + k + l) + m + (n + o + p) = 701.9 (Re-Dha)
(S12) (f + g + h + i) + (j + k + l) + m + (n + o + p) + (q + r) = 701.9 (Ga-Ni)

includ­ing the "Re-Pa" per­fect fifth in Ma-grama:

(S13) m + (n + o + p) + (q + r) + (s + t + u + v) + (a + b + c) = 701.9

S10, S11 and S12 can all be derived from S9. So these equa­tions can be dis­card­ed. We still need one more equa­tion to solve the sys­tem. At this stage there are many options in terms of tun­ing pro­ce­dures. As sug­gest­ed above, set­ting the har­mon­ic major third to the ratio 5/4 (386.3 cents) would pro­vide the miss­ing equa­tion. This is equiv­a­lent to set­ting the vari­able "m" to 21.4 cents (syn­ton­ic com­ma). However, this major third can be any size up to the Pythagorean third (81/64 = 407.8 cents), for which we would get m = 0.

Beyond this range, the two-vina exper­i­ment is no longer valid, but it leaves a large num­ber of pos­si­bil­i­ties, includ­ing the tem­pera­ment of some inter­vals, which musi­cians might spon­ta­neous­ly achieve in par­al­lel melod­ic move­ments. A num­ber of solu­tions are pre­sent­ed in A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra, and some of these have been tried on the Bol Processor to check musi­cal exam­ples for which they might pro­vide ade­quate scales — see Raga into­na­tion.

Extensions of the model

To com­plete his sys­tem of scales, Bharata need­ed to add two new notes to the basic gra­ma-s: antara Gandhara and kakali Nishada. The new "Ga" is defined as "G" raised by 2 shru­ti-s. Similarly, kakali Ni is "N" raised by 2 shru­ti-s.

In order to posi­tion "Ni" and "Ga" cor­rect­ly we must study the behav­iour of the new scale in all trans­po­si­tions (mur­ccha­na-s), includ­ing those begin­ning with "Ga" and "Ni", and derive equa­tions cor­re­spond­ing to an opti­mal con­so­nance of the scale. We end up with 11 equa­tions for only 10 vari­ables, which means that this per­fec­tion can­not be achieved. One con­straint must be released.

One option is to release the con­straints on major thirds, fifths or octaves, result­ing in a form of tem­pera­ment. For exam­ple, stretch­ing the octave by 3.7 cents pro­duces per­fect fifths (701.9 cents) and har­mon­ic major thirds close to equal tem­pera­ment (401 cents) with a com­ma of 0 cents. This tun­ing tech­nique was advo­cat­ed by Serge Cordier (Asselin 2000 p. 23; Wikipedia).

An equal-tempered scale with octave stretched at 1204 cents. (Image cre­at­ed by Bol Processor BP3)

Another option is to get as close as pos­si­ble to "just into­na­tion" with­out chang­ing per­fect fifths and octaves. This is pos­si­ble by allow­ing the com­ma (vari­able "m") to take any val­ue between 0 and 56.8 cents. Limits are imposed by the inequa­tions derived from the two-vina experiment.

These "just sys­tems" are cal­cu­lat­ed as follows:

a + b + c = j + k + l = n + o + p = Maj - C
d + e = h + i = q + r = u + v = L + C
f + g = s + t = Maj - L - C
m = C

where L = 90.25 cents (lim­ma = 256/243), Maj = 203.9 cents (major who­le­tone = 9/8)
and 0 < C < 56.8 (pramāņa ṣru­ti or syn­ton­ic comma)

This leads to the 53-degree scale called "grama" which we use as a frame­work for con­so­nant chro­mat­ic scales suit­able for pure into­na­tion in west­ern har­mo­ny when the syn­ton­ic com­ma is sized 81/80. Read Just into­na­tion, a gen­er­al frame­work:

The "gra­ma" scale used for just into­na­tion, with a syn­ton­ic com­ma of 81/80. Pythagorean cycle of fifths in red, har­mon­ic cycle of fifths in green.

In BP3, the just-intonation frame­work has been extend­ed so that any val­ue of the syn­ton­ic com­ma (or the har­mon­ic major third) can be set on a giv­en scale struc­ture. This fea­ture is demon­strat­ed on the Raga into­na­tion page.

The relevance of circular representations


Circular rep­re­sen­ta­tion of tāl Pañjābi, catuśra­jāti
[16 counts] from a Gujarati text in Devanagari script
(J. Kippen, pers. communication)

It is safe to clas­si­fy the two-vina exper­i­ment as a thought exper­i­ment, since it is unlike­ly that it could be car­ried out with mechan­i­cal instru­ments. Representing it on a cir­cu­lar graph (a mov­able wheel inside a fixed crown) achieves the same goal with­out resort­ing to imag­i­nary devices.

Circular rep­re­sen­ta­tions belong to Indian tra­di­tions of var­i­ous schools, includ­ing the descrip­tion of rhyth­mic cycles (tāl-s) used by drum­mers. These dia­grams are meant to out­line the rich inter­nal struc­ture of musi­cal con­struc­tions that can­not be reduced to "beat count­ing" (Kippen 2020).

For exam­ple, the image on the side was used to describe the ţhekkā (cycle of quasi-onomatopoeic syl­la­bles rep­re­sent­ing the beats of the drum) of tāl Pañjābi which reads as follows:

Unfortunately, ear­ly print­ing tech­nol­o­gy may have made the pub­li­ca­tion and trans­mis­sion of these learn­ing aids difficult.

If Bharata's con­tem­po­raries ever used sim­i­lar cir­cu­lar rep­re­sen­ta­tions to reflect on musi­cal scales, we sus­pect that archae­o­log­i­cal traces might not be prop­er­ly iden­ti­fied, as their draw­ings might be mis­tak­en for yantra-s, astro­log­i­cal charts and the like!

Return to epistemology

Bharata's exper­i­ment is a typ­i­cal exam­ple of the pref­er­ence for facts derived from empir­i­cal obser­va­tion over a pro­claimed uni­ver­sal log­ic aimed at estab­lish­ing "irrefutable proofs".

Empirical proofs are uni­ver­sal, not meta­phys­i­cal proofs; elim­i­nat­ing empir­i­cal proofs is con­trary to all sys­tems of Indian phi­los­o­phy. Thus ele­vat­ing meta­phys­i­cal proofs above empir­i­cal proofs, as for­mal math­e­mat­ics does, is a demand to reject all Indian phi­los­o­phy as infe­ri­or. Curiously, like Indian phi­los­o­phy, present-day sci­ence too uses empir­i­cal means of proof, so this is also a demand to reject sci­ence as infe­ri­or (to Christian metaphysics).

Logic is not uni­ver­sal either as Western philoso­phers have fool­ish­ly main­tained: Buddhist [qua­si truth-functional] and Jain [three-valued] log­ics are dif­fer­ent from those cur­rent­ly used in for­mal math­e­mat­i­cal proof. The the­o­rems of math­e­mat­ics would change if those log­ics were used. So, impos­ing a par­tic­u­lar log­ic is a means of cul­tur­al hege­mo­ny. If log­ic is decid­ed empir­i­cal­ly, that would, of course, kill the phi­los­o­phy of meta­phys­i­cal proof. Further, it may result in quan­tum log­ic, sim­i­lar to Buddhist logic […].

C. K. Raju (2013 p. 182-183)
Yuktibhāşā's proof of the "Pythagorean" the­o­rem.
Source: C. K. Raju (2007 p. 67)

The two-vina exper­i­ment can be com­pared to the (more recent) phys­i­cal proof of the "Pythagorean the­o­rem". This the­o­rem (Casey 1885 p. 43) was known in India and Mesopotamia long before the time of its leg­endary author (Buckert 1972 p. 429, 462). In the Indian text Yuktibhāşā (c. 1530 CE), a fig­ure of a right-angled tri­an­gle with squares on either side and its hypothenuse is drawn on a palm leaf. The fig­ure is then cut and rotat­ed to show that the areas are equal.

Obviously, the proof of the "Pythagorean Theorem" is very easy if you are either (a) allowed to take mea­sure­ments or, equiv­a­lent­ly, (b) allowed to move fig­ures around in space.

C. K. Raju (2013 p. 167)

This process takes place in sev­er­al stages of mov­ing fig­ures, sim­i­lar to the mov­ing scales (or fig­ures rep­re­sent­ing scales) in the two-vina exper­i­ment. The 3 single-shru­ti tone inter­vals can be com­pared to the areas of the 3 squares in Yuktibhāşā. The fol­low­ing com­ment would there­fore apply to Bharata's procedure:

The details of this ratio­nale are not our imme­di­ate con­cern beyond observ­ing that draw­ing a fig­ure, car­ry­ing out mea­sure­ments, cut­ting, and rota­tion are all empir­i­cal pro­ce­dures. Hence, such a demon­stra­tion would today be reject­ed as invalid sole­ly on the ground that it involves empir­i­cal pro­ce­dures that ought not to be any part of math­e­mat­i­cal proof.

C. K. Raju (2007 p. 67)

Bernard Bel — Dec. 2020

References

Arnold, E. J. A Mathematical mod­el of the Shruti-Swara-Grama-Murcchana-Jati System. New Delhi, 1982: Journal of the Sangit Natak Akademi.

Arnold, E.J.; Bel, B. A Scientific Study of North Indian Music. Bombay, 1983: NCPA Quarterly Journal, vol. XII Nos. 2 3.

Asselin, P.-Y. Musique et tem­péra­ment. Paris, 1985, repub­lished in 2000: Jobert. Soon avail­able in English.

Bel, B.; Bor, J. Intonation of North Indian Classical Music: work­ing with the MMA. Video on Dailymotion. Bombay, 1984: National Center for the Performing Arts.

Bel, B.; Bor, J. NCPA/ISTAR Research Collaboration. Bombay, 1985: NCPA Quarterly Journal, vol. XIV, No. 1, p. 45-53.

Bel, B. A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra. Note interne. Marseille, 1988a : Groupe Représentation et Traitement des Connaissances (CNRS).

Bel, B. Raga : approches con­ceptuelles et expéri­men­tales. Actes du col­loque "Structures Musicales et Assistance Informatique". Marseille, 1988b.

Bharata. Natya Shastra. There is no cur­rent­ly avail­able English trans­la­tion of the first six chap­ters of Bharata’s Natya Shastra. However, most of the infor­ma­tion required for this inter­pre­ta­tion has been repro­duced and com­ment­ed by Śārṅgadeva in his Sangita Ratnakara (13th cen­tu­ry CE), trans­lat­ed by Dr R. K. Shringy, vol.I. Banaras 1978: Motilal Banarsidass.

Bose, N. D. Melodic Types of Hindustan. Bombay, 1960: Jaico.

Burkert, W. Lore and Science in Ancient Pythagoreanism. Cambridge MA, 1972: Harvard University Press.

Casey, J. The First Six Books of the Elements of Euclid, and Propositions I.-XXI. of Book VI. London, 1885: Longmans. Free e-book, Project Gutenberg.

Iyengar, R. N. Concept of Probability in Sanskrit Texts on Classical Music. Bangalore, 2017. Invited Talk at ICPR Seminar on “Science & Technology in the Indic Tradition: Critical Perspectives and Current Relevance”, I. I. Sc.

Kippen, J. Rhythmic Thought and Practice in the Indian Subcontinent. In R. Hartenberger & R. McClelland (Eds.), The Cambridge Companion to Rhythm (Cambridge Companions to Music, p. 241-260). Cambridge, 2020: Cambridge University Press. doi:10.1017/9781108631730.020

Levy, M. Intonation in North Indian Music. New Delhi, 1982: Biblia Impex.

Raju, C. K. Euclid and Jesus: How and why the church changed math­e­mat­ics and Christianity across two reli­gious wars. Penang (Malaysia), 2013: Multiversity, Citizens International.

Raju, C. K. Cultural foun­da­tions of math­e­mat­ics : the nature of math­e­mat­i­cal proof and the trans­mis­sion of the cal­cu­lus from India to Europe in the 16th c. CE. Delhi, 2007: Pearson Longman – Project of History of Indian Science, Philosophy and Culture: Centre for Studies in Civilizations.

Rao, S.; Van der Meer, W. The Construction, Reconstruction, and Deconstruction of Shruti. Hindustani music: thir­teenth to twen­ti­eth cen­turies (J. Bor). New Delhi, 2010: Manohar.

Shringy, R.K.; Sharma, P.L. Sangita Ratnakara of Sarngadeva: text and trans­la­tion, vol. 1, 5: 7-9. Banaras, 1978: Motilal Banarsidass. Source in the Web Archive.