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Modelling improvisatory and compositional processes

Abstract

An application of formal languages to the representation of musical processes is introduced.
Initial interest was the structure of improvisation in North Indian fabla drum music, for
which experiments have been conducted in the field as far back as 1983 with an expert system
called the Bol Processor, BP1. The computer was used to generate and analyze drumming
patterns represented as strings of onomatopeic syllables, bols, by manipulating formal
grammars. Material was then submitted to musicians who assessed its accuracy and
increasingly more elaborate and sophisticated rule bases emerged to represent the musical
idiom.

Since several methodological pitfalls were encountered in transferring knowledge from
musician to machine, a new device, named QAVAID, was designed with the capability of
learning from a sample set of improvised variations supplied by a musician. A new version
of Bol Processor, BP2, has been implemented in a MIDI studio environment to serve as a aid
to rule-based composition in contemporary music. Extensions of the syntactic model, such
as substitutions, metavariables, and remote contexts, are briefly introduced.

Keywords

Formal grammars, pattern languages, knowledge acquisition, cognitive anthropology,
ethnomusicology.

Music, like mathematics but unlike language, is not intelligible unless it is
grammatical: its form is its content. As a product of “the unchanging human
mind” and body in the context of different cultures, music reflects both man’s
biological structure and the patterns of interaction that have been institutionalized
as systems of relationships in culture. (John Blacking, [11])

[...] to my mind, any community of musicological practice which excludes from
consideration living musicians and restricts itself to accounts of frozen results of
musical action, fails to be an inspiring community of inquiry about music. (Otto
Laske, [22])

A number of musicologists have attempted to use generative grammars to represent sets of
“acceptable” variations of a musical theme. It must be understood that the relevance and
reliability of assessments for “acceptability” depend dramatically on musical contexts and
individual musicians, so that it is unrealistic to proclaim the existence of a universally
valid “musical grammar”.

Drum improvization in North Indian classical music tends to follow a precise system, the
rules of which are generally not explicit and conveyed informally to students, much like a
natural language [16]. A strong initial motivation of the work presented here has been the
challenge of modelling a knowledge relying exclusively on oral transmission and making
use of a “speech notation” (onomatopeic syllables representing elementary sounds or
finger movements) that could unambiguously be transcribed on a computer. The very
first version of the Bol Processor software (BP1), in 1982, was a customized word-
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processor allowing a real-time transcription of drumming sequences thanks to a mapping
of keyboard strokes to the vocabulary of onomatopeic syllables (bols, from the verb
bolna, to speak) used by musicians for the transmission (and occasionally the
performance) of musical pieces.

Analytical work was then undertaken with players of the tabla, a North Indian two-piece
drum set, with the objectives of (1) making rules explicit for some compositional types,
and (2) checking the consistency of musicians’ assessments of correctness in both
teaching and performance situations.

In this paper we introduce the basic techniques that have been used for encoding musical
pieces and “improvization schemata” called ga ‘ida. It should be kept in mind that the
focus of our project gradually shifted from a strict musicological perspective to an enquiry
on knowledge acquisition techniques (including automatic inductive generalization) and
cognitive aspects of musical expertise in the domain under study. In addition, we are
now paying attention to extensions of grammar models that may be used in computer-
assisted composition.

Several publications have given detailed accounts of this study. We first focussed on
music representation issues that should be carefully studied by musicologists attempting
to adapt our methodology to other musical domains [21]. The syntactic models
underlying both versions of Bol Processor (BP1 and BP2, running on Apple™ Ilc and
Macintosh™ respectively) have been described extensively in [6] and [10]. In [17], [18],
[20], [28], the methodology of data collection using Bol Processor BP1 has been
discussed. Automatic knowledge acquisition using inductive inference techniques (the
QAVAID system) is introduced in [19], while [3] addresses the problem of language
inference from the point of view of automata theory. Applications of BP2 in a “sound-
object” environment are found in [6], [7], [8], and the general concept of “time-object” is
introduced in [9].

In this paper we present a few essential aspects of knowledge representation in Bol
Processor (BP1 and BP2), addressing readers who may already be conversant with
formal language theory and its applications to other artistic disciplines. We support the
idea that models based on generative grammars (and their associated automata) have little
adequacy to descriptions of real world. Each knowledge domain calls for extensions of
the syntactic model, depending on the way data is encoded and how it is used.

1. Music string-encoding and generative grammars

It is assumed that, in some musical systems, elementary musical “objects” may be
transcribed with the aid of a non-empty finite set of symbols Vt, namely the alphabet of
terminal symbols. In this context, a music sequence is represented as a string
belonging to Vt*, the set of all finite strings over Vt. Any properly defined subset of Vt*
is a formal language.
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Consider for example pieces of tabla music transliterated with their onomatopoeic
syllables (bols). A terminal alphabet used in some tabla compositional types is

Vt = {tr, kt, dhee, tee, dha, ta, ti, ge, ke, na, ra, -}

in which the hyphen indicates a silence (or the prolongation of a resonant stroke).
Symbols #r and kt are shorthand for tira and kita.

A system for transliterating tabla strokes to non-ambiguous symbolic representations has
been presented in [16]. Onomatopeic transliteration is a practice commonly encountered
in Indian and African traditional drumming and dance.

Throughout this paper we will refer to Chomsky’s hierarchy of generative grammars
[13]. A generative grammar is an ordered fourtuple (Vt, Vn, S, F) in which Vt is an
alphabet of terminal symbols, Vn an alphabet of variables (with Vt N Vn =), S a
distinguished symbol of Vn, and F a finite set of rewriting rules P —> Q such that P and
Q are strings over the alphabet (Vt U Vn) and P contains at least one symbol from Vn.
We call P and Q the left and right argument of the rule respectively.

We use the notation IXI to designate the length of a string X. The empty string is notated
A. One of many (equivalent) ways of defining the hierarchy of generative grammars is:

Type O (phrase-structure): unrestricted
Type 1 (length-increasing or context-sensitive):
[Pl < IQI except possibly for the rule S —> A
Type 2 (context-free): [Pl =1 and [Pl =< IQI except possibly for the rule S —> A

Type 3 (regular or finite-state): every rule has form either
X—>ayY

or Z —>b, where X, Y, and Z are variables and a and b terminal symbols.

Every type-n grammar generates a formal language of type n', for some n' = n. This
yields a proper hierarchy of language classes (See [25] p.7). For instance, it can be
proved that every finite language is regular, hence context-free, etc., so that it may be
generated by a grammar of any type.

2. Context-free grammars for ga‘idas

The compositional type most fundamental to an understanding of composition and
improvisation in tabla playing is the ga‘ida, the “theme and variations” form par
excellence. Not only do beginners learn ga ‘idas, usually with sets of “fixed variations”
composed by their teachers (thus providing models of the crucial art of improvisation),
but advanced players use them too, particularly in solo performances, to demonstrate their
technical mastery and mental skills. Furthermore, musicians postulate that unless one can
improvise on ga ‘ida themes, one is not adequately equipped to improvise on any of the
other theme and variations forms.
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As a result of some basic observations about the structure of ga‘idas — the regular
alternation of fixed and variable sections, and the predominance of permutation and
substitution as improvisatory devices — it was thought that formal language models
would be suited to the construction of grammatical models.

Fig.1 is an example of variation on a well-known ga ‘ida theme. A theme may itself be
viewed as one particular variation — here the kernel of the theme is represented in the first
line with a variation of it in the second. It should be read from left to right as plain text.
The durations of all syllables (including #r or kt as composites) are identical. Syllables
are grouped into beats, therefore we may say that this piece has a stroke density of four
strokes per beat. Since each line contains four beats, the total metric duration of the piece
is sixteen beats (anything from eight to twelve seconds in performance depending on
interpretation).

dha ti dha ge na dha tr kt dha ti dha ge dhee na ge na
dha tr kt dha ti dha ge na dha ti dha ge tee na ke na
tatitake nata tr kt tatitake tee na ke na
dha tr kt dha ti dha ge na dha ti dha ge dhee na ge na

Fig.1 The theme of a ga‘ida

Some strokes on the tabla have a voiced (resonating) and an unvoiced (dampened)
version. Here, the cadential string “dha ti dha ge dhee na ge na” is repeated at the end of
each line in its voiced as well as partly-voiced (“dha ti dha ge tee na ke na”) and fully-
unvoiced (“ta ti ta ke tee na ke na”) transformations. The complete mapping of voiced to
unvoiced strokes in this ga ‘ida will be shown in Fig.8.

The piece in Fig.1 belongs to a set of acceptable variations that may be very large
although it is certainly finite since all pieces are bound by the metric cycles, i.e. a duration
of sixteen or thirty-two beats. Variations are derived from the “theme”, and involve the
repetition, permutation, or substitution of bols. Students are taught that changes occurring
in the first half of the structure must be reflected in the second; variations, too, are subject
to voiced/unvoiced transformations as can be seen in the following three variations
(changes have been italicised; hyphens in the third variation represent silences of one unit,
though effectively they elongate the preceding syllable):

dhatidhage nadhatrkt dhatidhage dheenagena
dhatrktdha tidhagena dhatidhage teenakena
tatitake natatrkt tatitake teenakena
dhatrktdha tidhagena dhatidhage dheenagena
dhatidhatr ktdhatidha trktdhage nadhagena
dhatidhage nadhatrkt dhatidhage teenakena
tatitatr kttatita trkttake natakena

dhatidhage nadhatrkt dhatidhage dheenagena



dhagenadha trktdhage nadhatrkt dhatrktdha
tidha-dha tidhagena dhatidhage teenakena
takenata trkttake natatrkt tatrktta
tidha-dha tidhagena dhatidhage dheenagena

Fig.2 Three variations of the ga‘ida

Fig.3.
dha tr kt dha tr kt dha ge dha ti dha ge dhee na ge na
dha tr kt dha tr kt dha dha dha ti dha ge dhee na ge na
dha ti dha tr kt dha tr kt dha ti dha ge dhee na ge na
dha tr kt dha ti -dhati dha ti dha ge dhee na ge na
dha tr kt dha ti dha tr kt dha ti dha ge dhee na ge na
ti - dha ti dha dha tr kt dha ti dha ge dhee na ge na
ti dha tr kt dha dha tr kt dha ti dha ge dhee na ge na
tr kt dha ti dha dha tr kt dha ti dha ge dhee na ge na
tr kt tr kt dha dha tr kt dha ti dha ge dhee na ge na
tr kt dha tr kt dha ge na dha ti dha ge dhee na ge na

Let us now consider only the first lines of a subset of ten simple variations, as shown in

Fig.3 The first lines of ten variations of the ga‘ida

This set can easily be described using a type-3 (finite-state) grammar equivalently
represented as a finite automaton, i.e. a directed graph in which X, Y, and Z are state
labels, and a and b transition labels (see Fig.4). Usingarule X —>a'Y to rewrite “X”
as “a Y” is equivalent to jumping from state X to state Y following the transition labelled
a. The second type of rule, Z —> b, is represented as a transition from state Z to an

accepting state nil.
O OO0

Fig.4 Basic transitions in a finite automaton

We call finite acceptor a kind of finite automaton with a univocal mapping of the set of
states to the set {“acceptable”, “unacceptable”}, thereby suggesting that other mappings
can be envisaged (see for instance [1]). The state from which all paths originate is
labelled S, the initial symbol in the grammar. To analyze a string, each of its component
symbols (from left to right) is used as a “road sign”. The string is grammatically correct
if it is possible to move from § to an accepting state following all the road signs. For
example, a finite acceptor recognizing exactly the ten examples given in Fig.3 could be the

one shown in Fig.5.



O-0 O0—-0O O0—0-0
dha ti dha ge dhee na ge na

Fig.S A finite acceptor for the language shown Fig.3

The purpose of this representation is twofold: (1) it serves as a “classifier” telling whether
or not a given string belongs to the set of original examples in Fig.3, and (2) it can be
used to generate any string belonging to the set. However, it is not unique and its musical
relevance will even be questioned later. To simplify the representation, only those states
which are (diverging or converging) nodes of the graph have been labelled. Other states
appear as small circles. This suggests an alternate equivalent representation using a “two-
layer acceptor” as in Fig.6.



XI TA7 XD TAS >@

Fig.6 An equivalent “two-layer finite acceptor”

This new acceptor is equivalent to the generative grammar of Fig.7. The mapping of
transitions to grammar rules is self-explanatory.



S —> TE1 XI

XI —> TA7 XD

XD —> TA8 TA7T —> kt dha tr kt dha ge na
XI —> TF1 XIJ TC2 —> tr kt

X] - TC2 XA TEl —> tr

XA  —> TA1 XB TF1 —> kt

XB —> TB3 XD TF4 —> ti dha tr kt

X1 —> TF1 XG D1 —> -

XG —> TB2 XA ™2 —> dha ti

S —> TA1 XH TE4 —> ti - dha ti

XH —> TF4 XB TCl —> ge

XH —> TA3 XC B3 —> dha tr kt

XC —> TE4 XD TA8 —> dha ti dha ge dhee na ge na
XCcC —> TA3 XE TA3 —> tr kt dha

XE —> TA1 XD TB1 —> ti

XE —> TC1 XD TAl —> dha

XC —> TB1 XB

S —> TB1 XF

XF —> TA1 XJ
XF —> TD1 XG

Fig.7 A grammar equivalent to the two-layer acceptor

Some variable labels have numbers indicating the metrical values of terminal strings
which are derived therefrom. Thus, TA7 denotes a string of seven strokes. Although
this information is not used by the Bol Processor, it facilitates checks of the grammar
when variations are of fixed length. Here for instance the sum of metrical values along
each path of the upper acceptor is 16 (meaning four beats in stroke density 4).

This grammar is context-free (type-2) although it generates a finite (type-3) language.
Rules shown on the right side of Fig.7 are called lexical rules. Their right arguments
are chunks of strokes that have been repeated several times in the examples of Fig.3,
presumably “words” of the language although they do not bear any semantic value.

The segmentation of musical pieces into “significant chunks™ has been discussed in great
detail by musicologists (e.g. [24], [26]). In brief, lexical rules define the vocabulary of
the piece as presumably perceived by musicians, a task that requires some presupposed
knowledge about what is “meaningful” and what is not. In fact, the vocabulary displayed
by the grammar Fig.7 was not assessed as correct, therefore another grammar was
constructed on the basis of musicians’ comments that eventually yielded a correct
segmentation of the variations (see [19] page 210).

A context-free grammar in the format of Fig.7 may be viewed as a combination of two
transformational subgrammars corresponding to the two automata shown Fig.6.
The term “transformational” is borrowed from formal language theory ([15], page 24),
not linguistics. To generate a variation, the first subgrammar (rules on the left side) is
used until no further derivation is possible, for instance:

S

TE1 XI

TE1 TA7 XD
TE1 TA7 TAS8
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Then rules of the second subgrammar (right side of Fig.7) are applied in an arbitrary order:

TE1 TA7 TA8

TE1 kt dha tr kt dha ge na TAS8

tr kt dha tr kt dha ge na TAS8

tr kt dha tr kt dha ge na dha ti dha ge dhee na ge na

The module that takes care of (enumeratively or randomly) selecting rules in order to
generate variations is part of the inference engine of the Bol Processor. The other part
of the inference engine is a parsing module described in detail in [8].

3. A few syntactic extensions

3.1 Pattern rules

So far we have dealt only with permutations of “words”. In order to find an appropriate
representation of periodic structures (systematic repetitions, etc.) we developed the idea of
pattern rules. We call string pattern any element of (Vn U Vt)*, i.e. a string
containing variables and terminal symbols. Every variable in a string pattern may in turn
be replaced with another arbitrary string pattern. Replacing all occurrences of a variable
with the same non-empty string is called a substitution.

If p is a string pattern and s a substitution, then s(p) is a derivation of p. A string
pattern containing no variable is called a terminal derivation. The set of all terminal
derivations of p is called the pattern language generated by p. (See [2])

The class of pattern languages is properly included in the class of unrestricted (type 0)
languages, but it is not comparable with any other class. Despite this we felt it would be
interesting to combine the representational power of pattern languages (in terms of
periodicity) with the versatility of generative grammars, as the latter are rather
counterintuitive for the representation of string-patterns. Consider for instance the
following grammar proposed by Salomaa ([27], page 12) generating the language derived
from string pattern “X X” over terminal alphabet Vt = {a,b}.
S —>ABC

AB —>aAD
AB —>DbAE

Da —>abD
Db —>bD
Ea —>akE
Eb —>bE
DC —>BaC
EC —>BbC(C
aB —>Ba
bB —>Bb
AB —>A\

C —> A

This grammar is non-restricted (type-0). In addition, most derivations of the starting
symbol § halt on a string that still contains variables; therefore it is difficult to control the
generative process so that only terminal strings are produced.
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To overcome these limitations we developed an extension of the rule format that we call
pattern rules. A pattern rule generating the “X X” pattern language (on any terminal
alphabet) would be the following:

S —>(=X)(X)

in which brackets indicate that all derivations of the occurrences of “X” must be identical.
The leftmost expression “(= X)” is the reference and “(: X)” its copy. We call brackets
containing “=" or “:” pattern delimiters. There may be several copies of the same
reference, e.g.:

S —>E=A)EB)CEA)EBCA)
Repetitions may not always be strict. In many musical systems a number of
transformations affecting terminal symbols have been proposed. In §1.3, for instance,
we suggested that strokes on the tabla may be either voiced or unvoiced. Fig.8 shows

the mapping of the corresponding voiced/unvoiced transformation, which stands for all
qa‘idas using these strokes.

dha > ® na

dhee p tec A tr
ge - ke & > kt

D000

Fig.8 A “voiced/unvoiced” mapping in tabla music

This mapping may be extended to any string over the terminal alphabet Vt, yielding a A-
free homomorphism [25]. For instance, the unvoiced image of “dha ge na” is “ta ke na”.
To indicate a homomorphic transformation we insert a special symbol (a homomorphic
marker) before the pattern delimiter, indicating the part of the string in which the
transformation must be performed. The marker used for the voiced/unvoiced
transformation is an asterisk. For instance, the grammar

S—> (=D)*(:D)
D —> dha ge dhee na ge na

yields the terminal derivation

(= dha ge dhee na ge na) * (: ta ke tee na ke na)

which is internally represented with the help of a master-slave assignment pointer.
(See Fig.9)

()rdhagedheenagena)*(l)

Fig.9 Master-slave assignment pointer



This internal representation is economical in terms of memory space. The algorithm for
rewriting assignment pointers in string patterns is presented in [6] (pages 43-45). It
applies to multilayered representations as well.

The theme given in Fig.1 may now be represented:

(= dhati dha ge na dha tr kt dha ti dha ge dhee na ge na)
(= dha tr kt dha ti dha ge na) (= dhati dha ge tee na ke na)
*(itatitake na ta tr kt ta ti ta ke tee na ke na)
(: dha tr kt dha ti dha ge na) (= dhati dha ge dhee na ge na)

This piece is produced by the grammar shown in Fig.10, using rules 1, 4,7, 8, etc.

[1]S —> (=A16) (=V8) A'8 *(:A16) (:V8) A8

[2] S —> (=V16) A'16 *(:V16) A16

[31S —> (=V24) A'8 *(:V24) A8

[4] Al6 —> dha ti dha ge na dha tr kt dha ti dha ge dhee na ge na
[STA'16 —> dha ti dha ge na dha tr kt dha ti dha ge tee na ke na
[6] A8 —> dha ti dha ge dhee na ge na

[7]1 A'8 —> dha ti dha ge tee na ke na

[8] V8 —> ... define permutations of eight strokes

[9] V16 —> ... define permutations of sixteen strokes

etc...
Fig.10 A grammar with three pattern rules

The same grammar produces many variations, including the three ones shown in Fig.2.
Rules defining V8, V16 and V24 may be context-free like the ones in Fig.7.

We call a Bol Processor grammar any type-0 grammar containing pattern rules.

Negative context is a practical way of writing a rule when all but one variable/terminal
symbol are allowed as context. See for instance:

#1 V4 —> #titi dha tr kt

This rule means that V4 may be rewritten as “ti dha tr kt” only if it is not preceded by #i.
This reflects the idea that it is not acceptable to duplicate #i in a sequence (both for
technical and aesthetic reasons). Procedures for matching and rewriting expressions with
(possibly several) negative context(s) are described in detail in [6] (pages 55-60).

3.3 Wild cards

Wild cards are metavariables notated “?17,“?2”, etc. in BP syntax. These are used by the
inference engine when it looks for candidate rules in the generation or parsing process. A
wild card may be matched with any variable or terminal symbol. An example will be
found in the grammar Fig.11 below.



3.4 Remote context

Formal (e.g. Chomsky-type) grammars make it difficult (although theoretically possible)
to control productions on the basis of a “remote context”, i.e. the occurrence of a string
located anywhere to the left or right side of the derivation position. Therefore a special
syntax of remote contexts is available in BP2.

Remote contexts are represented between ordinary brackets in the left argument of a rule.

(These brackets are distinct from pattern delimiters that contain either “=" or *“:”) For
instance, a rule like

(abc) XY (cd) —> Xef

means that “X Y” may be rewritten as “X e f” only if “a b ¢” is found somewhere before
“X Y” in the string under derivation, and “c d” somewhere after “X Y. Note that “X”
itself is a left context in the sense of conventional generative grammars.

A remote context may contain any string in BP syntax, including string patterns and
metavariables. It may also be negative. For instance,

#abc)X —>cde

means that X may be rewritten as “c d e” only if not preceded by “a b ¢” in the string
under derivation.

Below is a typical grammar using remote contexts. This grammar is inspired by
tintinnabulation, the traditional art of ordering peals of church bells in north of France
and England [14]. The grammar is expected to build a sequence chaining distinct
permutations of four sounds: A, B, C and D. All acceptable changes from one
permutation to the next are listed in subgrammar 2: these rules restrict changes of
positions of a given sound yielding a structure in which an average periodicity of 4 is
suggested but never clearly shown [4]. Negative remote contexts make sure that the
permutation newly generated is occurring for the first time. Permutations are performed
on wildcards (“?17, “72”...) that may be instantiated as A, B, C or D. Variable Cut is
used to separate permutations. When no further rule in subgrammar 2 is applicable, the
inference engine jumps to subgrammar 3 in which all remaining variables (except, of
course, A, B, C and D) are erased. “A” is the null string. Subgrammar 4 uses a context-
sensitive substitution to replace variables with notes. Following standard solfége, re4
stands for “D octave 4”. Notes proposed here are arbitrary pitches unrelated to the
traditional tuning of bells.

A detailed description of this grammar and its variants is available in [4].



Subgrammar 1

S—>ABCD Cut BACD XI2
S—>ABCD Cut ACBD X23
S—>ABCD Cut ABDC X34
S—>ABCD Cut BADC Xl1234

Subgrammar 2

#(21722473)1 2722324 X12 —> 71727374 Cut ?1 22?4723 X34
#7271 24723)71 2722324 X12 —> 71727374 Cut 72?124 723 X1234
#(727174723)71 72737 X34 —>21 7273724 Cut 727124723 X1234
#7271 7324)71 72737 X34 —>?17273724 Cut 72717324 X12
#7221 24 23) 1 2722324 X23 —> 71727374 Cut 72?1?4723 X1234
#7221 23 24) 21 222324 X1234 —>?1 722324 Cut 72717374 XI12
#2123 7274) 21 2722324 X1234 —>?1 2722324 Cut 71737274 X23
#(71727473) 71 27227324 X1234 —>?71 7227324 Cut 71727473 X34

Subgrammar 3

Cut —>A
X12 —> A\
X23 —>A
X34 —>A
X1234 —> A

Subgrammar 4: sonological level
SUB (Context-sensitive substitutions)
AB —>do3B

A #B —>do4 #B

B —>so0l4

C —>re5

DA —>mi4 A

D #A —> mi5 #A

Fig.11 A grammar with remote contexts

A sequence generated by this grammar is:

do3 sol4 re5 mi5  sol4 do4 miS5 re5 sol4 mi4 dod re5 mi5 sol4 re5 do4
mi5 re5 sol4 dod4 re5 mi4 dod sol4  re5 do4 mi5 sold do4 re5 sol4 mis

The pseudo-periodicity of all occurrences of “do”, “sol”, “re” and “mi” is clearly visible
in this sequence. Tabulations delimit permutations.

4. Stochastic production

Since the actual sets of correct variations of a ga ‘ida are very large, the only realistic way
of checking the generative precision of a grammar is to instruct the Bol Processor to
produce randomly chosen variations. If the variation is assessed as correct by the expert,
the procedure is invoked again and another variation (sometimes the same one) is
generated. The grammar is considered “correct” if it has been in full agreement with the
expert over a sufficient number of work sessions.

Since the correctness of a grammar can never be fully assessed in this way — indeed, like
musicians themselves, machines may be allowed casual mistakes — it is important to
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enable the stochastic production process to generate variations from a wide and
representative subset of the language. This can be achieved by weighting the decisions of
the inference engine. Weights (and their associated probabilities) are used to direct the
Bol Processor’s production along paths more likely to be followed by musicians. The
use of weighted rules resulted in a marked improvement in the quality of the generated
music. This went a long way towards solving the problem of musical credibility
encountered in earlier experiments with BP1, a problem that arose from the complete
randomness of the generative process.

The stochastic model in Bol Processor is inspired from probabilistic grammars/automata,
[12] the difference being that a weight rather than a probability is attached to every rule.
The probability of a rule is computed each time it is a candidate in a generation process.
(Candidate rules are those whose left argument matches a substring of the string under
derivation.) Before any derivation, the inference engine calculates the sum W of weights
of all candidate rules. If the weight of a candidate rule is O then its probability remains O;
in any other case its probability is the ratio of its weight to the sum W. Consider for
example the set of rules

[1] <100> V3 —> dhagena
[2] <100> V3 —> dhatrkt
[3] <50> V3 —> dha--
[4] <5> V3 —> dhati-

in which the sum of weights is W = 100+100+5045 = 255. The probability of choosing
candidate rule (4) in the derivation of a string containing “V3” is therefore

5

In some context-free grammars — those that fulfil a “consistency” condition defined in
[12] — weights may also be used for computing the probability of occurrence of each
variation generated by the grammar. Grammars in the format shown in Fig.7 are
consistent for any weight assignment. This probability is displayed by Bol Processor
BP1 for each variation which has been generated or parsed, thereby yielding a graduation
of its acceptability. Another remarkable feature of consistent grammars is that rule
probabilities can be inferred from a subset of the language [23]. This leads to an
interesting method for weighting the rules — even in inconsistent grammars, as
demonstrated in [21] (appendix 1). The method is the following: a grammar is given
along with a sample set of the language that it recognizes (for instance variations taken
from a performance of an expert musician). Let all rule weights be set to 0; then analyze
every variation of the sample set, incrementing by one unit the weights of all rules used in
the parse. Rules that have not been used in the parse of the sample set may then be
scrutinized to check whether they are incorrect or whether they point to unexplored parts
of the language. To this effect, their weights are set to a high value so that the Bol
Processor is likely to select them and generate variations that may then be assessed.



5. Automatic Knowledge Acquisition

Despite the comprehensiveness of the descriptive language for grammatical rules,
grammars became too unwieldy when dealing with compositions of middle complexity (in
terms of length of structure, variety of syllables, interchangeability of chunks, etc.), not
to mention high complexity. Whenever analytical or generative computations blocked
owing to the inadequacy of the rule base, then determining what to modify was both
difficult and problematic. Since grammars were arranged in hierarchical segments
representing notional sequences of musical decision-making processes the modification of
one rule could (and often did) have implications for the rest of the grammar. Therefore,
simply adjusting one component was tantamount to treating the symptoms of the disorder,
not the cause of the breakdown. There was no way of finding out in a sound and
systematic manner the most efficient and structurally correct procedure for modifying a
grammar; and in experimental situations where musicians were waiting patiently for the
researcher to press the magic button and produce ever new and varied improvisations for
their delectation (they were indeed fascinated by the technology and deeply interested in
the experiments), the researcher was often forced to settle for the simplest solution to the
problem — the computational equivalent of a band-aid.

An alternative approach to the problem of knowledge transfer was introduced in 1988
with a system that automated the analytical/generative process, thus effectively
circumventing the researcher as “interpreter” of musical knowledge and grammatical rules
[3] [19]. This system adapted grammatical inference and machine-learning techniques to
extract rules from a given sample of variations (improvisations) on a rhythmic theme,
mapping them to an expandable finite-state automaton resembling a network of
converging and diverging paths (see Fig.5 supra). The computer system then
“generalized” by merging states and constructing new paths within the model, and sought
verification of its decisions by a question-answer sequence with the informant (i.e. the
provider of the musical samples). This process gave rise to the name of the system:
QAVAID (Question-Answer Validated Analytical Inference Device), an acronym
meaning “grammar” in Urdu, the language of tabla-player informants.

6. BP2 — a tool for computer-aided composition

It was felt that the formal model embedded in BP1 could be expanded to encompass more
general musical structures, and in this form could be of some benefit as a tool for rule-
based music composition. The new implementation (BP2) deals with “sound-objects”
handled (1) at the symbolic level (where each object is represented by an arbitrary
symbol, and symbols arranged in strings, tables, trees, etc.) and (2) the lower level of
“elementary events”. These events are messages dispatched to a sound processor to
trigger and control sound synthesis processes. For instance, a conventional note is a
simple sound-object represented as a NoteOn/NoteOff sequence in the MIDI format.
Objects are ordered on symbolic (virtual) time whereas events are mapped to points on
physical time. This approach widely compensates the rigidity of the timing of computer-
generated musical pieces.

A major development of the representation model has been “polymetric expressions”,
thereby meaning (incomplete) string descriptions of concurrential processes. A
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polymetric expression can be fully determined (“expanded”) by an algorithm inferring a
strict ordering of objects along symbolic time. For instance, given the information that a
sequence of five sound-objects: a, b, ¢, d, e, should be superimposed on another
sequence of three objects: f, g, h, the algorithm would suggest the ordering of events
shown Fig.12.

{abcde, £fgh} a__b__—c__d__e_ _
or {f gh, abcde} £ 9 _ _ _ _h_

Incomplete representation Complete representation

(polymetric expression) (computed by algorithm)

Fig.12 Polymetric expression (left) and ‘“expanded” representation (right)

The same algorithm is able to process multilayered polymetric expressions [5].

Sound-objects may be assigned properties that help determining their actual durations and
locations on physical time. They may be performed in “striated” time (with regular or
irregular beats) or in “smooth” time (with no beat). Durations depend on the “local
tempo” and on metrical properties stipulating the acceptable range of object
contraction/dilation. In striated time, local tempo is the time interval separating two
streaks (beats); in smooth time it is computed from the duration of the object preceding the
current one in the sequence.

Object location makes use of “time pivots” (anchoring points) that are first located on time
streaks. This pivot-synchronization technique is inspired from Marco Stroppa IRCAM).
The topological properties of each object are constraints stipulating whether or not its time
interval may be overlapped, truncated, whether or not it must be contiguous to that of
neighbouring objects, etc. Some objects need to be relocated or truncated until all
constraints are fulfilled. Constraint-satisfaction is handled by a fast algorithm [8].

Since the constraint-satisfaction algorithm does not rely on specific musical concepts it
may be applied to various applications in which similar metrical/topological properties are
assigned to “time-objects”, such as multimedia performance, robotics or multiple-screen
video editing. In the latter application, time-objects are predetermined picture sequences.
A string of time-objects is the script of a “story” displayed on a single video monitor. The
story may be predefined or edited at the time of the performance. Overlapping time-
objects in a story may be displayed as dissolved sequences. The time-setting algorithm
makes it possible to build many different scenari relating several stories on different
screens [9].

An external control can be exerted on the inference engine, grammars and the
interpretation module. Thus, Bol Processor BP2 can be operated and synchronized by
instructions received from its MIDI interface. Messages on the different MIDI channels
may be used for communicating between machines or for controlling several sound
processors. It is possible to perform/repeat an item, modify tempo, adjust rule weights,
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etc., using a MIDI keyboard and controllers, a MIDI sequencer or even another BP2.
Real-time interaction is similar to the situation of several musicians improvizing together
while communicating information about parameters like tempo or compositional strategies
through conventional (audible or inaudible) messages.
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