Comparing temperaments

Images of tem­pered scales cre­at­ed by the Bol Processor

The fol­low­ing are Bol Processor + Csound inter­pre­ta­tions of Bach’s Prelude 1 in C major (BWV 846) using scales con­struct­ed with mean­tone tem­pera­ments (Asselin 2000). Names and tun­ing pro­ce­dures fol­low Asselin’s instruc­tions (pages 67-126). 

The con­struc­tion of these scales is explained on page Microtonality.

Start lis­ten­ing to the piece in equal tem­pera­ment which is the most com­mon tun­ing of instru­ments in mod­ern times:

Equal tem­pera­ment (p. 123) ➡ Image

The fol­low­ing are tra­di­tion­al mean­tone tem­pera­ments, each of which has been designed at a par­tic­u­lar peri­od in response to the con­straints of musi­cal reper­toires en vogue (Asselin 2000 p. 139-180).

H.A. Kellner’s BACH (p. 101) ➡ Image
Barka in 1786 (p. 106) ➡ Image
Bethisy in 1764 (p. 121) ➡ Image
Chaumont in 1696 (p. 109) ➡ Image
Corrette in 1753 (p. 111) ➡ Image
D’Alambert-Rousseau 1752-1767 (p. 119) ➡ Image
Kirnberger II in 1771 (p. 90) ➡ Image
Kirnberger III in 1779 (p. 106) ➡ Image
Marpurg in 1756 (p. 117) ➡ Image
Pure minor thirds in 16th cen­tu­ry (p. 82) ➡ Image
Rameau en do in 1726 (p. 106) ➡ Image
Sauveur in 1701 (p. 80) ➡ Image
Tartini-Vallotti in mid. 18th cen­tu­ry (p. 104) ➡ Image
Werckmeister III in 1691 (p. 194) ➡ Image
Werckmeister IV in 1691 (p. 96) ➡ Image
Werckmeister V in 1691 (p. 199) ➡ Image
Zarlino in 1558 (p. 85) ➡ Image

The last exam­ple is Zarlino’s mean­tone tem­pera­ment which should not be con­fused with the pop­u­lar Zarlino’s “nat­ur­al scale”, an instance of just into­na­tion:

Zarlino’s “nat­ur­al scale” ➡ Image


Comparing tem­pera­ments on a sin­gle piece is a very lim­it­ed exer­cise aimed at high­light­ing dif­fer­ences in the var­i­ous pro­pos­als and their ade­qua­cy to cre­ate a pleas­ant effect when lis­ten­ing to this par­tic­u­lar piece.

J.S. Bach’s dis­ci­ple Johann Kirnberg (1721-1723) - (source)

In real­i­ty, Bach’s Well-Tempered Clavier (BWV 846–893) is a col­lec­tion of two sets of pre­ludes and fugues in all 24 major and minor keys. To assess the valid­i­ty of a tun­ing scheme it would there­fore be nec­es­sary to lis­ten to all pieces. Fortunately, there are clues to an opti­mal choice: Friedrich Wilhelm Marpurg received infor­ma­tion from Bach’s sons and pupils and Johann Kirnberger, one of those pupils, designed a tun­ing (Kirnberger II) which he claimed to rep­re­sent his mas­ter’s idea of “well-tempered”.

Chapter VIII of Pierre-Yves Asselin’s book (2000 p. 139-180) con­tains exam­ples of musi­cal works high­light­ing the rel­e­vance of spe­cif­ic tem­pera­ments. Given that the scores of many (if not all) Baroque and clas­si­cal mas­ter­pieces are avail­able in dig­i­tal for­mat MusicXML, we may use Bol Processor’s Importing MusicXML scores to transcode them and play these excerpts with the sug­gest­ed temperaments.

Musicians inter­est­ed in con­tin­u­ing this research may use Bol Processor BP3’s beta ver­sion to process musi­cal works and cre­ate new tun­ing pro­ce­dures. Follow instruc­tions on page Bol Processor ‘BP3’ and its PHP inter­face to install BP3 and learn its basic oper­a­tion. Download and install Csound from its dis­tri­b­u­tion page.


Asselin, P.-Y. Musique et tem­péra­ment. Paris, 1985, repub­lished in 2000: Jobert. Soon avail­able in English.

Importing MusicXML scores

MusicXML is a very pop­u­lar XML-based file for­mat for rep­re­sent­ing Western musi­cal nota­tion. It is designed for the inter­change of scores between scorewrit­ers and oth­er musi­cal devices.

Inside a MusicXML file…

A MusicXML file con­tains all the infor­ma­tion required to dis­play a musi­cal score in com­mon Western music nota­tion. It is also struc­tured in such a way that data can be extract­ed and processed by a sound device to “play” the musi­cal score. The ren­der­ing is pure­ly mechan­i­cal, based on metro­nom­ic tim­ing and lack­ing con­trol over vol­ume, veloc­i­ties, strokes etc. which are not pre­cise­ly dis­played on the score. As such, it may be used as a tool for check­ing the rep­re­sen­ta­tion of a musi­cal work, or an as a teach­ing assis­tant for deci­pher­ing scores.

Importing musi­cal scores from musi­cal archives to Bol Processor makes it pos­si­ble to use them (or frag­ment of them) in gram­mars pro­duc­ing vari­a­tions, for exam­ple Mozart’s musi­cal dice game. Owing to the Csound inter­face, these musi­cal works may also be played back with spe­cif­ic tun­ings as explained on page Microtonality. The lat­ter was an incen­tive for imple­ment­ing MusicXML con­ver­sion, mak­ing it pos­si­ble to try many pieces of the Baroque and clas­si­cal reper­toires against the diver­si­ty of mean­tone tem­pera­ments doc­u­ment­ed by historians.

The MusicXML to Bol Processor con­vert­er is ful­ly oper­a­tional on the PHP inter­face of BP3. Follow instruc­tions on page Bol Processor ‘BP3’ and its PHP inter­face to install BP3 and learn its basic oper­a­tion. Download and install Csound from its dis­tri­b­u­tion page.

Bol Processor’s data format

The Bol Processor has its own data for­mat for rep­re­sent­ing musi­cal items aimed at pro­duc­ing sound via its MIDI or Csound inter­face. This for­mat is dis­played and saved as pure text.

The syn­tax of Bol Processor data is based on poly­met­ric struc­tures. A few ele­men­tary exam­ples will clar­i­fy this term:

  • {A4 B4 C5} is a sequence of three notes “A4”, “B4”, “C5” played at the metro­nom­ic tempo
  • {A4, C5, E5, A5} is a A minor chord
  • {la3, do4, mi4, la4} is the same chord in Italian/Spanish/French convention
  • {dha4, sa5, ga5, dha5} is the same chord in Indian convention
  • {C4 G4 E4, F3 C4} is a two-level struc­ture call­ing for the jux­ta­po­si­tion and time align­ment of sequences “C4 G4 E4” and “F3 C4”, which yields a polyrhyth­mic struc­ture that may be expand­ed as {C4_ G4_ E4_, F3__ C4__} in which ‘_’ are pro­lon­ga­tions of the pre­ced­ing notes.
  • {5, A4 B4 C5} is sequence “A4 B4 C5” played over 5 beats. Durations are mul­ti­plied by 5/3.
  • {7/16, F3 C4} is sequence “F3 C4” played over 7/16 beats. The dura­tion of each note is mul­ti­plied by 7/16/2 = 7/32.

Unlike score rep­re­sen­ta­tion mod­els, poly­met­ric struc­tures are recur­sive with no lim­it in their com­plex­i­ty (except the machine). A few com­plex struc­tures are dis­cussed on page Harm Visser’s exam­ples.

Why do we need to import scores?

Bol Processor’s data for­mat is alto­geth­er com­pact, com­pu­ta­tion­al and com­pre­hen­si­ble by humans. However its com­pact­ness makes it dif­fi­cult to enter com­plex struc­tures. Rather, these struc­tures are pro­duced by grammars…

Even a gram­mar able to cre­ate pieces of tonal music may need some mate­r­i­al extract­ed from exist­ing musi­cal works. Till now (in Bol Processor BP1 and BP2) it was pos­si­ble to map the com­put­er key­board to arbi­trary signs rep­re­sent­ing drum strokes (see the ini­tial project) or notes in com­mon music nota­tion (three dif­fer­ent con­ven­tions) and to import Csound scores or MIDI files to sound-objects.

Things get com­plex when the mate­r­i­al is poly­phon­ic tonal music. Since this mate­r­i­al exists on scores in Western music nota­tion, and these scores have been dig­i­tized to inter­change for­mats such as MusicXML, a import pro­ce­dure cap­tur­ing the whole com­plex­i­ty of the score is a great asset. Mozart’s Musical dice game is a good exam­ple of this necessity.

In prac­tice you could pick up and rework frag­ments of the very large musi­cal reper­toire shared in XML for­mat, or cre­ate your own mate­r­i­al using a score edi­tor such as Werner Schweer’s MuseScore — a public-domain pro­gram work­ing with Linux, Mac and Windows. MuseScore rec­og­nizes many input/output for­mats and it is able to cap­ture music via MIDI or Open Sound Control.

Importing and converting a MusicXML score

A few public-domain MusicXML scores are found in the “xml­sam­ples” of our sam­ple set shared on GitHub. Most of them are frag­ments used for illus­trat­ing the for­mat. We start with a very short frag­ment of “MozartPianoSonata.musicxml” for which the graph­ic score is also available:

Mozart’s piano sonata, an excerpt in com­mon Western music notation

First cre­ate a Data file named for instance “-da.musicXML”. Default set­tings will be suf­fi­cient for this exam­ple, but a “-se.musicXML” file may be declared on the data win­dow, with the result that you will be prompt­ed to cre­ate it. Keep default set­tings as they include graph­ic display.

To import the MusicXML file, click the Choose File but­ton on top of the edit­ing form, select the file and click IMPORT.

The machine will dis­play the list of “parts” con­tained in the score. Each part may be assigned to an instru­ment, includ­ing human voic­es. This score con­tains a unique part to be played on an Acoustic Grand Piano which would be ren­dered by chan­nel 1 of a MIDI device. This chan­nel infor­ma­tion will be put in the Bol Processor score and may be lat­er mapped to Csound instruments.

Clicking CONVERT THEM (or it) is the only things that remains to be done!

This will cre­ate the fol­low­ing Bol Processor data:

// MusicXML file ‘MozartPianoSonata.musicxml’ con­vert­ed
// Score part ‘P1’: instru­ment = Acoustic Grand Piano — MIDI chan­nel 1


{_tempo(2) _chan(1){2,{2,C#6},{C#5,E5,A5}-,{1/4,A2 C#3 E3}{1/4,A3}{3/2,A3 A3 A3}}} {_tempo(2) _chan(1){2,{2,D6 C#6 B5 C#6 D6 C#6 B5 C#6},{1/4,A2 C#3 E3}{1/4,A3}{3/2,A3 A3 A3}}}{_tempo(2) _chan(1){2,{2,F#5,A5,D6},{1/4,D2 F#2 A2}{1/4,D3}{3/2,D3 D3 D3}}}{_tempo(2) _chan(1){2,{1/8,D6}{3/8,E5,A5,C#6}{1/8,D6}{3/8,E5,A5,C#6}{1/8,D6}{3/8,E5,A5,C#6}{1/8,D6}{3/8,E5,A5,C#6},{1/4,A2 C#3 E3}{1/4,A3}{3/2,A3 A3 A3}}}{_tempo(2) _chan(1){2,{3/2,B5}{1/2,E6},{2,E5,G#5},{1/4,E2 G#2 B2}{1/4,E3}{3/2,E3 E3 E3}}}

Imported scores can be played, expand­ed, explod­ed and imploded

Indeed this looks uneasy to read, but remem­ber that a lay per­son would not even make sense of the score in com­mon Western music nota­tion! Fortunately, a PLAY but­ton is now avail­able to lis­ten to the piece. By default, it is saved as a MIDI file which then can be inter­pret­ed by a MIDI soft syn­the­siz­er such as PianoTeq:

Mozart’s piano sonata, an excerpt played by Bol Processor with PianoTeq

The same process can be invoked in the Csound envi­ron­ment. If Csound is installed and respon­sive, select­ing the Csound out­put for­mat will pro­duce a Csound score that will be imme­di­ate­ly con­vert­ed to an AIFF sound file dis­played on the process window:

Playing the same piece via Csound. Note that the dura­tion is 12 sec­onds (instead of 10) because a silence of 2 sec­onds (by default) is append­ed at the end of the track

Understanding the conversion process

Let us com­pare the score in com­mon Western nota­tion with its con­ver­sion to Bol Processor data. This may be help­ful for know­ing the fea­tures and lim­i­ta­tions of MusicXML files. Remember that this for­mat is a full descrip­tion of a graph­ic rep­re­sen­ta­tion of the musi­cal work. It is up to the musi­cian to add implic­it infor­ma­tion nec­es­sary for a prop­er (and artis­tic) ren­der­ing of the piece…

Musical scores of clas­si­cal works are seg­ment­ed in mea­sures marked by ver­ti­cal lines. This score con­tains 5 mea­sures of equal dura­tions. The MusicXML file con­tains data telling that the dura­tion of each mea­sure is 2 beats, mean­ing 2 sec­onds if the metronome is beat­ing at 60 beats per minute. However, instruc­tion _tempo(2) dou­bles the speed, which results in mea­sures last­ing for 1 sec­ond. The third mea­sure con­tains a chord {2, F#5, A5, D6} of half notes (min­ims) last­ing 2 beats.

The Bol Processor score also dis­plays the five mea­sures, each of which is inter­pret­ed as a poly­met­ric struc­ture. A MIDI chan­nel instruc­tion has been auto­mat­i­cal­ly insert­ed in the begin­ning of each mea­sure, indi­cat­ing which part it belongs to.

Let us read the first mea­sure and com­pare it with its con­ver­sion high­light­ed in red on the score:

{_chan(1) {2, {2, C#6}, {C#5, E5, A5} -,
{1/4, A2 C#3 E3} {1/4, A3} {3/2, A3 A3 A3}}}

The ‘2’ (green col­or) is the total dura­tion of the poly­met­ric expres­sion (or the mea­sure). On the first line is the upper score (in G key on the graph­ic score) and the sec­ond line (in F key on the image) is the low­er score. On top of the upper score is a half note C#6 inter­pret­ed as {2, C#6}. The com­ma (red col­or) indi­cates a new field of the poly­met­ric struc­ture that needs to be super­posed to the first field. It con­tains a chord {C#5, E5, A5} of quar­ter notes (crotch­ets) last­ing 1 beat.

In order to com­plete the field we need a rest of 1 beat that is not indi­cat­ed on the graph­ic score although the cor­re­spond­ing gap is men­tioned in the MusicXML file. In Bol Processor nota­tion, rests can be notat­ed ‘-’ or as inte­ger numbers/ratios. For instance, a 3-beat rest could be notat­ed “---” or {3, -}, where­as a rest of 3/4 beat should be notat­ed {3/4, -}.

The low­er score con­tains a sequence that is trou­ble­some for a machine: three grace notes “A2 C#3 E3”. Grace notes are not assigned any dura­tion in MusicXML files, so we agree with a prac­tice of giv­ing this sequence a dura­tion of exact­ly half of the prin­ci­pal note which fol­lows, here the first occur­rence of A3s declared as eight notes last­ing 1/2 beat. Consequently, the stream of grace notes has a total dura­tion of 1/4 beat and is notat­ed {1/4, A2 C#3 E3}. It is fol­lowed by A3 whose length is reduced by one half, there­fore {1/4, A3}. The fol­low­ing 3 occur­rences of A3 have a total dura­tion of 3/2 beats, hence {3/2, A3 A3 A3}.

The struc­ture of this first mea­sure is made clear on the graph­ic dis­play. Note that, unlike the pianoroll dis­play, this object rep­re­sen­ta­tion does not posi­tion sound-objects ver­ti­cal­ly accord­ing to pitch values:

The first mea­sure of the Mozart sonata’s sample

The rest of the score can be deci­phered and explained in the same man­ner. Bol Processor nota­tion is based on very sim­ple (and mul­ti­cul­tur­al) prin­ci­ples yet dif­fi­cult to cre­ate by hand… Therefore it is most con­ve­nient­ly pro­duced by gram­mars or extract­ed from MusicXML scores.

Note that it is easy to mod­i­fy the tem­po of this piece. For instance, to slow it down, insert instruc­tion _tempo(1/2) at the beginning:

Exploding scores

Clicking the EXPLODE but­ton seg­ments the musi­cal work as sep­a­rate mea­sures which make it eas­i­er to ana­lyze the con­ver­sion or reuse fragments:

The five mea­sures of Mozart’s sonata explod­ed on the Data window

Each mea­sure can be played (or expand­ed) sep­a­rate­ly. Segments are labelled [item 1], [item 2] etc. for an eas­i­er identification.

Button IMPLODE recon­structs the orig­i­nal work from its fragments.

A more complex example

Let us try DichterLiebe (op. 48) Im wun­der­schö­nen Monat Mai by Robert Schumann. The MusicXML score is in the “xml­sam­ples” fold­er dis­trib­uted in the sam­ple set “” shared on GitHub, along with its graph­ic score (read the PDF file).

The Bol Processor score is more complex:

“Im wun­der­schö­nen Monat Mai” (Robert Schumann)

This piece yields a sophis­ti­cat­ed tim­ing that can be appre­ci­at­ed on the sound output:

Im wun­der­schö­nen Monat Mai (Robert Schumann) inter­pret­ed by the Bol Processor on a PianoTeq xylophone

The cor­rect­ing ren­der­ing of this piece on Bol Processor is obtained with its (default) set­ting of quan­ti­za­tion to 10 mil­lisec­onds. Quantization is a process merg­ing the time-settings of events when these are prox­i­mate by less than a cer­tain val­ue: a human would not notice an error of 10 mil­lisec­onds in tim­ing, but merg­ing “time streaks” is an effi­cient way of sav­ing mem­o­ry space when build­ing a phase dia­gram of events. In this par­tic­u­lar piece, set­ting the quan­ti­za­tion to 30 ms already would cre­ate a notice­able default of syn­chro­niza­tion. This gives an idea of the accu­ra­cy expect­ed from human per­form­ers, which their trained audi­tive and motion­al sys­tems han­dle with­out difficulty.

Note that this MusicXML score com­pris­es 2 parts, one for voice and the sec­ond one for piano. These are sent to MIDI chan­nels 1 and 2 respec­tive­ly. These chan­nels should in turn be sent to dif­fer­ent Csound instru­ments. When sev­er­al instru­ments are not avail­able it is pos­si­ble to lis­ten to them sep­a­rate­ly by import­ing select­ed parts of the score.

Since the first mea­sure is incom­plete (1/4 beat), the piano roll is not aligned on the back­ground streaks (num­bered 0, 1, 2…):

This prob­lem can be solved by insert­ing a silence of dura­tion 3/4 in front of the score:

{3/4} {_chan(1){1/4,{{1/4,-}}},_chan(2){1/4,{{1/4,C#5},{1/4,-}}}} … etc.

which yields:

Pianoroll aligned to the time streaks

The musi­cal work may be inter­pret­ed at dif­fer­ent speeds after insert­ing a “_tempo()” instruc­tion in the begin­ning. For instance, giv­en that the metronome is set to 60 beats per minute, insert­ing _tempo(3/4) would set the tem­po to 60 * 3 / 4 = 45 beats per minute. To pro­duce a sound ren­der­ing of this par­tic­u­lar piece we insert­ed a per­for­mance con­trol _legato(25) extend­ing by 25% the dura­tions of all notes with­out mod­i­fy­ing the score. We also set up a bit of rever­ber­a­tion on the PianoTeq xylo­phone. The result­ing pianoroll was:

Same piece with _legato(25) extend­ing note dura­tions by 25%

Time-reversed Bach?

The _retro tool also gen­er­ates bizarre trans­for­ma­tions, most of which would sound “unmu­si­cal”. Some of them are inter­est­ing. For instance, this is Bach’s Goldberg Variation Nr. 5 played on Bol Processor + Csound with (Bach’s pre­sum­ably favourite) Kirnberger II tem­pera­ment — read Comparing tem­pera­ments:

Bach’s Goldberg Variation Nr. 5 (Kirnberger II tem­pera­ment) — MuseScore tran­scrip­tion by crashbangzoom808

Listen to it after apply­ing the _retro tool:

Time-reversed ver­sion of Bach’s Goldberg Variation Nr. 5 (Kirnberger II temperament)

In sum, many (musi­cal­ly mean­ing­ful) mod­i­fi­ca­tions can be achieved, includ­ing insert­ing vari­ables and send­ing the data to a gram­mar that will pro­duce entire­ly dif­fer­ent pieces. To achieve this, the gram­mar — for instance “-gr.myTransformations” — needs to be declared on top of the Data window.

The claim in favor of “well-tempered tun­ings” for inter­pret­ing Baroque music can be fur­ther assessed by com­par­ing the fol­low­ing ver­sions of J.-S. Bach’s Brandenburg Concerto Nr 2 in F major (BWV1047) part 3:

J.-S. Bach’s Brandenburg Concerto Nr 2 in F major (BWV1047) part 3 - Kirnberger II tuning
J.-S. Bach’s Brandenburg Concerto Nr 2 in F major (BWV1047) part 3 - equal-tempered tuning

Complex structures

As per this writ­ing, BP3 has been able to import and con­vert all MusicXML files con­tained in the “xml­sam­ples” fold­er. However, pieces rat­ed “too com­plex” might not be played nor expand­ed because of over­flow . Given that it is pos­si­ble to iso­late mea­sures after click­ing the EXPLODE but­ton, a PLAY safe but­ton was cre­at­ed to pick up chunks and play them in a recon­struct­ed sequence. The only draw­back is that graph­ics are deac­ti­vat­ed, which is of less­er impor­tance giv­en the com­plex­i­ty of the piece.

Listen for instance to Lee Actor’s Prelude to a Tragedy (2003), a musi­cal work made of 22 parts assigned to var­i­ous instru­ments via the 16 MIDI chan­nels — read the graph­ic score.

Lee Actor’s “Prelude to a Tragedy” (2003) with incor­rect assign­ment of some instru­ments, played by the Bol Processor using its Javascript MIDIjs play­er

The map­ping of instru­ments is faulty because most chan­nels are played as piano instead of flute, oboe, English horn, trum­pet, vio­la etc. Parts mapped to chan­nels 10 and 16 are fed with drum sounds. All these instru­ments have been syn­the­sized by the Javascript MIDIjs play­er installed on BP3’s inter­face. A bet­ter solu­tion would be to feed the “prelude-to-a-tragedy.midMIDI file to a syn­the­siz­er able to imi­tate the whole set of instru­ments, for instance MuseScore.

Score part ‘P1’: instru­ment = Picc. (V2k) — MIDI chan­nel 1
Score part ‘P2’: instru­ment = Fl. (V2k) — MIDI chan­nel 2
Score part ‘P3’: instru­ment = Ob. (V2k) — MIDI chan­nel 3
Score part ‘P4’: instru­ment = E.H. (V2k) — MIDI chan­nel 4
Score part ‘P5’: instru­ment = Clar. (V2k) — MIDI chan­nel 5
Score part ‘P6’: instru­ment = B. Cl. (V2k) — MIDI chan­nel 5
Score part ‘P7’: instru­ment = Bsn. (V2k) — MIDI chan­nel 7
Score part ‘P8’: instru­ment = Hn. (V2k) — MIDI chan­nel 8
Score part ‘P9’: instru­ment = Hn. 2 (V2k) — MIDI chan­nel 8
Score part ‘P10’: instru­ment = Tpt. (V2k) — MIDI chan­nel 9
Score part ‘P11’: instru­ment = Trb. (V2k) — MIDI chan­nel 11
Score part ‘P12’: instru­ment = B Trb. (V2k) — MIDI chan­nel 11
Score part ‘P13’: instru­ment = Tuba (V2k) — MIDI chan­nel 12
Score part ‘P14’: instru­ment = Timp. (V2k) — MIDI chan­nel 13
Score part ‘P15’: instru­ment = Splash Cymbal — MIDI chan­nel 10
Score part ‘P16’: instru­ment = Bass Drum — MIDI chan­nel 10
Score part ‘P17’: instru­ment = Harp (V2k) — MIDI chan­nel 6
Score part ‘P18’: instru­ment = Vln. (V2k) — MIDI chan­nel 14
Score part ‘P19’: instru­ment = Vln. 2 (V2k) — MIDI chan­nel 15
Score part ‘P20’: instru­ment = Va. (V2k) — MIDI chan­nel 16
Score part ‘P21’: instru­ment = Vc. (V2k) — MIDI chan­nel 16
Score part ‘P22’: instru­ment = Cb. (V2k) — MIDI chan­nel 16

Lee Actor’s “Prelude to a Tragedy” (2003) inter­pret­ed by MuseScore

Remember, though, that these meant to be raw inter­pre­ta­tions of musi­cal scores based on a few quan­ti­fied para­me­ters. To achieve a bet­ter ren­der­ing, per­for­mance para­me­ters should be insert­ed in the Bol Processor score for con­trol­ling vol­ume, panoram­ic etc. on a MIDI device, or an unlim­it­ed num­ber of para­me­ters with Csound.

Another com­plex exam­ple is Beethoven’s Fugue in B flat major (opus 133) also sup­plied as a MusicXML file. Played as a sin­gle item it takes no less than 372 sec­onds to com­pute, where­as PLAY safe deliv­ers (almost the same) in 33 seconds.

Again in this piece, the Javascript MIDIjs play­er can­not syn­the­size the two vio­lins, vio­la and cel­lo tracks (MIDI chan­nels 1 to 4). Therefore the MIDI file was sent to PianoTeq for a fair piano ren­der­ing of the mixed tracks.

Beethoven’s Fugue in B flat major — piano ver­sion played by the Bol Processor with PianoTeq

Performance controls

MusicXML files con­tain descrip­tive infor­ma­tion for use by mechan­i­cal play­back machines but not dis­played on the graph­ic score. For instance, wher­ev­er the score dis­plays “Allegretto” the file con­tains a quan­ti­ta­tive instruc­tion such as “tem­po = 132”.

Trills in mea­sure 10 of Beethoven’s Fugue in B flat major
Trills inter­pret­ed by the Bol Processor

Another notice­able case is the rep­re­sen­ta­tion of trills (see pic­ture above). These are described as sequences of fast notes in the MusicXML file. Consequently, they are accu­rate­ly ren­dered by the inter­preter of the MusicXML file.

In the same mea­sure #10, a fer­ma­ta appears on top of the crotch­et rest. Its dura­tion is not spec­i­fied because it is up to the dis­cre­tion of the per­former or con­duc­tor, but the Bol Processor fol­lows a com­mon prac­tice of mak­ing it 2 times the dura­tion of the tagged rest.

MusicXML files con­tain indi­ca­tions of sound dynam­ics which the Bol Processor inter­prets as _volume(x) com­mands. Graphic indi­ca­tions of the dynam­ics (signs ffff to pppp) are used in case a numer­ic val­ue is miss­ing. This val­ue is esti­mat­ed as per the MakeMusic Finale dynam­ics convention.

Options for import­ing a MusicXML file

Some pre­scrip­tive infor­ma­tion appear­ing on the graph­ic score is not inter­pret­ed. The first rea­son is that it would be dif­fi­cult to trans­late to Bol Processor per­for­mance con­trols — for instance stepwise/continuous vol­ume con­trol, accel­er­a­tion etc. The sec­ond rea­son is that the aim of this exer­cise is not to pro­duce the “best inter­pre­ta­tion” of a musi­cal score. Score edit­ing pro­grams per­form bet­ter! Our sole inten­tion is to cap­ture musi­cal frag­ments and rework them with gram­mars or scripts.

It would be dif­fi­cult to reuse a musi­cal frag­ment packed with strings of per­for­mance con­trols rel­e­vant to its par­tic­u­lar con­text in the musi­cal work. To this effect, the user is offered options to ignore vol­ume con­trols, tem­po and chan­nel assign­ments in every import­ed MusicXML score. These can lat­er be delet­ed or remapped in sin­gle clicks (see below).

Remapping channels and instruments

MusicXML dig­i­tal scores con­tain MIDI chan­nel spec­i­fi­ca­tions to sep­a­rate parts/instruments. These are vis­i­ble in the Bol Processor score after the con­ver­sion. In gen­er­al, they need to be remapped for the sound out­put device. MIDI chan­nels would be mod­i­fied to match instru­ments avail­able on a MIDI syn­the­siz­er, and _ins() instruc­tions may be need­ed to call instru­ments avail­able in the Csound orchestra.

This remap­ping car eas­i­ly be oper­at­ed at the bot­tom of Data or Grammar pages:

The note con­ven­tion when import­ing MusicXML scores is English (“C”, “D”, “E”…) by default. This form allows its con­ver­sion in a sin­gle click to Italian/Spanish/French (“do”, “re”, “mi”…) or Indian (“sa”, “re”, “ga”…) conventions.

Clicking the MANAGE _chan() AND _ins() but­ton dis­plays a form list­ing all occur­rences of MIDI chan­nels and Csound instru­ments. Here, for instance, we are plan­ning to keep MIDI chan­nels and insert _ins() com­mands to call Csound instru­ments described in a “-cs” Csound resource file: 

Error corrections

MuseScore’s cor­rec­tion of the defec­tive sequence (top score)

MuseScore sig­naled an error in mea­sure 142 of the MusicXML score for Beethoven’s Fugue: the total tim­ing of notes in part 1 (the upper­most score) is 3754 units which amounts to 3.66 beats (instead of 4) on a divi­sion of 1024 units per quar­ter note. MuseScore fixed this mis­take by stretch­ing this sequence to 4 beats with the mark­ing of a defec­tive silence at the end.

The Bol Processor behaves dif­fer­ent­ly. Its notion of “mea­sure” as a poly­met­ric struc­ture is not based on count­ing beats. It takes the struc­ture’s top line as ref­er­ence for tim­ing so that “mea­sures” may be of vari­able dura­tions. Its inter­pre­ta­tion of this mea­sure is the fol­low­ing: ratio 3755/1024 denotes exact­ly the (pre­sum­ably defec­tive) dura­tion of this mea­sure accord­ing to the MusicXML score:

{{341/1024,G5}{171/512,D5}{341/512,D6 D6}{171/512,D5}{341/512,Bb5 Bb5}{171/512,A5}{341/1024,G5}{57/256,G5}{227/1024,F5}{57/256,A5}}},
{4,{{341/1024,Bb4}{171/512,Bb3}{341/512,Bb4 Bb4}{171/512,Bb3}{341/512,D5 D5}{171/512,C5}{341/512,Bb4 Bb4}{171/512,A4}{341/1024,C5}}},
{4,{{4,D4 F#3 F#3 G3 G3 E4 Eb4 Eb4}}}}

Measure # 142 inter­pret­ed by the Bol Processor

The graph­ic ren­der­ing of this mea­sure indi­cates that the four sequences are per­fect­ly synchronized.

To fix the error it is suf­fi­cient to replace “3755/1024” with “4”.

Error noti­fi­ca­tion while con­vert­ing Beethoven’s Fugue

As per this writ­ing, the Bol Processor has been able to import most MusicXML scores and play them cor­rect­ly. Errors may still occur with very com­pli­cat­ed files, notably due to incon­sis­ten­cies (or round­ing errors) in the MusicXML code. For instance, the num­ber­ing of mea­sures looks con­fus­ing in Liszt’s 14th Hungarian Rhapsody (due to implic­it mea­sures) and a few val­ues of <back­ward> are incor­rect. These errors are detect­ed and com­pen­sat­ed while con­vert­ing the file.

Liszt’s 14th Hungarian Rhapsody import­ed by the Bol Processor and played on PianoTeq — with poten­tial con­ver­sion errors
Source: ManWithNoName in the MuseScore community

Several ver­sions of the same musi­cal work may be found on reper­to­ries. Below is an inter­pre­ta­tion of the same 14th Hungarian Rhapsody based on the score edit­ed by OguzSirin:

Liszt’s 14th Hungarian Rhapsody import­ed by the Bol Processor and played on PianoTeq
Source: OguzSirin

Tempo con­trols are repro­duced in full detail when import­ing MusicXML scores. However, no more than one change per mea­sure is tak­en into account. If sev­er­al state­ments are found in a mea­sure, they may be aver­aged, or option­al­ly tak­en into account which some­times pro­duces a slight desyn­chro­niza­tion of oth­er voic­es. Discarding tem­po con­trols results in acceleration/deceleration miss­ing the del­i­ca­cy of human inter­pre­ta­tion, yet the tran­scrip­tion is clos­er to the print­ed score and its frag­ments are more eli­gi­ble for a reuse.

This sophis­ti­cat­ed exam­ple rais­es anoth­er issue. MusicXML scores con­tain tem­po state­ments of two kinds: (1) metronome pre­scrip­tive indi­ca­tions avail­able on con­ven­tion­al print­ed scores and (2) their descrip­tive mod­i­fi­ca­tions for a prop­er rend­ing of the mechan­i­cal interpretation. 

An option is offered on the Bol Processor to con­vert all tem­po state­ments or restrict to the ones of the print­ed score, which for this rhap­sody yields a pure “aca­d­e­m­ic” rendering:

Liszt’s 14th Hungarian Rhapsody inter­pret­ed by Bol Processor with exclu­sive­ly tem­po state­ments of the print­ed score
Source: ManWithNoName in the MuseScore community

Despite restric­tions (and poten­tial errors), the detailed vir­tu­os­i­ty engraved in Liszt’s score comes in sup­port to Alfred Brendel’s idea of inter­pret­ing a musi­cal work:

If I belong to a tra­di­tion, it is a tra­di­tion that makes the mas­ter­piece tell the per­former what to do, and not the per­former telling the piece what it should be like, or the com­pos­er what he ought to have composed.

Size of files

Let us com­pare the sizes of files able to deliv­er the same inter­pre­ta­tion of 14th Hungarian Rhapsody:

  • Sound file in AIFF 16-bit 48 Khz pro­duced by PianoTeq = 200 Mb
  • MusicXML file = 3.9 Mb
  • Graphic + audio score pro­duced by MuseScore = 141 Kb
  • Graphic score export­ed as PDF by MuseScore = 895 Kb
  • Csound score pro­duced by Bol Processor = 582 Kb
  • MIDI file pro­duced by Bol Processor = 75 Kb
  • Bol Processor data = 62 Kb

This com­par­i­son sup­ports the idea that Bol Processor data is arguably the most com­pact and alto­geth­er com­pre­hen­sive (text) for­mat for rep­re­sent­ing dig­i­tal music scores. Below is the full data of this musi­cal work:

// MusicXML file ‘Hungarian_Rhapsody_No._14.musicxml’ con­vert­ed
// Score part ‘P1’: instru­ment = Piano — MIDI chan­nel 1


{_tempo(14/15) _volume(82) _chan(1){9/8, 1/8 -,{1/8,C1,C2}{1/2,Db1,Db2}{1/2,E1,E2}}}{_tempo(11/10) _volume(82) _chan(1){33/8, 33/8 ‚{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/2,F1,C2,F2} 1/2 {1/8,C1,C2}{1/2,Db1,Db2}{1/2,E1,E2}}}{_tempo(11/10) _volume(82) _chan(1){33/8, 33/8 ‚{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/2,F1,C2,F2} 1/2 {1/8,C1,C2}{1/2,Db1,Db2}{1/2,E1,E2}}}{_tempo(11/10) _volume(82) _chan(1){4,{3/2,G2,B2,E3}{1/2,B2,D#3,F#3}{1/2,B2,E3,G3}{3/2,C3,E3,A3},{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/2,F1,C2,F2} 1/3 {1/6,C1,C2}{1/2,Db1,Db2}{1/2,E1,E2}}}{_tempo(11/10) _volume(82) _chan(1){4,{3/2,E3,G3,B3}{1/2,E3,A3,C4}{1/2,E3,G3,B3}{3/2,C3,E3,A3},{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/2,F1,C2,F2} 1/3 {1/6,C1,C2}{1/2,Db1,Db2}{1/2,E1,E2}}}{_tempo(11/10) _volume(82) _chan(1){4,{15/8,Bb2,Eb3,G3}{1/8,G3}{15/8,Bb2,E3,G3}{1/8,E3},{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2}{1/8,F1,C2}{1/8,F2} 1/6 {1/12,G1}{1,Ab1 B1}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3} 1/6 {1/12,C1,C2}{1/2,Db1,Db2}{1/2,E1,E2}}}{_tempo(49/60) _volume(82) _chan(1){541/120,{Ab2,C3}F3 1/8 {91/240,Ab2 C3 F3 Ab3 C4 F4 Ab4 C5 F5 Ab5 C6 F6 Ab6 C7}{1,F7 -}-1/240, 1/8 {7/8,Ab2,C3}F3{1,-Ab6}361/240, 1/8 {7/8,F1,C2}F2{1/8,F1}{91/240,C2 F2 Ab2 C3 F3 Ab3 C4 F4 Ab4 C5 F5 Ab5 C6 F6} 427/480 {53/480,G1,G2}{1/2,Ab1,Ab2}{1/2,B1,B2}, 1/8 {7/8,F1,C2}F2 5/2 }}{_tempo(11/10) _volume(82) _chan(1){4,{3/2,Eb3,G3,C4}{1/2,G3,D4}{1/2,G3,C4,Eb4}{3/2,Ab3,C4,F4},{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/2,C2,G2,C3} 1/3 {1/6,G1,G2}{1/2,Ab1,Ab2}{1/2,B1,B2}}}{_tempo(11/10) _volume(82) _chan(1){4,{3/2,C4,Eb4,G4}{1/2,Ab3,F4,Ab4}{1/2,C4,Eb4,G4}{3/2,Ab3,C4,F4},{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/2,C2,G2,C3} 1/3 {1/6,G1,G2}{1/2,Ab1,Ab2}{1/2,B1,B2}}}{_tempo(11/10) _volume(82) _chan(1){4,{15/8,G3,C4,Eb4}{1/8,D4}{15/8,F3,B3,D4}{1/8,C4},{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3}{1/8,C2,G2}{1/8,C3} 1/6 {1/12,D2}{1,Eb2 F#2}{1/8,G2,D3}{1/8,G3}{1/8,G2,D3}{1/8,G3}{1/8,G2,D3}{1/8,G3} 1/6 {1/12,G1}{1,Ab1 B1}}}{_tempo(29/30) _volume(82) _chan(1){4,{C3,Eb3,G3}C4 1/4 {3/4,C3 Eb3 G3 C4 Eb4 G4 C5 Eb5 G5 C6 Eb6 G6 C7 Eb7 G7}{1,C8 -},{C3,Eb3,G3}C4 -{1/2,Eb7}1/2,{C1,G1}{1,C2}{1/8,C1,G1}{1/8,C2}{3/4,Eb2 G2 C3 Eb3 G3 C4 Eb4 G4 C5 Eb5 G5 C6 Eb6 Ab6 C6}-,{C1,G1}C2 --}}{_tempo(29/30) _volume(82) _chan(1){4,- 3/4 {1/4,Eb4}{3/4,Eb4}{1/4,Eb4}{3/4,Eb4}{1/4,Eb4}, 4 }}{_tempo(29/30) _volume(82) _chan(1){4,{3/2,Ab4}{1,Cb5 Bb4}{3/2,Ab4},{3/2,Eb4}{1/2,Eb4}{3/4,Eb4}{1/4,Eb4}{3/4,Eb4}{1/4,Eb4},{3/2,Eb3,Cb4}{1/2,Eb3,Eb4}{1/2,Eb3,Db4}{3/2,Eb3,Cb4}}}{_tempo(29/30) _volume(82) _chan(1){4,{3/2,G4}{1,F4 Eb4}{3/2,Ab4},{1/2,Eb4}Eb4{1/2,Eb4}{3/4,Eb4}{1/4,Eb4}{3/4,Eb4}{1/4,Eb4},{3/2,Eb3,Bb3}{1/2,Eb3,Ab3}{1/2,Eb3,G3}{3/2,Eb3,Cb4}}}{_tempo(29/30) _volume(82) _chan(1){4,{7/4,Bb3,Db4,Eb4}{1/4,Ab3,Cb4,Eb4}{7/4,Ab3,Cb4,Eb4}{1/4,G3,Bb3,Eb4},{7/4,G2,Eb3}{1/4,Ab2,Eb3}{7/4,Ab2,Eb3}{1/4,Eb2,Bb2,Eb3}}}{_tempo(29/30) _volume(82) _chan(1){4,{3/2,G3,Bb3,Eb4} 1/4 {1/4,C4,C5}{3/4,C4,C5}{1/4,C4,C5}{3/4,C4,C5}{1/4,C4,C5},{3/2,Eb2,Bb2,Eb3} 1/2 --,{3/2,Eb2,Bb2,Eb3,G3,Bb3,Eb4} 5/2 }}{_tempo(29/30) _volume(82) _chan(1){4,{3/2,F4}{1,C5 G4}{3/2,F4},{3/2,C4,C5}{1/2,Ab4}{3/4,C4,C5}{1/4,C4,C5}{3/4,C4,C5}{1/4,C4,C5},{3/2,C3,Ab3}{1/2,C3,C4}{1/2,C3,Bb3}{3/2,C3,Ab3}}}{_tempo(29/30) _volume(82) _chan(1){4,{3/2,Eb4}{1,C5 C4}{3/2,F4},{3/2,C4,C5}{1/2,Db4}{3/4,C5}{1/4,C4,C5}{3/4,C4,C5}{1/4,C4,C5},{3/2,C3,G3}{1/2,C3,F3}{1/2,C3,E3}{3/2,C3,Ab3}}}{_tempo(29/30) _volume(82) _chan(1){4,{7/4,C4,C5}{1/4,C4,F4,Ab4,C5}{7/4,C4,F4,Ab4,C5}{1/4,Db4,F4,Ab4,Db5},{7/4,G4,Bb4}9/4,{7/4,E2,C3,G3,Bb3}{1/4,F2}{7/4,C3,F3,Ab3}{1/4,Ab1&}}}{_tempo(29/30) _volume(82) _chan(1){4,{15/4,Db4,F4,Ab4,Db5} 1/8 {1/8,C4,Gb4,B4,Eb5},{3/4,Ab2}{3,Db3 F3 Ab3 Db4 F4 Ab4 Db5 F5 Ab5 Db6 F6 Ab6}{1/4,-Ab1&},&Ab1 ---}}{_tempo(29/30) _volume(82) _chan(1){4,{15/4,Db4,Gb4,B4,Eb5} 1/8 {1/8,Fb4,Ab4,Cb5,Fb5},{3/4,Ab2}{3,Eb3 Gb3 B3 C4 G4 Bb4 Eb5 Gb5 B5 Eb6 Gb6 B6}{1/4,-Ab1&},&Ab1 ---}}{_tempo(29/30) _volume(82) _chan(1){4,{15/4,Fb4,Ab4,C5,Fb5} 1/8 {1/8,F4,Ab4,Db5,F5},{3/4,Ab2}{3,Fb3 Ab3 Cb4 F4 Ab4 C5 F5 Ab5 Cb6 Fb6 Ab6 Cb7}{1/4,-B1&},&Ab1 ---}}{_tempo(29/30) _volume(82) _chan(1){4,{7/2,F4,Ab4,Db5,F5} 1/2 ‚{3/4,B2}{13/4,F3 Ab3 Db4 F4 Ab4 Db5 F5 Ab5 Db6 F6 Ab6 Db7 -},&B1 ---}}{_tempo(29/30) _volume(82) _chan(1){4, 4/5 {1/5,Gb3,Db4,Gb4}{853/480,Gb3,Db4,Gb4}{107/480,F3,Ab3,Db4,F4}{F3&,Ab3&,Db4&,F4&}, 4/5 {1/5,B1,B2}{853/480,B1,B2}{107/480,C2,C3}{C2&,C3&}}}{_tempo(29/30) _volume(82) _chan(1){4,{427/480,&F3,&Ab3,&Db4,&F4}{53/480,F3,Ab3,Db4}{2,Db4}C4, 1 {F3,Ab3}{2,Eb3,G3},{427/480,&C2,&C3}{53/480,C2,Bb2,Db3}{2,Bb2,Db3}C3,-{2,C2}-}}{_tempo(9/4) _volume(113) _chan(1){4,{3/2,F4,A4,C5,F5}{1/2,G4,G5}{1/2,A4,A5}{3/2,Bb4,D5,F5,Bb5},{3/2,F2,A2,C3,F3}{1,G3 A3}{3/2,D3,F3,Bb3}}}{_tempo(9/4) _volume(82) _chan(1){4,{3/2,C5,F5,A5,C6}{1/2,D5,D6}{1/2,C5,C6}{3/2,Bb4,D5,F5,Bb5},{3/2,A2,F3,C4}{1,D4 C4}{3/2,D3,F3,Bb3}}}{_tempo(9/4) _volume(82) _chan(1){9/2, 1/8 {1/8,A4,C5,F5,A5}{2,A4,C5,F5,A5} 1/8 {1/8,G4,Bb4,E5,G5}{2,G4,Bb4,E5,G5},{1/4,C2 C3}{2,F3,A3,C4,F4}{1/4,C2 C3}{2,E3,G3,C4,E4}}}{_tempo(9/4) _volume(82) _chan(1){17/4, 1/8 {1/8,F4,A4,C5,F5}{2,F4,A4,C5,F5}--,{1/4,F1 F2}{2,C3,F3,A3,C4}--}}{_tempo(9/4) _volume(82) _chan(1){4,{3/2,C5,E5,G5,C6}{1/2,D5,D6}{1/2,E5,E6}{3/2,F5,A5,C6,F6},{1/8,C2}{11/8,C3,E3,G3,C4}{1,D4 E4}{3/2,A3,C4,F4}}}{_tempo(9/4) _volume(82) _chan(1){17/4, 1/4 {3/2,G5,C6,G6}{1/2,A5,A6}{1/2,G5,G6}{3/2,F5,A5,D6,F6},{1/4,E2 E3}{3/2,G3,C4,G4}{1,A4 G4}{3/2,F3,A3,D4,F4}}}{_tempo(9/4) _volume(82) _chan(1){9/2,{1/4,E5,G5,C6,E6}{2,E5,G5,C6,E6}{1/4,D5,F5,B5,D6}{2,D5,F5,B5,D6},{1/4,G2}{2,E3,G3,C4,E4}{1/4,G2}{2,G3,B3,D4,G4}}}{_tempo(9/4) _volume(82) _chan(1){17/4,{1/4,C5,E5,G5,C6}{2,C5,E5,G5,C6}--,{1/4,C2}{2,C3,E3,G3,C4}--}}{_tempo(9/4) _volume(113) _chan(1){4,{3/2,F4,D5,F5}{1/2,A4,F5,A5}{1/2,G4,E5,G5}{3/2,F4,D5,F5},{3/2,D3,F3,D4}{1/2,F3,A3,F4}{1/2,E3,G3,E4}{3/2,D3,F3,D4}}}{_tempo(9/4) _volume(82) _chan(1){4,{3/2,E4,C5,E5}{1/2,D4,Bb4,D5}{1/2,C4,A4,C5}{3/2,F4,A4,F5},{3/2,C3,E3,C4}{1/2,Bb2,D3,Bb3}{1/2,A2,C3,A3}{3/2,D3,F3,A3}}}{_tempo(9/4) _volume(82) _chan(1){9/2,{1/4,Bb3,G4,Bb4}{2,Bb3,G4,Bb4}{1/4,A3,F4,A4}{2,A3,F4,A4},{1/4,E2,C3,G3}{2,E2,C3,G3}{1/4,F2,D3,F3}{2,F2,C3,F3}}}{_tempo(9/4) _volume(82) _chan(1){17/4,{1/4,G3,C4,E4,G4}{2,G3,C4,E4,G4}--,{1/4,C2,G2,C3}{2,C2,G2,C3}--}}{_tempo(9/4) _volume(82) _chan(1){4,{3/2,C5,E5,C6}{1/2,D5,F5,D6}{1/2,E5,G5,E6}{3/2,F5,A5,F6},{3/2,C3,C4}{1/2,B2,B3}{1/2,Bb2,Bb3}{3/2,A2,A3}}}{_tempo(9/4) _volume(82) _chan(1){17/4, 1/4 {3/2,G5,Bb5,C6,G6}{1/2,F5,A5,F6}{1/2,E5,C6,E6}{3/2,D5,Bb5,D6},{1/4,E2 E3}{3/2,Bb3,C4,G4}{1/2,F3,A3,C4,F4}{1/2,C4,E4}{3/2,Bb2,F3,Bb3,D4}}}{_tempo(9/4) _volume(82) _chan(1){4,{C5,F5,C6}{F5,F6}{1/2,C5,C6}{3/2,Bb4,F5,Bb5},{A2,F3,C4}F4{1/2,C4}{3/2,D3,F3},{2,C4} 1/2 {3/2,Bb3}}}{_tempo(9/4) _volume(82) _chan(1){9/2, 1/8 {1/8,A4,C5,F5,A5}{2,A4,C5,F5,A5} 1/8 {1/8,G4,Bb4,E5,G5}{2,G4,Bb4,E5,G5},{1/4,C2 C3}{2,F3,A3,C4,F4}{1/4,C2 C3}{2,E3,G3,C4,E4}}}{_tempo(9/4) _volume(82) _chan(1){17/4, 1/8 {1/8,F4,A4,C5,F5}{2,F4,A4,C5,F5}--,{1/4,F1 F2}{2,C3,F3,A3,C4}--}}{_tempo(9/4) _volume(82) _chan(1){4,{3/2,F4,D5,F5}{1/2,A4,F5,A5}{1/2,G4,E5,G5}{3/2,F4,D5,F5},{3/2,D3,F3,D4}{1/2,F3,A3,F4}{1/2,E3,G3,E4}{3/2,D3,F3,D4}}}{_tempo(9/4) _volume(82) _chan(1){4,{3/2,E4,C5,E5}{1/2,D4,Bb4,D5}{1/2,C4,A4,C5}{3/2,F4,A4,F5},{3/2,C3,E3,C4}{1/2,Bb2,D3,Bb3}{1/2,A2,C3,A3}{3/2,D3,F3,A3}}}{_tempo(9/4) _volume(82) _chan(1){9/2,{1/4,Bb3,G4,Bb4}{2,Bb3,G4,Bb4}{1/4,A3,D4,F#4,A4}{2,A3,D4,F#4,A4},{1/4,G2,C3,G3}{2,G2,C3,G3}{1/4,D2,F#2,D3}{2,D2,F#2,D3}}}{_tempo(9/4) _volume(82) _chan(1){17/4,{1/4,G3,Eb4,G4}{3,G3,Eb4,G4}-,{1/4,Eb2,Bb2,Eb3}{3,Eb2,Bb2,Eb3}-}}{_tempo(9/4) _volume(82) _chan(1){4,{3/2,C5,Eb5,Ab5,C6}{1/2,D5,F5,Bb5,D6}{1/2,Eb5,G5,C6,Eb6}{3/2,F5,Ab5,Db6,F6},{3/2,A2,Eb3,Ab3,C4}{1/2,F3,B3,D4}{1/2,Ab3,C4,Eb4}{3/2,Ab3,Db4,F4}}}{_tempo(9/4) _volume(82) _chan(1){4,{3/2,G5,Bb5,C6,G6}{1/2,F5,A5,F6}{1/2,E5,C6,E6}{3/2,D5,Bb5,D6},{3/2,G3,Bb3,C4,G4}{1/2,F3,A3,C4,F4}{1/2,C4,E4}{3/2,Bb2,F3,Bb3,D4}}}{_tempo(9/4) _volume(82) _chan(1){4,{C5,F5,C6}{F5,F6}{1/2,C5,C6}{3/2,Bb4,F5,Bb5},{A2,F3,C4}F4{1/2,C4}{3/2,D3,F3},{2,C4} 1/2 {3/2,Bb3}}}{_tempo(9/4) _volume(82) _chan(1){9/2, 1/8 {1/8,A4,C5,F5,A5}{2,A4,C5,F5,A5} 1/8 {1/8,G4,Bb4,E5,G5}{2,G4,Bb4,E5,G5},{1/4,C2 C3}{2,F3,A3,C4,F4}{1/4,C2 C3}{2,E3,G3,C4,E4}}}{_tempo(9/4) _volume(82) _chan(1){17/4, 1/8 {1/8,F4,A4,C5,F5}{2,F4,A4,C5,F5}--,{1/4,F1 F2}{2,C3,F3,A3,C4}--}}{_tempo(9/4) _volume(113) _chan(1){9/2, 1 {1/2,A3,C4,F4}{1/2,A4,C5,F5}{1/2,G5,C6,E6,G6}{1/2,A5,C6,F6,A6}{3/2,Bb5,D6,F6,Bb6},{1/2,C3 D3 E3}{1/2,F3}{1/2,A2,C3,F3}{1/2,A3,C4,F4}{1/2,G3,C4,E4,G4}{1/2,A3,C4,F4,A4}{3/2,Bb3,D4,F4,Bb4},{1/2,C2 D2 E2}{1/2,F1,F2} 7/2 }}{_tempo(9/4) _volume(82) _chan(1){9/2, 1 {1/2,C4,F4,A4,C5}{1/2,C5,F5,A5,C6}{1/2,D6,F6,Bb6,D7}{1/2,C6,F6,A6,C7}{3/2,Bb5,D6,F6,Bb6},{1/2,C3 D3 E3}{1/2,F3}{1/2,C3,F3,A3}{1/2,C4,F4,A4}{1/2,D4,F4,Bb4,D5}{1/2,C4,F4,A4,C5}{3/2,Bb3,D4,F4,Bb4},{1/2,C2 D2 E2}{1/2,F1,F2} 7/2 }}{_tempo(9/4) _volume(82) _chan(1){9/2, 1 {1/2,A5,C6,F6,A6}{A5,C6,F6,A6} 1/2 {1/2,G5,Bb5,E6,G6}{G5,Bb5,E6,G6},{1/2,C3 D3 E3}{1/2,F3}{1/2,C3,F3,A3,C4}{4/5,A3,C4,F4,A4}{1/5,B1,B2}{1/2,C2,C3}{1/2,C3,E3,G3,C4}{G3,C4,E4,G4},{1/2,C2 D2 E2}{1/2,F1,F2} 7/2 }}{_tempo(9/4) _volume(82) _chan(1){33/8, 1/8 1/2 {1/2,A3,C4,F4}{1/2,A4,C5,F5}{1/2,A5,C6,F6}{1/2,F6,A6,C7,F7} 1/2 -,{1/8,E1,E2}{1/2,F1,F2}{1/2,A2,C3,F3}{1/2,A3,C4,F4}{1/2,A3,C4,F4}{1/2,F4,A4,C5,F5} 1/2 -}}{_tempo(9/4) _volume(82) _chan(1){9/2, 1 {1/2,E4,G4,C5}{1/2,E5,G5,C6}{1/2,D6,G6,B6,D7}{1/2,E6,G6,C7,E7}{3/2,F6,A6,C7,F7},{1/2,G3 A3 B3}{1/2,C4}{1/2,E3,G3,C4}{1/2,E4,G4,C5}{1/2,G3,B3,D4,G4}{1/2,C4,E4,G4,C5}{3/2,A3,C4,F4,A4},{1/2,G2 A2 B2}{1/2,C2,C3} 7/2 }}{_tempo(9/4) _volume(82) _chan(1){9/2, 1 {1/2,C4,F4,A4,C5}{1/2,C5,F5,A5,C6}{1/2,D6,F6,Bb6,D7}{1/2,C6,F6,A6,C7}{3/2,Bb5,D6,F6,Bb6},{1/2,G3 A3 B3}{1/2,C4}{1/2,G3,C4,E4}{1/2,G4,C5,E5}{1/2,F4,A4,D5,F5}{1/2,C4,E4,G4,C5}{3/2,F4,A4,C5,F5},{1/2,G2 A2 B2}{1/2,C2,C3} 7/2 }}{_tempo(9/4) _volume(82) _chan(1){9/2, 1 {1/2,E5,G5,C6,E6}{E6,G6,C7,E7} 1/2 {1/2,D5,F5,B5,D6}{D6,F6,B6,D7},{1/2,G3 A3 B3}{1/2,C4}{1/2,G3,C4,E4,G4}{4/5,E4,G4,C5,E5}{1/5,F#2,F#3}{1/2,G2,G3}{1/2,G3,B3,D4,G4}{D4,G4,B4,D5},{1/2,G2 A2 B2}{1/2,C2,C3} 7/2 }}{_tempo(9/4) _volume(124) _chan(1){33/8, 1/8 1/2 {1/2,E3,G3,C4}{1/2,E4,G4,C5}{1/2,E5,G5,C6}{1/2,C6,E6,G6,C7} 1/2 -,{1/8,B1,B2}{1/2,C2,C3}{1/2,E2,G2,C3}{1/2,E3,G3,C4}{1/2,E4,G4,C5}{1/2,C4,E4,G4,C5} 1/2 -}}{_tempo(2) _volume(97) _chan(1){4, 1/2 {1/6,C5}{1/6,F5,C6}{1/6,C6}{1/6,F6,C7}{1/6,C6}{1/6,F5,C6}{1/6,C5}{1/6,A5,C6}{1/6,C6}{1/6,G6,C7}{1/6,C6}{1/6,G5,C6}{1/6,C5}{1/6,F5,C6}{1/6,C6}{1/2,F6,C7} 1/2 ‚{3/2,A3,C4,F4}{1/2,C4,A4}{1/2,Bb3,C4,G4}{3/2,A3,C4,F4}}}{_tempo(2) _volume(82) _chan(1){4, 1/2 {1/6,C5}{1/6,E5,C6}{1/6,C6}{1/6,E6,C7}{1/6,C6}{1/6,E5,C6}{1/2,C5 C6 C6}{1/6,G6,C7}{1/2,C6 C6 C5}{1/6,F5,C6}{1/6,C6}{1/2,F6,C7} 1/2 ‚{3/2,G3,C4,E4}{1/2,F3,C4,D4}{1/2,E3,C4}{3/2,A3,C4,F4}}}{_tempo(2) _volume(82) _chan(1){4,{1/2,C4,G4,Bb4} 1/2 {1/6,G6,Bb6}{1/3,E6 C6}{1/6,G5,Bb5}{1/3,E5 C5}{1/2,F4,A4} 1/2 {1/6,F6,A6}{1/3,D6 Bb5}{1/6,F5,A5}{1/3,D5 Bb4},{1,E2 C3 E3 G3 Bb3 C4}{1/2,G4,Bb4} 1/2 {1,F2 C3 F3 A3 C4 F4}{1,A4 -}}}{_tempo(2) _volume(82) _chan(1){4,{1/2,E4,G4} 1/2 {1/6,E6,G6}{1/3,C6 G5}{1/6,G5,C6}{1/3,E5 C5}{1/6,E5,G5}{1/3,C5 G4}{1/6,G4,C5}{1/3,E4 C4}{1/6,E4,G4}{1/3,C4 G3} 1/2 ‚{1,C2 G2 C3 E3 G3 C4}{3/2,G4 --}-{1/2,E3 C3 G2}}}{_tempo(2) _volume(82) _chan(1){4, 1/2 {1/2,E4,G4,C5}{1/2,E5,G5,C6}{1/2,D6,F6,D7}{1/2,E6,G6,E7}{3/2,F6,A6,F7},{1/2,C1}{1/2,E3,G3,C4}{1/2,E4,G4,C5}{1/2,D4,F4,B4,D5}{1/2,E4,G4,Bb4,E5}{3/2,F4,A4,F5}}}{_tempo(2) _volume(82) _chan(1){4,{1/2,G3,Bb3,G4}{1/2,G4,Bb4,G5}{1/2,G6,Bb6,G7}{1/2,F6,A6,F7}{1/2,E6,C7,E7}{3/2,D5,Bb5,D6},{1/2,E2,A2,C3}{1/2,E3,C4,E4}{1/2,E4,C5,E5}{1/2,F4,A4,F5}{1/2,C5,E5}{3/2,Bb3,F4,Bb4,D5}}}{_tempo(2) _volume(82) _chan(1){4,{1/3,C6,F6,C7}{1/3,F6,F7}{1/3,C6,C7}{1/3,F6,F7}{1/3,C6,C7}{1/3,F5,F6}{1/3,C5,C6}{1/3,F4,F5}{1/3,C4,C5}{Bb3,F4,Bb4},{3,A5 D6 C5 F5 C5 F4 C4 F3 C3}{D2,Bb2},{F4,D5}---}}{_tempo(2) _volume(82) _chan(1){4,{1/2,A3,F4,A4}{1/2,A4,F5,A5}{4/5,A5,F6,A6}{1/5,G3,C4,G4}{1/2,G3,C4,G4}{1/2,G4,C5,G5}{G5,C6,G6},{1/2,C2,A2,C3}{1/2,C3,A3,C4}{4/5,C4,F4,A4,C5}{1/5,C2,E2,G2,C3}{1/2,C2,E2,G2,C3}{1/2,C3,E3,G3,C4}{C4,E4,G4,C5}}}{_tempo(2) _volume(82) _chan(1){33/8,{1/8,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}{1/2,F4,A4,C5,F5}{1/2,F5,A5,C6,F6}{1/2,F6&,A6&,C7&,F7&}{&F6,&A6,&C7,&F7}-,{1/8,F1,A1,C2,F2}{1/2,F1,A1,C2,F2}{1/2,F2,A2,C3,F3}{1/2,F3,A3,C4,F4}{1/2,F4&,A4&,C5&,F5&}{&F4,&A4,&C5,&F5}-}}{_tempo(5/3) _volume(97) _chan(1){4, 1/2 {7/2,C5 C6 D6 C6 C7 D7 C7 C6 D6 C6 C5 C6 D6 C6 C7 D7 C7 C6 D6 C6 C5 C6 D6 C6 C7 D7 C7 C6},{3/2,A3,C4,F4}{1/2,C4,A4}{1/2,Bb3,C4,G4}{3/2,A3,C4,F4}}}{_tempo(5/3) _volume(82) _chan(1){4,{4,D6 C6 C5 C6 D6 C6 C7 D7 C7 C6 D6 C6 C5 C6 D6 C6 C7 D7 C7 C6 D6 C6 C5 C6 D6 C6 C7 D7 C7 C6 F6 A6},{3/2,G3,C4,E4}{1/2,F3,C4,D4}{1/2,E3,C4}{3/2,A3,C4,F4}}}{_tempo(4/3) _volume(82) _chan(1){643/160,{2,D7 C#7 C7 B6 Bb6 A6 Ab6 G6 F#6 F6 E6 Eb6 D6 C#6 C6 B5 Bb5 A5 Ab5 G5}{323/160,F#5 F5 E5 Eb5 D5 C#5 C5 B4 Bb4 A4 Ab4 G4 F#4 F4 E4 Eb4 D4 C#4 D4}, 1/8 {15/8,Bb2,G3,D4}{2,D3,A3,C4,F#4}}}{_tempo(4/3) _volume(82) _chan(1){33/8,{1/8,G3,E4,G4}{4,D4 C#4 C4 B3 Bb3 A3 Ab3 G3 F#3 F3 E3 Eb3 D3 Db3 C3 B2 Bb2 A2 Ab2 G2 F#2 F2 E2 Eb2 E2 F2 F#2 G2 Ab2 A2 Bb2 B2},{1/8,G2,E3,G3}{4,D3 C#3 C3 B2 Bb2 A2 Ab2 G2 F#2 F2 E2 Eb2 D2 Db2 C2 B1 Bb1 A1 Ab1 G1 F#1 F1 E1 Eb1 E1 F1 F#1 G1 Ab1 A1 Bb1 B1}}}{_tempo(5/3) _volume(113) _chan(1){4,{1/2,C3}{1/2,C4,E4,G4,C5}{1/2,C5,E5,G5,C6}{1/2,D6,F6,D7}{1/2,E6,G6,E7}{3/2,F6,A6,F7},{1/2,C1,C2}{1/2,C3,E3,G3,C4}{1/2,C4,E4,G4,C5}{1/2,B3,Ab4,B4}{1/2,Bb3,G4,Bb4}{3/2,A3,F4,A4}}}{_tempo(5/3) _volume(82) _chan(1){4,{1/2,G3,Bb3,G4}{1/2,G4,Bb4,G5}{1/2,G5,Bb5,G6}{1/2,F6,A6,F7}{1/2,E6,C7,E7}{3/2,D6,Bb6,D7},{1/2,E2,A2,C3}{1/2,E3,C4,E4}{1/2,E4,C5,E5}{1/2,F5,A5,C6,F6}{1/2,C6,E6}{3/2,Bb4,F5,Bb5,D6}}}{_tempo(5/3) _volume(82) _chan(1){4,{1/3,C6,F6,C7}{1/3,F6,F7}{1/3,C6,C7}{1/3,F6,F7}{1/3,C6,C7}{1/3,F5,F6}{1/3,C5,C6}{1/3,F4,F5}{1/3,C4,C5}{Bb3,F4,Bb4},{1/3,F4,D5,A5}{8/3,D6 C5 F5 C5 F4 C4 F3 C3}{D2,Bb2}}}{_tempo(5/3) _volume(124) _chan(1){4,{1/2,A3,F4,A4}{1/2,A4,F5,A5}{7/8,A5,F6,A6}{1/8,G3,C4,G4}{1/2,G3,C4,G4}{1/2,G4,C5,G5}{7/8,G5,C6,G6}{1/8,F3,A3,C4,F4},{1/2,C2,A2,C3}{1/2,C3,A3,C4}{7/8,C4,A4,C5}{1/8,C2,E2,G2,C3}{1/2,C2,E2,G2,C3}{1/2,C3,E3,G3,C4}{7/8,C4,E4,G4,C5}{1/8,F1,A1,C2,F2}}}{_tempo(5/3) _volume(82) _chan(1){4,{1/2,F3,A3,C4,F4}{1/2,F4,A4,C5,F5}{1/2,F5,A5,C6,F6}{1/2,F6&,A6&,C7&,F7&}{&F6,&A6,&C7,&F7}-,{1/2,F1,A1,C2,F2}{1/2,F2,A2,C3,F3}{1/2,F3,A3,C4,F4}{1/2,F4&,A4&,C5&,F5&}{&F4,&A4,&C5,&F5}-, 1/64 7/64 }}{_tempo(7/4) _volume(52) _chan(1){1/2,{1/2,A3&}, 1/2 }}{_tempo(5/3) _volume(82) _chan(1){2,{1/2,&A3,D4,A4}{1/2,A3,D4,A4}{1/2,A3,D4,A4}{1/4,A3,D4,G#4}{1/4,B4},{1/2,D2,F#3}{1/2,A2,F#3}{1/2,D3,F#3}{1/2,A2,F#3}}}{_tempo(5/3) _volume(82) _chan(1){2,{1/2,A4}{1/2,G4 B4}{1,A4 D4&},{1/2,A3,D4}{1/2,A3,D4}{1/2,A3,D4}1/2,{1/2,D2,F#3}{1/2,A2,F#3}{1/2,D3,F#3} 1/2 }}{_tempo(5/3) _volume(82) _chan(1){2,{1/2,&D4,F#4,C5}{1/2,D4,F#4,C5}{1/2,D4,F#4,C5}{1/2,B4 D5}, 3/2 {1/2,D4,F#4},{1/2,D2,A3}{1/2,A2,A3}{1/2,D3,A3}{1/2,A2,A3}}}{_tempo(5/3) _volume(82) _chan(1){2,{1/2,C5}{1/2,B4 D5}{1,C5 D4&},{1/2,D4,F#4}{1/2,D4,F#4}{1/2,D4,F#4}1/2,{1/2,D2,A3}{1/2,A2,A3}{1/2,D3,A3} 1/2 }}{_tempo(5/3) _volume(82) _chan(1){2,{1/2,&D4,G4,B4}{1/2,D4,G4,B4}{1/2,D4,G4,B4}{1/2,A#4 C5}, 3/2 {1/2,D4,F#4},{1/2,G2,B3}{1/2,D3,B3}{1/2,G3,B3}{1/2,D3,B3}}}{_tempo(5/3) _volume(82) _chan(1){2,{1/2,B4}{1/2,A#4 C5}B4,{1/2,D4,G4}{1/2,D4,F#4}{D4,G4},{1/2,G2,B3}{1/2,D3,B3}{G3,B3}}}{_tempo(5/3) _volume(82) _chan(1){2,{1/2,B4,G5,B5}{1/2,B4,G5,B5}{1/2,B4,G5,B5}{1/2,A#4,F#5}, 3/2 {1/2,A#5 C6},{1/2,G2,D4}{1/2,D3,D4}{1/2,B3,D4}{1/2,D3,D4}}}{_tempo(5/3) _volume(82) _chan(1){2,{1/2,B4,G5}{1/2,A#4,F#5}{B4,G5},{1/2,B5}{1/2,A#5 C6}B5,{1/2,G2,D4}{1/2,D3,D4}{G3,D4}}}{_tempo(2) _volume(52) _chan(1){4,{3/2,D5,B5}{1/2,D5,D6}{1/2,D5,C#6}{3/2,D5,B5},{3/2,G4}{1,B4 A4}{3/2,G4}}}{_tempo(7/15) _volume(82) _chan(1){961/240,{3/2,D5,A5}{1/2,D5,G5}{1/2,D5,F#5}{3/2,G5 --}1/240, 5/2 {1/2,C#5}{77/80,F#5 G5 A#5 B5 E6 E#6 F#6 A6 G6 E6 C#6 A#5 G5 E5 E#5 F#5 A5 G5 B#4 C#5 F#5 E5}{1/24,-D5}, 1/8 {11/8,F#4,A4}{1/2,E4,A4}{1/2,D4,A4}{3/2,A#3,E4,G4}}}{_tempo(7/3) _volume(97) _chan(1){2,B4{1,-D4},D5 1,{B3,F#4} 1 }}{_tempo(7/3) _volume(82) _chan(1){2,{1,F#4 G4 A4 B4}{1,A4 C#5},{1,D4}{1/2,D4,F#4}{1/2,C#4,G4},{A2,F#3,A3}{1/2,A2,F#3,A3}{1/2,A2,E3,A3}}}{_tempo(7/3) _volume(82) _chan(1){2,D5{1,-D5},{D4,F#4}1,{D3,A3}-}}{_tempo(7/3) _volume(82) _chan(1){2,{1,F#5 G5 A5 B5}{1,A5 C#6},{1,D5}{1/2,D5,F#5}{1/2,C#5,G5},{A3,F#4,A4}{1/2,A3,F#4,A4}{1/2,A3,E4,A4}}}{_tempo(7/3) _volume(82) _chan(1){2,D6{1,-A5},{D5,F#5}1,{D4,A4} 1 }}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,A5,F#6,A6}{1/2,A5,F#6,A6}{1/2,A5,F#6,A6}{1/2,G#6 B6}, 3/2 {1/2,G#5,E#6},{1/2,G2,G3}{1/2,A3,F#4,A4}{1/2,C#4,F#4,A4}{1/2,A3,F#4,A4}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,A6}{1/2,G#6 B6}{1,A6 D6},{1/2,A5,F#6}{1/2,G#5,E#6}{1/2,A5,F#6}1/2,{1/2,D4,F#4,A4}{1/2,A3,F#4,A4}{1/2,D4,F#4,A4} 1/2 }}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,C6,A6,C7}{1/2,C6,A6,C7}{1/2,C6,A6,C7}{1/2,B6 D7}, 3/2 {1/2,B5,G#6},{1/2,D2,D3}{1/2,C4,A4,C5}{1/2,E4,A4,C5}{1/2,C4,A4,C5}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,C7}{1/2,B6 D7}{1,C7 F#6},{1/2,C6,A6}{1/2,B5,G#6}{1/2,C6,A6}1/2,{1/2,F#4,A4,C5}{1/2,C4,A4,C5}{1/2,F#4,A4,C5} 1/2 }}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,B5,G6,B6}{1/2,B5,G6,B6}{1/2,B5,G6,B6}{1/2,A#6 C7}, 3/2 {1/2,A#5,F#6},{1/2,G2,G3}{1/2,B3,G4,B4}{1/2,D4,G4,B4}{1/2,B3,G4,B4}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,B6}{1/2,A#6 C7}B6,{1/2,B5,G6}{1/2,A#5,F#6}{B5,G6},{1/2,D4,G4,B4}{1/2,B3,G4,B4}{D4,G4,B4}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,D6,B6,D7}{1/2,D6,B6,D7}{1/2,D6,B6,D7}{1/2,C#7 E7}, 3/2 {1/2,C#6,A#6},{1/2,G2,G3}{1/2,D4,B4,D5}{1/2,F#4,B4,D5}{1/2,D4,B4,D5}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,D7}{1/2,C#7 E7}{1,D7 -},{1/2,D6,B6}{1/2,C#6,A#6}{1/2,D6,B6}1/2,{1/2,G4,B4,D5}{1/2,D4,B4,D5}{1/2,G4,B4,D5} 1/2 }}{_tempo(7/4) _volume(113) _chan(1){2,{1/2,C#4,D4,F#4,A4}{1/2,C#4,D4,F#4,A4}{1/2,C#4,D4,F#4,A4}{1/2,A#3 C4},{1/2,B1,B2}{1/2,B1,B2}{1/2,B1,B2}{1/2,A#2 C3}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,C4,D4,F#4,A4}{1/2,A#3 C4}{1/2,C4,D4,F#4,A4} 1/2 ‚{1/2,B1,B2}{1/2,A#2 C3}{1/2,B1,B2} 1/2 }}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,C#4,D4,F#4,A4,D5}{1/2,C#4,D4,F#4,A4,D5}{1/2,C#4,D4,F#4,A4,D5}{1/2,A#3 C4},{1/2,B1,B2}{1/2,B1,B2}{1/2,B1,B2}{1/2,A#2 C3}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,A3,B3,D#4,F#4,B4}{1/2,A#3 C4}{1/2,A3,B3,D#4,F#4,B4} 1/2 ‚{1/2,G1,G2}{1/2,A#2 C3}{1/2,B1,B2} 1/2 }}{_tempo(7/3) _volume(97) _chan(1){2,{1/2,B4,G#5,B5}{1/2,B4,G#5,B5}{1/2,B4,G#5,B5}{1/2,A#4 F5 C#6},{1/2,E2,E3}{1/2,G#3,E4}{1/2,B3,G#4}{1/2,G#3,E4}}}{_tempo(7/3) _volume(82) _chan(1){2,{1/2,B4,G#5,B5}{1/2,A#4 F5 C#6}{1/2,B4,G#5,B5} 1/2 ‚{1/2,E2,E3}{1/2,G#3,E4}{1/2,B3,G#4}{1/2,G#3,E4}}}{_tempo(7/3) _volume(97) _chan(1){2,{1/2,D5,B5,D6}{1/2,D5,B5,D6}{1/2,D5,B5,D6}{1/2,C#5 A#5 E6},{1/2,E2,E3}{1/2,B3,G#4}{1/2,D4,B4}{1/2,B3,G#4}}}{_tempo(7/3) _volume(82) _chan(1){2,{1/2,D5,B5,D6}{1/2,C#5 A#5 E6}{1/2,D5,B5,D6} 1/2 ‚{1/2,E2,E3}{1/2,B3,G#4}{1/2,D4,B4}{1/2,B3,G#4}}}{_tempo(7/3) _volume(82) _chan(1){2,{1/2,C#5,A5,C#6}{1/2,C#5,A5,C#6}{1/2,C#5,A5,C#6}{1/2,B#4 G#5 D6},{1/2,A2,A3}{1/2,A3,E4}{1/2,C#4,A4}{1/2,A3,E4}}}{_tempo(7/3) _volume(82) _chan(1){2,{1/2,C#5,A5,C#6}{1/2,B#4 G#5 D6}{1/2,C#5,A5,C#6} 1/2 ‚{1/2,A2,A3}{1/2,A3,E4}{1/2,C#4,A4}{1/2,A3,E4}}}{_tempo(7/3) _volume(82) _chan(1){2,{1/2,E5,C#6,E6}{1/2,E5,C#6,E6}{1/2,E5,C#6,E6}{1/2,D#5 B5 F#6},{1/2,A2,A3}{1/2,C#4,A4}{1/2,E4,C#5}{1/2,C#4,A4}}}{_tempo(7/3) _volume(82) _chan(1){2,{1/2,E5,C#6,E6}{1/2,D#5 B5 F#6}{1/2,E5,C#6,E6} 1/2 ‚{1/2,A2,A3}{1/2,C#4,A4}{1/2,E4,C#5} 1/2 }}{_tempo(7/3) _volume(52) _chan(1){4,{3/2,E5,C#6}{1/2,E5,E6}{1/2,E5,D#6}{3/2,E5,C#6},{3/2,G4}{1,B4 A4}{3/2,G4}}}{_tempo(7/15) _volume(82) _chan(1){321/80,{3/2,D5,A5}{1/2,D5,G5}{1/2,D5,F#5}{1/8,B5}{3/8,A5}{39/40,G5 A5 B#5 D6 F#6 F6 G6 B6 A6 F#6 D6 B#5 A5 F#5 D5 E5 E#5 F#5 F5 G5 B5 A5 C5 D5 G5 F#5}{3/80,-E5}, 1/8 {11/8,F#4,A4}{1/2,E4,A4}{1/2,D4,A4}{1/2,A#3,E4,G4}-}}{_tempo(127/60) _volume(97) _chan(1){2,{C#5,E5}{1,-E4},{C#4,G#4} 1 }}{_tempo(127/60) _volume(82) _chan(1){2,{1,G#4 A4 B4 C#5}{1,B4 D#5},{1,E4}{1/2,E4,G#4}{1/2,D#4,A4},{B2,G#3,B3}{1/2,B2,G#3,B3}{1/2,B2,F#3,B3}}}{_tempo(127/60) _volume(82) _chan(1){2,{E4,G#4,E5}{1,-E5},{E3,B3}-}}{_tempo(127/60) _volume(82) _chan(1){2,{1,G#5 A5 B5 C#6}{1/2,E5,B5}{1/2,D#5,A5,D#6},E5 1,{B3,G#4}{1/2,B3,G#4,B4}{1/2,B3,F#4,B4}}}{_tempo(127/60) _volume(82) _chan(1){2,{E5,G#5,E6}-,{E4,B4}{1,-E2}}}{_tempo(127/60) _volume(82) _chan(1){2,{B3,E4,B4}{1/2,B3,E4,G#4}{1/2,A3,D#4},{1,G#2 A2 B2 C#3}{1,B2 B1}}}{_tempo(127/60) _volume(82) _chan(1){2,{G#3,E4}-,E2 -}}{_tempo(7/4) _volume(82) _chan(1){2,{1/8,D#5}{3/8,E5&}{1/4,&E5,D6} 1/4 {1/8,E5&}{3/8,&E5,D6}{1/8,E5&}{3/8,&E5,D6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/8,E5}{1/4,D6}{1/8,C6}{3/8,B5}{1/8,A5}{3/8,G#5}{1/8,A5}{3/8,B5}{1/8,G5},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/8,B5}{1/4,A5}{1/8,G#5}{3/8,A5}{1/8,B5}{1/8,D6}{1/4,C6}{1/8,B5}{3/8,C6}{1/8,D6},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{3/8,D#6}{1/8,E6}{3/8,F6}{1/8,E6}{3/8,D6}{1/8,C6}{3/8,B5}{1/8,A5},{3/8,A3}{1/8,D4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,E5&}{1/4,&E5,D6} 1/4 {1/8,E5&}{3/8,&E5,D6}{1/8,E5&}{3/8,&E5,D6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/8,E5}{1/4,D6}{1/8,C6}{3/8,B5}{1/8,A5}{3/8,G#5}{1/8,E5}{3/8,F#5}{1/8,G#5},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/8,B5}{1/4,A5}{1/8,G#5}{3/8,A5}{1/8,B5}{1/8,D#6}{1/4,C6}{1/8,E5}{3/8,F#5}{1/8,G#5},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,D4}{3/8,B4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/3,A5}{1/6,A5 B5}{3/8,A5}{1/8,G#5}A5,{3/8,A3}{1/8,C4}{3/8,A4}{1/8,E4}{3/8,A3,C4}{1/8,D4}{1/2,A4}}}{_tempo(7/4) _volume(82) _chan(1){2,{0/480,D#5,D#6}{1/2,E5,E6}{1/4,D6,D7} 1/4 {1/2,D6,E6,D7}{1/2,D6,E6,D7},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{3/8,D6,E6,D7}{1/8,C6,C7}{3/8,B5,B6}{1/8,A5,A6}{3/8,G#5,G#6}{1/8,A5,A6}{3/8,B5,B6}{1/8,G#5,G#6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{3/8,A5,A6}{1/8,G#5,G#6}{3/8,A5,A6}{1/8,B5,B6}{3/8,C6,C7}{1/8,B5,B6}{3/8,C6,C7}{1/8,D6,D7},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{3/8,D#6,D#7}{1/8,E6,E7}{3/8,F6,F7}{1/8,E6,E7}{3/8,D6,D7}{1/8,C6,C7}{3/8,B5,B6}{1/8,A5,A6},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,E5,E6}{1/4,D6,D7} 1/4 {1/2,D6,E6,D7}{1/2,D6,E6,D7},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{3/8,D6,E6,D7}{1/8,C6,C7}{3/8,B5,B6}{1/8,A5,A6}{3/8,G#5,G#6}{1/8,E5,E6}{3/8,F#5,F#6}{1/8,G#5,G#6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{3/8,A5,A6}{1/8,G#5,G#6}{3/8,A5,A6}{1/8,B6}{3/8,C6,C7}{1/8,E5,E6}{3/8,F#5,F#6}{1/8,G#5,G#6},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,D4}{3/8,B4}{1/8,E4}}}{_tempo(7/4) _volume(82) _chan(1){2,{1/2,A5,A6}{3/8,A5,A6}{1/8,G5,G#6}{1/2,A5,A6} 1/2 , 1/3 {1/6,A6 B6}3/2,{3/8,F5}{1/8,C4}{3/8,A4}{1/8,E4}{1/2,A3,C4,E4,A4} 1/2 }}{_tempo(12/5) _volume(124) _chan(1){9/4,{1/4,A4,F5,A5}{A4,F5,A5}{Bb4,E5,Bb5},{1/4,F3,C4,F4}{F3,C4,F4}{C3,G3,C4}}}{_tempo(12/5) _volume(82) _chan(1){2,{3/2,A4,F5,A5}{1/4,A5,F6}{1/4,Bb5,D6},{3/2,F2,C3,F3} 1/2 }}{_tempo(12/5) _volume(82) _chan(1){2,{1/4,A5,F6}{1/4,Bb5,D6}{1/4,Bb5,D6}{1/4,A5,C6}{1/4,A5,C6}{1/4,G5,Bb5}{1/4,G5,Bb5}{1/4,G#5,B5},{1/2,C2,C3}{1/2,G3,Bb3,E4}{1/2,G3,Bb3,E4}{1/2,G3,Bb3,E4}}}{_tempo(12/5) _volume(82) _chan(1){2,{1/4,Bb5,D6}{1/4,A5,C6}{1/4,A5,C6}{1/4,G5,Bb5}{F5,A5},{1/2,F2,F3}{1/2,A3,C4,F4}{A3,C4,F4}}}{_tempo(12/5) _volume(124) _chan(1){9/4,{1/4,A4,F5,A5}{A4,F5,A5}{Bb4,E5,Bb5},{1/4,F3,C4,F4}{F3,C4,F4}{C3,G3,C4}}}{_tempo(12/5) _volume(82) _chan(1){2,{A4,F5,A5}{1,-A5 A6 G#5},{3/2,F2,C3,F3} 1/2 }}{_tempo(12/5) _volume(82) _chan(1){2,{2,G#6 G5 G6 F5 F6 E5 E6 D5},{1/2,A2}{1/2,D4,F4}{1/2,A3}{1/2,C#4,G4}}}{_tempo(12/5) _volume(82) _chan(1){2,{1,D6 C#5 C#6 D5&}{1/2,&D5,D6} 1/2 ‚{1/2,D4,F4}{1/2,A3,E4,G4}{1/2,D4,F4} 1/2 }}{_tempo(12/5) _volume(124) _chan(1){9/4,{1/4,A4,F5,A5}{A4,F5,A5}{Bb4,E5,Bb5},{1/4,F3,C4,F4}{F3,C4,F4}{C3,G3,C4}}}{_tempo(12/5) _volume(82) _chan(1){2,{3/2,A4,F5,A5}{1/4,A5,F6}{1/4,Bb5,D6},{3/2,F2,C3,F3} 1/2 }}{_tempo(12/5) _volume(82) _chan(1){2,{1/4,A5,F6}{1/4,Bb5,D6}{1/4,Bb5,D6}{1/4,A5,C6}{1/4,A5,C6}{1/4,G5,Bb5}{1/4,G5,Bb5}{1/4,G#5,B5},{1/2,C2,C3}{1/2,G3,Bb3,E4}{1/2,G3,Bb3,E4}{1/2,G3,Bb3,E4}}}{_tempo(12/5) _volume(82) _chan(1){2,{1/4,Bb5,D6}{1/4,A5,C6}{1/4,A5,C6}{1/4,G5,Bb5}{F5,A5},{1/2,F2,F3}{1/2,A3,C4,F4}{A3,C4,F4}}}{_tempo(12/5) _volume(124) _chan(1){9/4,{1/4,A4,F5,A5}{A4,F5,A5}{Bb4,E5,Bb5},{1/4,F3,C4,F4}{F3,C4,F4}{C3,G3,C4}}}{_tempo(12/5) _volume(82) _chan(1){2,{A4,F5,A5} 1/2 {1/4,A3,A4} 1/4 ‚{F2,C3,F3} 1/4 {1/4,A1,A2} 1/4 {1/4,Bb1,A2}}}{_tempo(12/5) _volume(82) _chan(1){2,{1/4,G#3,G#4} 1/4 {1/4,G3,G4} 1/4 {1/4,F3,F4} 1/4 {1/4,E3,E4} 1/4 , 1/4 {1/4,Bb1,A2} 1/4 {1/4,C2,A2} 1/4 {1/4,C#2,A2} 1/4 {1/4,A1,A2}}}{_tempo(12/5) _volume(82) _chan(1){2,{1/4,D3,D4} 1/4 {1/4,C#3,C#4} 1/4 {1/4,D3,D4} 1/4 1/2 , 1/4 {1/4,D2,A2} 1/4 {1/4,C2,A2} 1/4 {1/4,D2,A2} 1/2 }}{_tempo(8/5) _volume(82) _chan(1){2,{1/8,D#5}{3/8,E5&}{1/4,&E5,D6} 1/4 {1/8,E5&}{3/8,&E5,D6}{1/8,E5&}{3/8,&E5,D6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{1/8,E5}{1/4,D6}{1/8,C6}{3/8,B5}{1/8,A5}{3/8,G#5}{1/8,A5}{3/8,B5}{1/8,G5},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{1/8,B5}{1/4,A5}{1/8,G#5}{3/8,A5}{1/8,B5}{1/8,D6}{1/4,C6}{1/8,B5}{3/8,C6}{1/8,D6},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{3/8,D#6}{1/8,E6}{3/8,F6}{1/8,E6}{3/8,D6}{1/8,C6}{3/8,B5}{1/8,A5},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{1/2,E5&}{1/4,&E5,D6} 1/4 {1/8,E5&}{3/8,&E5,D6}{1/8,E5&}{3/8,&E5,D6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{1/8,E5}{1/4,D6}{1/8,C6}{3/8,B5}{1/8,A5}{3/8,G#5}{1/8,E5}{3/8,F#5}{1/8,G#5},{3/8,A3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{1/8,B5}{1/4,A5}{1/8,G#5}{3/8,A5}{1/8,B5}{1/8,D#6}{1/4,C6}{1/8,E5}{3/8,F#5}{1/8,G#5},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,D4}{3/8,B4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{1/3,A5}{1/6,A5 B5}{3/8,A5}{1/8,G#5}A5,{3/8,A3}{1/8,C4}{3/8,A4}{1/8,E4}{3/8,A3,C4}{1/8,D4}{1/2,A4}}}{_tempo(8/5) _volume(52) _chan(1){2,{2,D#6 E6 F6 E6 D7 E6 F6 E6 D7 E6 F6 E6 D7 E6 F6 E6},{2,-D7 D7 D7},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,D7 E6 C7 E6 B6 E6 A6 E6 G#6 E6 A6 E6 B6 E6 G#6 E6},{2,D7 C7 B6 A6 G#6 A6 B6 G#6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 E6 G#6 E6 A6 E6 B6 E6 C7 E6 B6 E6 C7 E6 D7 E6},{2,A6 G#6 A6 B6 C7 B6 C7 D7},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,D#7 E6 E7 E6 F7 E6 E7 E6 D7 E6 C7 E6 B6 E6 A6 E6},{2,D#7 E7 F7 E7 D7 C7 B6 A6},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,D#6 E6 F6 E6 D7 E6 F6 E6 D7 E6 F6 E6 D7 E6 F6 E6},{2,-D7 D7 D7},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,D7 E6 C7 E6 B6 E6 A6 E6 G#6 E6 A6 E6 B6 E6 G#6 E6},{2,D7 C7 B6 A6 G#6 A6 B6 G#6},{3/8,G#3}{1/8,D4}{3/8,B4}{1/8,E4}{3/8,E3}{1/8,B3}{3/8,G#4}{1/8,E4}}}{_tempo(8/5) _volume(82) _chan(1){2,{1/64,B6}{7/64,A6}{15/8,E6 G#6 E6 A6 E6 C7 E6 E7 E6 D#6 E6 F#6 E6 G#6 E6},{2,A6 G#6 A6 C7 E7 D#6 F#6 G#6},{3/8,A3}{1/8,E4}{3/8,C5}{1/8,A4}{3/8,E3}{1/8,C4}{3/8,A4}{1/8,E4}}}{_tempo(8/5) _volume(36) _chan(1){2,{2,A6 E6 C#7 E6 E7 E6 C#7 E6 A6 E6 C#7 E6 E7 E6 C#7 E6},{A#3,C4,A4} 427/480 {53/480,A4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 E6 C#7 E6 E7 E6 C#7 E6 A6 E6 C#7 E6 E7 E6 C#7 E6},{2,A4 G5 G5 G5}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 E6 C#7 E6 E7 E6 C#7 E6 A6 E6 C#7 E6 E7 E6 C#7 E6},{3/8,G5}{1/8,F5}{3/8,E5}{1/8,D5}{3/8,C#5}{1/8,D5}{3/8,E5}{1/8,C5}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 F6 D7 F6 F7 F6 D7 F6 A6 F6 D7 F6 F7 F6 D7 F6},{1/8,E5}{1/4,D5}{1/8,C#5}{3/8,D5}{1/8,E5}{1/8,G5}{1/4,F5}{1/8,E5}{3/8,F5}{1/8,G5}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 F6 D7 F6 F7 F6 D7 F6 A6 F6 D7 F6 F7 F6 D7 F6},{3/8,G#5}{1/8,A5}{3/8,Bb5}{1/8,A5}{3/8,G5}{1/8,F5}{3/8,E5}{1/8,D5}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,G#6 E6 B6 E6 E7 E6 B6 E6 G#6 E6 B6 E6 E7 E6 B6 E6},{2,E4 D5 D5 D5}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,G#6 E6 B6 E6 E7 E6 B6 E6 G#6 E6 B6 E6 E7 E6 B6 E6},{3/8,D5}{1/8,C5}{3/8,B4}{1/8,A4}{3/8,G#4}{1/8,A4}{3/8,B4}{1/8,G#4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 E6 C7 E6 E7 E6 C7 E6 A6 E6 C7 E6 E7 E6 C7 E6},{1/8,B4}{1/4,A4}{1/8,G#4}{3/8,A4}{1/8,B4}{1/8,D5}{1/4,C5}{1/8,B4}{3/8,C5}{1/8,D5}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 E6 C7 E6 E7 E6 C7 E6 A6 E6 C7 E6 E7 E6 C7 E6},{3/8,D#5}{1/8,E5}{3/8,F5}{1/8,E5}{3/8,D5}{1/8,C5}{3/8,B4}{1/8,A4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 E6 C#7 E6 E7 E6 C#7 E6 A6 E6 C#7 E6 E7 E6 C#7 E6},{2,E4 D5 D5 D5}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 E6 C#7 E6 E7 E6 C#7 E6 A6 E6 C#7 E6 E7 E6 C#7 E6},{3/8,G4}{1/8,F4}{3/8,E4}{1/8,D4}{3/8,C#4}{1/8,D4}{3/8,E4}{1/8,C#4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 F6 D7 F6 F7 F6 D7 F6 A6 F6 D7 F6 F7 F6 D7 F6},{1/8,E4}{1/4,D4}{1/8,C#4}{3/8,D4}{1/8,E4}{1/8,G4}{1/4,F4}{1/8,E4}{3/8,F4}{1/8,G4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 F6 D7 F6 F7 F6 D7 F6 A6 F6 D7 F6 F7 F6 D7 F6},{3/8,G#4}{1/8,A4}{3/8,Bb4}{1/8,A4}{3/8,G4}{1/8,F4}{3/8,E4}{1/8,D4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 F6 D7 F6 F7 F6 D7 F6 A6 F6 D7 F6 F7 F6 D7 F6},{2,F3 Eb4 Eb4 Eb4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,A6 F6 C7 F6 F7 F6 D7 F6 A6 F6 C7 F6 F7 F6 C7 F6},{3/8,Eb4}{1/8,D4}{3/8,C4}{1/8,Bb3}{3/8,A3}{1/8,Bb3}{3/8,C4}{1/8,A3}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,Bb6 F6 D7 F6 F7 F6 D7 F6 Bb6 F6 D7 F6 F7 F6 D7 F6},{2,B3 Ab4 Ab4 Ab4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,Bb6 F6 D7 F6 F7 F6 D7 F6 Bb6 F6 D7 F6 F7 F6 D7 F6},{3/8,Ab4,Bb4}{1/8,G4}{3/8,F4}{1/8,Eb4}{3/8,D4}{1/8,Eb4}{3/8,F4}{1/8,D4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,Bb6 G6 Eb7 G6 G7 G6 Eb7 G6 Bb6 G6 Eb7 G6 G7 G6 Eb7 G6},{2,Eb4 Db5 Db5 Db5}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,Bb6 G6 Eb7 G6 G7 G6 Eb7 G6 Bb6 G6 Eb7 G6 G7 G6 Eb7 G6},{3/8,Db5,Eb5}{1/8,C5}{3/8,Bb4}{1/8,Ab4}{3/8,G4}{1/8,Ab4}{3/8,Bb4}{1/8,G4}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,C7 G6 E7 G6 G7 G6 E7 G6 G6 E6 C7 E6 E7 E6 C7 E6},{1/2,C2,C3}{1/2,Bb2,Bb3}{1/2,Bb2,Bb3}{1/2,Bb2,Bb3}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,E6 C6 G6 C6 C7 C6 G6 C6 C6 G5 E6 G5 G6 G5 E6 G5},{3/8,Bb2,Bb3}{1/8,Ab2,Ab3}{3/8,G2,G3}{1/8,F2,F3}{3/8,E2,E3}{1/8,F2,F3}{3/8,G2,G3}{1/8,E2,E3}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,C6 Ab5 E6 Ab5 Ab6 Ab5 E6 Ab5 Ab5 F5 C6 F5 F6 F5 C6 F5},{1/4,F2,F3}{1/4,E2,E3}{1/4,F2,F3}{1/4,G2,G3}{1/4,Ab2,Ab3}{1/4,G2,G3}{1/4,Ab2,Ab3}{1/4,Bb2,Bb3}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,F5 C5 Ab5 C5 C6 C5 Ab5 C5 C5 Ab4 F5 Ab4 Ab5 Ab4 F5 Ab4},{1/4,B2,B3}{1/4,C3,C4}{1/4,Db3,Db4}{1/4,C3,C4}{1/4,Bb2,Bb3}{1/4,Ab2,Ab3}{1/4,G2,G3}{1/4,F2,F3}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,G5 E5 C6 E5 E6 E5 C6 E5 E5 C5 G5 C5 C6 C5 G5 C5},{1/2,C2,C3}{1/2,Bb2,Bb3}{1/2,Bb2,Bb3}{1/2,Bb2,Bb3}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,C5 G4 E5 G4 G5 G4 E5 G4 G4 E4 C5 E4 E5 E4 C5 E4},{1/4,Bb2,Bb3}{1/4,Ab2,Ab3}{1/4,G2,G3}{1/4,F2,F3}{1/4,E2,E3}{1/4,F2,F3}{1/4,G2,G3}{1/4,F2,F3}}}{_tempo(8/5) _volume(82) _chan(1){2,{2,C5 Ab4 F5 Ab4 Ab5 Ab4 F5 Ab4 Ab4 F4 C5 F4 F5 F4 C5 F4},{1/4,F2,F3}{1/4,E2,E3}{1/4,F2,F3}{1/4,G2,G3}{1/4,Ab2,Ab3}{1/4,G2,G3}{1/4,Ab2,Ab3}{1/4,Bb2,Bb3}}}{_tempo(8/5) _volume(82) _chan(1){2, 1/8 {7/4,B3 C4 Db4 C4 Bb3 Ab3 G3}{1/8,F3},{2,B2 C3 Db3 C3 Bb2 Ab2 G2 F2}}}{_tempo(11/6) _volume(113) _chan(1){2,{3/4,F3,Ab3,Db4}{1/4,Ab3,C4,Eb4}{1/4,Ab3,Db4,F4}{3/4,Gb3,Db4,Gb4},{3/4,Db2,Db3}{1/4,Ab1,Ab2}{1/4,Db2,Db3}{3/4,Bb1,Bb2}}}{_tempo(11/6) _volume(82) _chan(1){2,{3/4,Ab3,Db4,Ab4}{1/4,Bb3,Db4,Bb4}{1/4,Ab3,Db4,Ab4}{3/4,Gb3,Db4,Gb4},{3/4,F1,F2}{1/4,Gb1,Gb2}{1/4,F1,F2}{3/4,Bb1,Bb2}}}{_tempo(11/6) _volume(82) _chan(1){5/2,{1/4,F3,Db4,F4}{F3,Db4,F4}{1/4,Eb3,Gb3,C4,Eb4}{Eb3,Gb3,C4,Eb4},{1/4,Ab1,F2,Ab2}{Ab1,F2,Ab2}{1/4,Ab1,Eb2,Ab2}{Ab1,Eb2,Ab2}}}{_tempo(11/6) _volume(82) _chan(1){9/4,{1/4,F3,Db4}{1/2,F3,Db4}{1/2,Db4,F4,Db5}{1/2,Db5,F5,Db6}{1/2,Db6,F6,Db7},{1/4,Db2,Ab2,Db3}{1/2,Db2,Ab2,Db3}{1/2,Db3,Ab3}{1/2,Db4,Ab4}{1/2,Db5,Ab5}}}{_tempo(11/6) _volume(82) _chan(1){2,--,--}}{_tempo(11/6) _volume(82) _chan(1){2,{3/4,C4,Eb4,Ab4}{1/4,Bb3,Eb4,Bb4}{1/4,C4,Eb4,Bb4}{3/4,Db4,Ab4,Db5},{3/4,Ab2,Eb3,Ab3}{1/4,G2,G3}{1/4,Ab2,Eb3,Ab3}{3/4,F2,F3}}}{_tempo(11/6) _volume(82) _chan(1){2,{3/4,Eb4,Ab4,Eb5}{1/4,F4,Ab4,F5}{1/4,Eb4,Ab4,Eb5}{3/4,Db4,Ab4,Db5},{3/4,C2,C3}{1/4,Db2,Db3}{1/4,C2,C3}{3/4,F2,F3}}}{_tempo(11/6) _volume(82) _chan(1){5/2,{1/4,C4,Eb4,Ab4,C5}{C4,Eb4,Ab4,C5}{1/4,Bb3,Db4,Gb4,Bb4}{Bb3,Db4,Gb4,Bb4},{1/4,Eb2,C3,Eb3}{Eb2,C3,Eb3}{1/4,Eb2,Bb2,Eb3}{Eb2,Bb2,Eb3}}}{_tempo(11/6) _volume(82) _chan(1){9/4,{1/4,Ab3,C4,Eb4,Ab4}{1/2,Ab3,C4,Eb4,Ab4}{1/2,Ab4,C5,Eb5,Ab5}{Ab5,C6,Eb6,Ab6},{1/4,Ab1,C2,Eb2,Ab2}{1/2,Ab1,C2,Eb2,Ab2}{1/2,Ab2,C3,Eb3,Ab3}{Ab3,C4,Eb4,Ab4}}}{_tempo(11/6) _volume(97) _chan(1){2,- 1/2 {1/2,-C4},--}}{_tempo(11/6) _volume(82) _chan(1){2,{3/4,C4,F4}{1/4,Ab4}{1/4,C4,Gb4}{3/4,C4,F4},{3/4,C3,Ab3}{1/4,C3,C4}{1/4,C3,Bb3}{3/4,C3,Ab3}}}{_tempo(11/6) _volume(82) _chan(1){2,{3/4,Bb3,Eb4}{1/4,Ab3,Db4}{1/4,G3,C4}{3/4,Ab3,F4},{3/4,C3,G3}{1/4,C3,F3}{1/4,C3,E3}{3/4,F2,C3,F3}}}{_tempo(11/6) _volume(82) _chan(1){5/2,{1/4,G3,Bb3}{G3,Bb3}{1/4,F3,Ab3}{F3,Ab3},{1/4,E2,C3}{E2,C3}{1/4,F2,C3}{F2,C3}}}{_tempo(1/3) _volume(82) _chan(1){9/4,{1/4,F3,Ab3,Db4}{2,F3,Ab3,Db4}, 1/8 253/480 ‚{1/4,Bb1}Bb1&{473/480,&Bb1 F2 Ab2 Bb2 Db3 F3 Ab3 Bb3 Eb4 Db4 Ab3 F3 Ab3 Bb3 Db4 E4 F4 Ab4 Bb4 Eb5 Db5 Bb4 Ab4 F4 Ab4 Bb4 Db5 Eb5 F5 Ab5 Bb5 Eb6 Db6 Bb5 Ab5 F5 Ab5 Bb5 Db6 E6 F6 Ab6 Bb6}7/480}}{_tempo(2) _volume(82) _chan(1){6,{6,Eb7 Db7 Bb6 Ab6 E6 F6 Ab6 Bb6 Eb7 Db7 Bb6 Ab6 E6 F6 Ab6 Bb6 Eb7 Db7 Bb6 Ab6 E6 F6 Ab6 Bb6 Eb7 Db7 Bb6 Ab6 E6 F6 Ab6 Bb6 Eb7 Db7 Bb6 Ab6 E6 F6 Ab6 Bb6 Eb7 Db7 Bb6 Ab6 E6 F6 Ab6 Bb6}, 6 }}{_tempo(4/3) _volume(82) _chan(1){85/16,{1/4,C7 Db7 Eb7}{3,F7&}{3/4,&F7}{1/4,C7 Db7}{1,F7 Db7 E7 C7 Eb7 Cb7 D7 Bb6 Db7 A6 C7 Ab6 B6 G6 Bb6 Gb6 A6 F6 Ab6 E6 G6 Eb6 Gb6 D6} 1/16 ‚{13/4,--B1 B2 F3 Ab3 Db4 F4 Ab4 Db5 F5 Ab5 Db6}{1/2,F6} 3/2 1/16 }}{_tempo(3/10) _volume(82) _chan(1){37/16, 1/16 {3/2,F6 Db6 E6 C6 Eb6 Cb6 D6 Bb5 Db6 A5 C6 Ab5 B5 G5 Bb5 Gb5 A5 F5 Ab5 E5 G5 Eb5 Gb5 D5 F5 Db5 E5 C5 Eb5 Cb5 D5 Bb4 Db5 A4 C5 Ab4 B4 G4 Bb4 Gb4 A4 F4 Ab4 E4 G4 D4 F4 Db4} 3/4 , 37/16 }}{_tempo(1/3) _volume(82) _chan(1){0/480,}}{_tempo(51/20) _volume(64) _chan(1){4,{2,C4 Bb4 Bb4 A4 A4 G4 G4 G#4}2,{1,-C3}{1/2,Bb3,E4}{2,C3 F4 --}{1/2,-C5}, 1/8 3/8 {1/2,A3,C4}{1,C3 -}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A4 C4}A4,{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,G4 C4}G4,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1/2,F4}{1/3,C4}{1/6,F4 G4}{1/2,F4}{1/2,E4 D4},{1/2,A3,C4}{1/2,C3}{1/2,Ab3,B3}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{2,C4 Bb4 Bb4 A4 A4 G4 G4 G#4},{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A4 C4}A4,{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A4 C4}G4,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{2,C5 Bb5 Bb5 A5 A5 G5 G5 G#5},C5 C5,{1,-C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A5 C5}A5,-C5,{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A5 C5}G5,-C5,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{3/2,F5 C5 F5}{1/2,E5 D5},-{1/3,F5}{1/6,G5 F5}1/2,-Ab4,{1/2,A3,F4}{1/2,C3}{1/2,B3,D4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{2,C5 Bb5 Bb5 A5 A5 G5 G5 G#5},C5 C5,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A5 C5}A5,-C5,{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A5 C5}G5,-C5,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(7/3) _volume(64) _chan(1){2,F5 1/2 {1/2,-A5},A4 1,{1/2,F3,A3,D4}{1/2,F2,F3}{1/2,F3,F4} 1/2 }}{_tempo(7/3) _volume(64) _chan(1){2,{2,F6 E6 D6 C#6 D6 E6 F6 D6},{1/2,F5}3/2,{1/2,D2,D3}{1/2,A3 D4 F4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,E6}{1/4,A5}{3/4,E6}{1/4,D6},{3/2,E5 -E5}1/2,{1/2,A2}{1/2,A3 C#4 E4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,C#6}{1/4,A5}{3/4,C#6}{1/4,A5},{3/2,C#5 -C#5}1/2,{1/2,A2}{1/2,A3 C#4 E4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,D6}{1/4,A5}{3/4,A6}{1/4,A5},{3/2,D5 -A5}1/2,{1/2,D3}{1/2,A3 D4 F#4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{2,F6 E6 D6 C#6 D6 E6 F6 D6},{1/2,F5}3/2,{1/2,D3}{1/2,A3 D4 F4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,E6}{1/4,A5}{3/4,E6}{1/4,D6},{3/2,E5 -E5}1/2,{1/2,A2}{1/2,A3 C#4 E4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,C#6}{1/4,A5}{3/4,C#6}{1/4,A5},{3/2,C#5 -C#5}1/2,{1/2,A2}{1/2,A3 C#4 E4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{D5,D6} 1/2 {1/2,-A5},{1/2,D3}{1/2,A3 D4 F#4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{2,F7 E7 D7 C#7 D7 E7 F7 D7},{1/2,F6}3/2,{1/2,D4}{1/2,A4 D5 F5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,E7}{1/4,A6}{3/4,E7}{1/4,D7},{3/2,E6 -E6}1/2,{1/2,A3}{1/2,A4 C#5 E5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,C#7}{1/4,A6}{3/4,C#7}{1/4,A6},{3/2,C#6 -C#6}1/2,{1/2,A3}{1/2,A4 C#5 E5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,D7}{1/4,A6}{3/4,F#7}{1/4,A6},{3/2,D6 -F#6}1/2,{1/2,D4}{1/2,A4 D5 F#5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{2,F7 E7 D7 C#7 D7 E7 F7 D7},{1/2,F6}3/2,{1/2,D4}{1/2,A4 D5 F5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,E7}{1/4,A6}{3/4,E7}{1/4,D7},{3/2,E6 -E6}1/2,{1/2,A3}{1/2,A4 C#5 E5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,C#7}{1/4,A6}{3/4,C#7}{1/4,A6},{3/2,C#6 -C#6}1/2,{1/2,A3}{1/2,A4 C#5 E5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{1/4,D6,D7}{3/4,Bb6 A6 Bb6}A6,{1/2,D4}{1/2,A4 D5 F5}{1,A5 -}}}{_tempo(47/60) _volume(64) _chan(1){31/15,{2/3,A6}{1/3,G#6 A6 Bb6 D7}{16/15,F7 E7 D7 C#7 D7 C#7 Bb6 A6 Bb6 A6 G#6 F6 A6 G#6 F6 E6 G#6 F6 E6 D6 F6 E6 D6 C#6 D6 C#6 Bb5 A5 Bb5 A5 G#5 F5 A5 G#5 F5 E5 G#5 F5 E5 D5 F5 E5 D5 C#5 D5 C#5 Bb4 A4 Bb4 A4 G#4 F4 A4 G#4 F4 E4 G#4 F4 E4 D4 F4 E4 D4 C4}, 1/8 15/8 }}{_tempo(51/20) _volume(64) _chan(1){4,{2,C4 Bb4 Bb4 A4 A4 G4 G4 G#4}2,{1,-C3}{1/2,Bb3,E4}{2,C3 F4 --}{1/2,-C5}, 1/8 3/8 {1/2,A3,C4}{1,C3 -}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A4 C4}A4,{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,G4 C4}G4,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1/2,F4}{1/3,C4}{1/6,F4 G4}{1/2,F4}{1/2,E4 D4},{1/2,A3,C4}{1/2,C3}{1/2,Ab3,B3}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{2,C4 Bb4 Bb4 A4 A4 G4 G4 G#4},{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A4 C4}A4,{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A4 C4}G4,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{2,C5 Bb5 Bb5 A5 A5 G5 G5 G#5},C5 C5,{1,-C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A5 C5}A5,-C5,{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A5 C5}G5,-C5,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{3/2,F5 C5 F5}{1/2,E5 D5},-{1/3,F5}{1/6,G5 F5}1/2,-Ab4,{1/2,A3,F4}{1/2,C3}{1/2,B3,D4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{2,C5 Bb5 Bb5 A5 A5 G5 G5 G#5},C5 C5,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A5 C5}A5,-C5,{1/2,Bb3,F4}{1/2,C3}{1/2,Bb3,F4}{1/2,C3}}}{_tempo(51/20) _volume(64) _chan(1){2,{1,A5 C5}G5,-C5,{1/2,Bb3,E4}{1/2,C3}{1/2,Bb3,E4}{1/2,C3}}}{_tempo(7/3) _volume(64) _chan(1){2,F5 1/2 {1/2,-A5},A4 1,{1/2,F3,A3,D4}{1/2,F2,F3}{1/2,F3,F4} 1/2 }}{_tempo(7/3) _volume(64) _chan(1){2,{2,F6 E6 D6 C#6 D6 E6 F6 D6},{1/2,F5}3/2,{1/2,D2,D3}{1/2,A3 D4 F4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,E6}{1/4,A5}{3/4,E6}{1/4,D6},{3/2,E5 -E5}1/2,{1/2,A2}{1/2,A3 C#4 E4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,C#6}{1/4,A5}{3/4,C#6}{1/4,A5},{3/2,C#5 -C#5}1/2,{1/2,A2}{1/2,A3 C#4 E4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,D6}{1/4,A5}{3/4,A6}{1/4,A5},{3/2,D5 -A5}1/2,{1/2,D3}{1/2,A3 D4 F#4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{2,F6 E6 D6 C#6 D6 E6 F6 D6},{1/2,F5}3/2,{1/2,D3}{1/2,A3 D4 F4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,E6}{1/4,A5}{3/4,E6}{1/4,D6},{3/2,E5 -E5}1/2,{1/2,A2}{1/2,A3 C#4 E4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,C#6}{1/4,A5}{3/4,C#6}{1/4,A5},{3/2,C#5 -C#5}1/2,{1/2,A2}{1/2,A3 C#4 E4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{D5,D6} 1/2 {1/2,-A5},{1/2,D3}{1/2,A3 D4 F#4}{1,A4 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{2,F7 E7 D7 C#7 D7 E7 F7 D7},{1/2,F6}3/2,{1/2,D4}{1/2,A4 D5 F5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,E7}{1/4,A6}{3/4,E7}{1/4,D7},{3/2,E6 -E6}1/2,{1/2,A3}{1/2,A4 C#5 E5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,C#7}{1/4,A6}{3/4,C#7}{1/4,A6},{3/2,C#6 -C#6}1/2,{1/2,A3}{1/2,A4 C#5 E5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,D7}{1/4,A6}{3/4,F#7}{1/4,A6},{3/2,D6 -F#6}1/2,{1/2,D4}{1/2,A4 D5 F#5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{2,F7 E7 D7 C#7 D7 E7 F7 D7},{1/2,F6}3/2,{1/2,D4}{1/2,A4 D5 F5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,E7}{1/4,A6}{3/4,E7}{1/4,D7},{3/2,E6 -E6}1/2,{1/2,A3}{1/2,A4 C#5 E5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{3/4,C#7}{1/4,A6}{3/4,C#7}{1/4,A6},{3/2,C#6 -C#6}1/2,{1/2,A3}{1/2,A4 C#5 E5}{1,A5 -}}}{_tempo(7/3) _volume(64) _chan(1){2,{1/4,D6,D7}{3/4,Bb6 A6 Bb6}A6,{1/2,D4}{1/2,A4 D5 F5}{1,A5 -}}}{_tempo(47/60) _volume(64) _chan(1){31/15,{2/3,A6}{1/3,G#6 A6 Bb6 D7}{16/15,F7 E7 D7 C#7 D7 C#7 Bb6 A6 Bb6 A6 G#6 F6 A6 G#6 F6 E6 G#6 F6 E6 D6 F6 E6 D6 C#6 D6 C#6 Bb5 A5 Bb5 A5 G#5 F5 A5 G#5 F5 E5 G#5 F5 E5 D5 F5 E5 D5 C#5 D5 C#5 Bb4 A4 Bb4 A4 G#4 F4 A4 G#4 F4 E4 G#4 F4 E4 D4 F4 E4 D4 C4}, 1/8 15/8 }}{_tempo(169/60) _volume(64) _chan(1){2,{D6,D7} 1/2 {1/2,A5 Bb5 C#6 D6},{1/2,C4}{1/2,A4 D5 F5}{1,A5 -}}}{_tempo(169/60) _volume(113) _chan(1){2,{3/4,E5,E6}{1/4,F#5,F#6}{3/4,E5,E6}{1/4,F#5,F#6},{1/2,E2,E3}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}}}{_tempo(169/60) _volume(113) _chan(1){2,{3/4,E5,E6}{1/4,F#5,F#6}{1/3,E5,E6}{1/3,F#5,F#6}{1/3,E5,E6},{1/2,E2,E3}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}}}{_tempo(169/60) _volume(113) _chan(1){2,{1/3,F#5,F#6}{1/3,E5,E6}{1/3,F#5,F#6}{1/3,E5,E6}{1/3,F#5,F#6}{1/3,E5,E6},{1/2,E2,E3}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}}}{_tempo(169/60) _volume(113) _chan(1){2,{1/3,F#5,F#6}{1/3,E5,E6}{1/3,F#5,F#6}{1/3,G5,G6}{1/3,F#5,F#6}{1/3,E5,E6},{1/2,E2,E3}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}{1/2,A3,C#4,E4}}}{_tempo(169/60) _volume(113) _chan(1){2,{3/4,D5,D6}{1/4,F#5,A5}{3/4,D5,D6}{1/4,F#5,A5},{1/2,D2,D3}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}}}{_tempo(169/60) _volume(113) _chan(1){2,{3/4,D5,D6}{1/4,F#5,A5}{1/4,D6}{1/4,D5,A5}{1/4,D6}{1/4,D5,A5},{1/2,D2,D3}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}}}{_tempo(169/60) _volume(113) _chan(1){2,{3/4,D6}{1/4,F#5,A5}{1/4,D6}{1/4,D5,A5}{1/4,D6}{1/4,D5,A5},{1/2,D2,D3}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}}}{_tempo(169/60) _volume(113) _chan(1){2,{1/4,D6}{1/4,D5,A5}{1/4,D6}{1/4,D5,A5}{1/4,D6}{1/4,D5,A5}{1/4,D6}{1/4,D5,A5},{1/2,D2,D3}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}{1/2,A3,D4,F#4}}}{_tempo(169/60) _volume(113) _chan(1){2,{1/3,E5,E6}{1/3,D5,D6}{1/3,C5,C6}{3/4,B4,B5}{1/4,D#5,F#5},{1/2,B1,B2}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}}}{_tempo(169/60) _volume(113) _chan(1){2,{3/4,B4,B5}{1/4,D#5,F#5}{1/4,B5}{1/4,Bb4,F#5}{1/4,B5}{1/4,Bb4,F#5},{1/2,B1,B2}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}}}{_tempo(169/60) _volume(113) _chan(1){2,{1/4,B5}{1/4,B4,F#5}{1/4,B5}{1/4,B4,F#5}{1/4,B5}{1/4,B4,F#5}{1/4,B5}{1/4,B4,F#5},{1/2,B1,B2}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}}}{_tempo(169/60) _volume(113) _chan(1){2,{1/4,B5}{1/4,B4,F#5}{1/4,B5}{1/4,B4,F#5}{1/4,B5}{1/4,B4,F#5}{1/4,B5}{1/4,B4,F#5},{1/2,B1,B2}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}{1/2,F#3,D#4,F#4}}}{_tempo(169/60) _volume(113) _chan(1){2,{1/3,D5,D6}{1/3,C5,C6}{1/3,B4,B5}{3/4,A4,A5}{1/4,C#5,E#5},{1/2,A1,A2}{1/2,E3,A3,C#4,E4}{1/2,E3,A3,C#4,E4}{1/2,E3,A3,C#4,E4}}}{_tempo(169/60) _volume(113) _chan(1){2,{3/4,A4,A5}{1/4,C#5,E#5}{1/4,A5}{1/4,A4,E#5}{1/4,A5}{1/4,A4,E#5},{1/2,A1,A2}{1/2,E3,A3,C#4,E4}{1/2,E3,A3,C#4,E4}{1/2,E3,A3,C#4,E4}}}{_tempo(169/60) _volume(113) _chan(1){2,{1/4,A5}{1/4,A4,E5}{1/4,A5}{1/4,A4,E5}{1/4,A5}{1/4,A4,E5}{1/4,A5}{1/4,A4,E5},{1/2,A1,A2}{1/2,E3,A3,C#4,E4}{1/2,E3,A3,C#4,E4}{1/2,E3,A3,C#4,E4}}}{_tempo(169/60) _volume(124) _chan(1){2,{1/2,A4,C#5,A5}{143/96,A5 Bb5 C#6 D6 E6 F6 G#6 A6 Bb6 C#7 D7}1/96,{1/2,A2,E3,A3} 1/2 -}}{_tempo(149/60) _volume(52) _chan(1){2,{1/2,E7}{1/4,A6,C#7,E7}{1/4,F#7}{1/2,E7}{1/4,A6,C#7,E7}{1/4,F#7},{2,E3 C#4 E4 -A4 C#5 E5 -}}}{_tempo(149/60) _volume(113) _chan(1){2,{1/2,A6,C#7,E7}{1/4,A6,C#7,E7}{1/4,F#7}{1/2,A6,C#7,E7}{1/4,A6,C#7,E7}{1/4,F#7},{2,A5 C#6 E6 -A4 C#5 E5 -}}}{_tempo(149/60) _volume(113) _chan(1){2,{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7},{2,E3 C#4 E4 -A4 C#5 E5 -}}}{_tempo(149/60) _volume(113) _chan(1){2,{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{3/4,F#7 G7 F#7},--}}{_tempo(149/60) _volume(113) _chan(1){2,{3/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6},{2,D3 A3 D4 -F#4 A4 D5 -}}}{_tempo(149/60) _volume(113) _chan(1){2,{3/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6},{2,F#5 A5 D6 -F#4 A4 D5 -}}}{_tempo(149/60) _volume(113) _chan(1){2,{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6},{2,D3 A3 D4 -F#4 A4 D5 -}}}{_tempo(149/60) _volume(113) _chan(1){2,{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6},--}}{_tempo(149/60) _volume(113) _chan(1){2,{1,D7 E7 D7 C7}{3/4,B6}{1/4,B5,D#6,F#6},{2,B2 F#3 B3 -D#4 F#4 B4 -}}}{_tempo(149/60) _volume(113) _chan(1){2,{3/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6},{2,D#5 F#5 B5 -D#4 F#4 B4 -}}}{_tempo(149/60) _volume(113) _chan(1){2,{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6},{2,B2 F#3 B3 -D#4 F#4 B4 -}}}{_tempo(149/60) _volume(113) _chan(1){2,{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6},--}}{_tempo(149/60) _volume(113) _chan(1){2,{1/8,B6}{1/8,D7}{3/4,C7 B6 C7}{3/4,A6}{1/4,A5,C#6,E6},{2,A2 E3 A3 -C#4 E4 A4 -}}}{_tempo(149/60) _volume(113) _chan(1){2,{3/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6},{2,C#5 E5 A5 -C#4 E4 A4 -}}}{_tempo(149/60) _volume(113) _chan(1){2,{1/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6},{2,A2 E3 A3 -C#4 E4 A4 -}}}{_tempo(3/2) _volume(113) _chan(1){2,{1,A6 -}{95/96,G7 F7 E7 D7 C7 B6 A6 G6 F6 E6 D6 C6 B5 A5 G5 F5 E5 D5 C5 B4 A4 G4 F4 E4 D4}1/96,--}}{_tempo(11/4) _volume(52) _chan(1){2,{2,C4 Bb4 Bb4 A4 A4 G4 G4 G#4},{1/2,C3}{1/2,G3,E4}{1/2,Bb2}{1/2,G3,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,A4 E4}A4,{1/2,A2}{1/2,E3,C#4}{1/2,A2}{1/2,E3,C#4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,G4 D4}G4,{1/2,G2}{1/2,D3,B3}{1/2,G2}{1/2,D3,Bb3}}}{_tempo(11/4) _volume(113) _chan(1){2,{3/2,F4 C4 F4}{1/2,E4 D4},{1/2,F2}{1/2,C3,A3}{1/2,B2}{1/2,F3,Ab3}}}{_tempo(11/4) _volume(113) _chan(1){2,{2,C4 Bb4 Bb4 A4 A4 G4 G4 G#4},{1/2,C3}{1/2,G3,E4}{1/2,Bb2}{1/2,G3,D4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,A4 C4}A4,{1/2,A2}{1/2,E3,C#4}{1/2,A2}{1/2,E3,C4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,G4 D4}G4,{1/2,G2}{1/2,D3,B3}{1/2,G2}{1/2,D3,Bb3}}}{_tempo(11/4) _volume(113) _chan(1){2,F4 1/2 {1/2,-C5},{1/2,F2}{1/2,C3,A3}{1,F4 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{2,C5 Bb5 Bb5 A5 A5 G5 G5 G#5},C5 C5,{1/2,C3}{1/2,G3,C4,E4}{1/2,Bb2}{1/2,Bb3,D4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,A5 E5}A5,C#5 C5,{1/2,C3}{1/2,A3,C#4,E4}{1/2,D3}{1/2,A3,C#4,F4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,G5 D5}G5,B4 Bb4,{1/2,G2}{1/2,B3,D4,G4}{1/2,C3}{1/2,Bb3,C4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{3/2,F5 C5 F5}{1/2,E5 D5},A4 Ab4,{1/2,F2}{1/2,A3,C4,F4}{1/2,B2}{1/2,Ab3,D4,F4}}}{_tempo(11/4) _volume(113) _chan(1){2,{2,C5 Bb5 Bb5 A5 A5 G5 G5 G#5},C5 C5,{1/2,C3}{1/2,G3,C4,E4}{1/2,Bb2}{1/2,Bb3,D4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,A5 E5}A5,C#5 C5,{1/2,C3}{1/2,A3,C#4,E4}{1/2,A3,C#4,F4}{1/2,C3}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,G5 D5}G5,B4 Bb4,{1/2,C3}{1/2,B3,D4,G4}{1/2,Bb2}{1/2,Bb3,C4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{A4,F5} 1/2 1/4 {1/4,C5,C6},{1/2,F2}{1/2,A3,C4,F4}{1/2,A3,C4,F4} 1/2 }}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,C5,C6}{3/2,Bb5 Bb6 A5 A6 G#5 G#6},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,A5,A6}{1/2,C5,C6}{A5,A6},{1/2,C2,C3}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,G5,G6}{1/2,C5,C6}{G5,G6},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,F5,F6}{1/2,C5,C6}{Db5,Db6},{1/2,C2,C3}{1/2,F3,A3,C4,F4}{1/2,Ab3,B3,F4}{1/2,Ab3,B3,F4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,C5,C6}{3/2,Bb4 Bb5 A4 A5 G#4 G#5},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,A5,A6}{1/2,C5,C6}{A5,A6},{1/2,C2,C3}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,G5,G6}{1/2,C5,C6}{G5,G6},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}}{_tempo(10/3) _volume(113) _chan(1){321/160,{1/2,F5,F6} 1/2 {161/160,F4 G4 A4 B4 C5 D5 E5}, 1/8 {3/8,F2,C3,A3} 1/2 -}}{_tempo(10/3) _volume(113) _chan(1){481/240,{481/240,F5 G5 A5 B5 C6 D6 E6 F6 G6 A6 B6 C7 D7}, 1/8 15/8 }}{_tempo(11/4) _volume(52) _chan(1){2,{1/2,E7}{1/4,A6,C#7,E7}{1/4,F#7}{1/2,E7}{1/4,A6,C#7,E7}{1/4,F#7},{2,E3 C#4 E4 -A4 C#5 E5 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,A6,C#7,E7}{1/4,A6,C#7,E7}{1/4,F#7}{1/2,A6,C#7,E7}{1/4,A6,C#7,E7}{1/4,F#7},{2,A5 C#6 E6 -A4 C#5 E5 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7},{2,E3 C#4 E4 -A4 C#5 E5 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{1/4,F#7}{1/4,A6,C#7,E7}{3/4,F#7 G7 F#7},--}}{_tempo(11/4) _volume(113) _chan(1){2,{3/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6},{2,D3 A3 D4 -F#4 A4 D5 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{3/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6},{2,F#5 A5 D6 -F#4 A4 D5 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6},{2,D3 A3 D4 -F#4 A4 D5 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6}{1/4,D7}{1/4,D6,F#6,A6},--}}{_tempo(11/4) _volume(113) _chan(1){2,{1,D7 E7 D7 C7}{3/4,B6}{1/4,B5,D#6,F#6},{2,B2 F#3 B3 -D#4 F#4 B4 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{3/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6},{2,D#5 F#5 B5 -D#4 F#4 B4 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6},{2,B2 F#3 B3 -D#4 F#4 B4 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6}{1/4,B6}{1/4,B5,D#6,F#6},--}}{_tempo(11/4) _volume(113) _chan(1){2,{1/8,B6}{1/8,D7}{3/4,C7 B6 C7}{3/4,A6}{1/4,A5,C#6,E6},{2,A2 E3 A3 -C#4 E4 A4 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{3/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6},{2,C#5 E5 A5 -C#4 E4 A4 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6}{1/4,A6}{1/4,A5,C#6,E6},{2,A2 E3 A3 -C#4 E4 A4 -}}}{_tempo(3/2) _volume(113) _chan(1){2,{1,A6 -}{95/96,G7 F7 E7 D7 C7 B6 A6 G6 F6 E6 D6 C6 B5 A5 G5 F5 E5 D5 C5 B4 A4 G4 F4 E4 D4}1/96,--}}{_tempo(11/4) _volume(52) _chan(1){2,{2,C4 Bb4 Bb4 A4 A4 G4 G4 G#4},{1/2,C3}{1/2,G3,E4}{1/2,Bb2}{1/2,G3,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,A4 E4}A4,{1/2,A2}{1/2,E3,C#4}{1/2,A2}{1/2,E3,C#4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,G4 D4}G4,{1/2,G2}{1/2,D3,B3}{1/2,G2}{1/2,D3,Bb3}}}{_tempo(11/4) _volume(113) _chan(1){2,{3/2,F4 C4 F4}{1/2,E4 D4},{1/2,F2}{1/2,C3,A3}{1/2,B2}{1/2,F3,Ab3}}}{_tempo(11/4) _volume(113) _chan(1){2,{2,C4 Bb4 Bb4 A4 A4 G4 G4 G#4},{1/2,C3}{1/2,G3,E4}{1/2,Bb2}{1/2,G3,D4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,A4 C4}A4,{1/2,A2}{1/2,E3,C#4}{1/2,A2}{1/2,E3,C4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,G4 D4}G4,{1/2,G2}{1/2,D3,B3}{1/2,G2}{1/2,D3,Bb3}}}{_tempo(11/4) _volume(113) _chan(1){2,F4 1/2 {1/2,-C5},{1/2,F2}{1/2,C3,A3}{1,F4 -}}}{_tempo(11/4) _volume(113) _chan(1){2,{2,C5 Bb5 Bb5 A5 A5 G5 G5 G#5},C5 C5,{1/2,C3}{1/2,G3,C4,E4}{1/2,Bb2}{1/2,Bb3,D4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,A5 E5}A5,C#5 C5,{1/2,C3}{1/2,A3,C#4,E4}{1/2,D3}{1/2,A3,C#4,F4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,G5 D5}G5,B4 Bb4,{1/2,G2}{1/2,B3,D4,G4}{1/2,C3}{1/2,Bb3,C4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{3/2,F5 C5 F5}{1/2,E5 D5},A4 Ab4,{1/2,F2}{1/2,A3,C4,F4}{1/2,B2}{1/2,Ab3,D4,F4}}}{_tempo(11/4) _volume(113) _chan(1){2,{2,C5 Bb5 Bb5 A5 A5 G5 G5 G#5},C5 C5,{1/2,C3}{1/2,G3,C4,E4}{1/2,Bb2}{1/2,Bb3,D4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,A5 E5}A5,C#5 C5,{1/2,C3}{1/2,A3,C#4,E4}{1/2,A3,C#4,F4}{1/2,C3}}}{_tempo(11/4) _volume(113) _chan(1){2,{1,G5 D5}G5,B4 Bb4,{1/2,C3}{1/2,B3,D4,G4}{1/2,Bb2}{1/2,Bb3,C4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{A4,F5} 1/2 1/4 {1/4,C5,C6},{1/2,F2}{1/2,A3,C4,F4}{1/2,A3,C4,F4} 1/2 }}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,C5,C6}{3/2,Bb5 Bb6 A5 A6 G#5 G#6},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,A5,A6}{1/2,C5,C6}{A5,A6},{1/2,C2,C3}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,G5,G6}{1/2,C5,C6}{G5,G6},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,F5,F6}{1/2,C5,C6}{Db5,Db6},{1/2,C2,C3}{1/2,F3,A3,C4,F4}{1/2,Ab3,B3,F4}{1/2,Ab3,B3,F4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,C5,C6}{3/2,Bb4 Bb5 A4 A5 G#4 G#5},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,A5,A6}{1/2,C5,C6}{A5,A6},{1/2,C2,C3}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}{1/2,F3,A3,C4,F4}}}{_tempo(11/4) _volume(113) _chan(1){2,{1/2,G5,G6}{1/2,C5,C6}{G5,G6},{1/2,C2,C3}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}{1/2,E3,Bb3,C4,E4}}}{_tempo(5/2) _volume(124) _chan(1){2,{1/2,F5,F6} 1/2 -,{1/2,F2,C3,F3}{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,F3,C4,F4}{1/4,G4,C5,G5}}}{_tempo(5/2) _volume(113) _chan(1){2,--,{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,F3,C4,F4}{1/4,G4,C5,G5}{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,F3,C4,F4}{1/4,G4,C5,G5}}}{_tempo(5/2) _volume(124) _chan(1){2,{1/2,Db5,F5,Db6} 3/2 ‚{1/2,D2,A2,D3}{1/4,F3,Ab3,Db4}{1/4,Eb4,Ab4,Eb5}{1/4,F3,Ab3,Db4}{1/4,Eb4,Ab4,Eb5}{1/4,D3,Ab3,Db4}{1/4,E4,Ab4,Eb5}}}{_tempo(5/2) _volume(113) _chan(1){2,--,{1/4,F3,Ab3,Db4}{1/4,Eb4,Ab4,Eb5}{1/4,Db3,Ab3,Db4}{1/4,Eb4,Ab4,Eb5}{1/4,F3,Ab3,Db4}{1/4,Eb4,Ab4,Eb5}{1/4,Db3,Ab3,Db4}{1/4,Eb4,Ab4,Eb5}}}{_tempo(5/2) _volume(124) _chan(1){2,{1/2,F5,A5,F6} 3/2 ‚{1/2,F2,C3,F3}{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,F3,C4,F4}{1/4,G4,C5,G5}}}{_tempo(5/2) _volume(113) _chan(1){2,--,{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,F3,C4,F4}{1/4,G4,C5,G5}{1/4,A3,C4,F4}{1/4,G4,C5,G5}{1/4,F3,C4,F4}{1/4,Eb4,Eb5}}}{_tempo(5/2) _volume(124) _chan(1){2,{1/2,D5,F#5,D6} 3/2 ‚{1/2,D2,A2,D3}{1/4,F#3,A3,D4}{1/4,E4,A4,E5}{1/4,F#3,A3,D4}{1/4,E4,A4,E5}{1/4,D3,A3,D4}{1/4,E4,A4,E5}}}{_tempo(5/2) _volume(113) _chan(1){2,--,{1/4,F3,A3,D4}{1/4,E4,A4,E5}{1/4,D3,A3,D4}{1/4,E4,A4,E5}{1/4,F3,A3,D4}{1/4,E4,A4,E5}{1/4,D3,A3,D4}{1/4,E4,A4,E5}}}{_tempo(5/2) _volume(124) _chan(1){2,{1/2,F#5,A#5,F#6} 3/2 ‚{1/2,F#2,C#3,F#3}{1/4,A#3,C#4,F#4}{1/4,G#4,C#5,G#5}{1/4,A#3,C#4,F#4}{1/4,G#4,C#5,G#5}{1/4,F#3,C#4,F#4}{1/4,G#4,C#5,G#5}}}{_tempo(5/2) _volume(113) _chan(1){2,--,{1/4,A#3,C#4,F#4}{1/4,G#4,C#5,G#5}{1/4,F3,C#4,F#4}{1/4,G#4,C#5,G#5}{1/4,Db4,Gb4,Bb4}{1/4,C5,Gb5,C6}{1/4,Bb3,Gb4,Bb4}{1/4,C5,Gb5,C6}}}{_tempo(5/2) _volume(113) _chan(1){2,--,{1/4,Gb4,Bb4,Db5}{1/4,Eb5,A5,Eb6}{1/4,Db4,Bb4,Db5}{1/4,Eb5,A5,Eb6}{1/4,Bb4,Db5,G5}{1/4,Ab5,Db6,Ab6}{1/4,Gb4,Db5,G5}{1/4,Ab5,Db6,Ab6}}}{_tempo(5/2) _volume(113) _chan(1){2,--,{1/4,Db5,Gb5,Bb5}{1/4,C6,Gb6,C7}{1/4,Bb4,Gb5,Bb5}{1/4,C6,Gb6,C7}{1/4,Gb5,Bb5,Db6}{1/4,Eb6,A6,Eb7}{1/4,Db5,Bb5,Db6}{1/4,Eb6,A6,Eb7}}}{_tempo(5/2) _volume(113) _chan(1){2,--,{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}}}{_tempo(5/2) _volume(113) _chan(1){2,--,{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}}}{_tempo(5/2) _volume(113) _chan(1){2,--,{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}{1/4,Db5,Gb5,Bb5,Db6}{1/4,Eb6,Gb6,Bb6,Eb7}}}{_tempo(5/2) _volume(113) _chan(1){2,--,{1/2,Db5,Gb5,Bb5,Db6} 1/2 -}}{_tempo(5/2) _volume(52) _chan(1){2,- 1/2 {1/2,-Db5},--}}{_tempo(5/2) _volume(113) _chan(1){2,{2,Bb5 Ab5 Gb5 F5 Gb5 Ab5 Bb5 Gb5},{1/2,Bb3,Bb4}{1/2,Db4,Gb4}{1/2,Bb3,Bb4}{1/2,Db4,Gb4}}}{_tempo(5/2) _volume(113) _chan(1){2,{1/2,F5}{1/2,-Db5}{1/2,Ab5}{1/2,-Gb5},{1/2,C4,A4}{1/2,Db4,F4}{1/2,C4,A4}{1/2,Db4,F4}}}{_tempo(5/2) _volume(113) _chan(1){2,{1/2,F5}{1/2,-Db5}{1/2,Db6}{1/2,-F5},{1/2,C4,A4}{1/2,Db4,F4}{1/2,C4,A4}{1/2,Db4,F4}}}{_tempo(5/2) _volume(113) _chan(1){2,Gb5 1/2 {1/2,-Db5},{1/2,Bb3,Bb4}{1/2,Db4,Gb4}{1/2,Bb3,Bb4}{1/2,Db4,Gb4}}}{_tempo(5/2) _volume(113) _chan(1){2,{2,Bb5 Ab5 Gb5 F5 Gb5 Ab5 Gb5 F5},{1/2,Bb3,Bb4}{1/2,Db4,Gb4}{1/2,Bb3,Bb4}{1/2,Db4,Gb4}}}{_tempo(5/2) _volume(113) _chan(1){2,{1/2,E5}{1/2,-C5}{1/2,G5}{1/2,-F5},{1/2,Bb3,G4}{1/2,C4,E4}{1/2,Bb3,G4}{1/2,C4,E4}}}{_tempo(5/2) _volume(113) _chan(1){2,{1/2,E5}{1/2,-C5}{1/2,C6}{1/2,-E5},{1/2,Bb3,G4}{1/2,C4,E4}{1/2,G3,E4}{1/2,Bb3,C4}}}{_tempo(5/2) _volume(113) _chan(1){2,F5 1/2 {1/2,-C6},{1/2,F3,F4}{1/2,A3,C4}{1/2,Eb3,Eb4}{1/2,A3,C4},{2,F4 -Eb4 -}}}{_tempo(5/2) _volume(113) _chan(1){2,{2,Bb6 Ab6 Gb6 F6 Gb6 Ab6 Bb6 Gb6},{1/2,Eb3,Eb4}{1/2,Gb3,Bb3}{1/2,D3,D4}{1/2,Gb3,Bb3},{1/2,Eb4} 3/2 }}{_tempo(5/2) _volume(113) _chan(1){2,{1/2,F6}{1/2,-Db6}{1/2,Ab6}{1/2,-Gb6},{1/2,Db3,Db4}{1/2,F3,Ab3}{1/2,Db3,Db4}{1/2,F3,Ab3}}}{_tempo(5/2) _volume(113) _chan(1){2,{1/2,F6}{1/2,-Db6}{1/2,Db7}{1/2,-F6},{1/2,Db3,Db4}{1/2,F3,Ab3}{1/2,Cb3,Cb4}{1/2,F3,Ab3}}}{_tempo(5/2) _volume(113) _chan(1){2,Gb6 1/2 {1/2,-Db4},{1/2,Bb2,Bb3}{1/2,Db3,Gb3}{1/2,Bb2,Bb3}{1/2,Db3,Gb3}}}{_tempo(5/2) _volume(113) _chan(1){2,{2,Bb4 Ab4 Gb4 F4 Gb4 Ab4 Gb4 F4},{1/2,Bb2,Bb3}{1/2,Db3,Gb3}{1/2,Bb2,Bb3}{1/2,Db3,Gb3}}}{_tempo(5/2) _volume(113) _chan(1){2,{1/2,E4}{1/2,-C4}{1/2,G4}{1/2,-F4},{1/2,Bb2,G3}{1/2,Db3,E3}{1/2,A2,G3}{1/2,C#3,E3},-{1,G3 -}}}{_tempo(5/2) _volume(113) _chan(1){2,{1/2,E4}{1/2,-Db4}{1/2,C5}{1/2,-E4},{1/2,G#2,G#3}{1/2,C#3,E3}{1/2,G2,Bb3}{1/2,C3,E3},{2,G#3 -Bb3 -}}}{_tempo(179/60) _volume(97) _chan(1){2,{1/2,F4}{1/2,A3,C4}{1/2,A4}{1/2,A3,C4},{1/2,F2}{1/2,C3,F3}{1/2,Eb2}{1/2,C3,Eb3}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,F#4}{1/2,A3,C4}{1/2,D5}{1/2,D4,F#4,C5},{3/2,D2 Eb3 D3}{1/2,F#3,A3}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,B4}{1/2,D4,F4}{1/2,G5}{1/2,G4,B4,F5},{3/2,G2 Ab3 G3}{1/2,B3,D4}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,F#5}{1/2,A4,C5}{1/2,D6}{1/2,D5,F#5,C6},{3/2,C3 Db4 C4}{1/2,E4,G4}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,A5}{1/2,A4,C5}{1/2,A5}{1/2,A4,C5,G5},{1/2,F3}{1/2,C4,F4}{1/2,Eb3}{1/2,C4,Eb4}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,F#5}{1/2,A4,C5}{1/2,D6}{1/2,D5,F#5,C6},{3/2,D3 E4 D4}{1/2,F#4,A4}}}{_tempo(179/60) _volume(97) _chan(1){2,{1/2,B5}{1/2,D5,F5}{1/2,G6}{1/2,G5,B5,F6},{3/2,G3 Ab4 G4}{1/2,B4,D5}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,E6}{1/2,G5,Bb5}{1/2,C7}{1/2,C6,E6,Bb6},{3/2,C4 Db5 C5}{1/2,E5,G5}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,A6}{1/2,A5,D6}{1/2,A6}{1/2,A5,D6},{3/2,A6 -A6}1/2,{1/2,F4}{1/2,C5,F5}{1/2,D4}{1/2,D5,F#5},-{1,D4 -}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,Bb6}{1/2,Bb5,D6}{1/2,B6}{1/2,B5,E6},{3/2,Bb6 -B6}1/2,{1/2,G4}{1/2,D5,G5}{1/2,E4}{1/2,E5,G#5},{2,G4 -E4 -}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,C7}{1/2,C6,E6}{1/2,C#7}{1/2,C#6,E6},{3/2,C7 -C#7}1/2,{1/2,A4}{1/2,E5,A5}{1/2,A4}{1/2,C#5,E5,A5},{2,A4 -A4 -}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,D7}{1/2,D6,F6}{1/2,E7}{1/2,D6,F6},{3/2,D7 -E7}1/2,{1/2,Bb3}{1/2,D4,F4,Bb4}{1/2,A3}{1/2,E4,A4},{2,Bb3 -A3 -}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,F7}{1/2,F6,A6}{1/2,A6}{1/2,A5,D6},{3/2,F7 -A6}1/2,{1/2,F4}{1/2,A4,C5,F5}{1/2,D4}{1/2,F#4,A4,D5},{2,F4 -D4 -}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,Bb6}{1/2,Bb5,D6}{1/2,B6}{1/2,B5,E6},{3/2,Bb6 -B6}1/2,{1/2,E3}{1/2,G3,Bb3,E4}{1/2,E3}{1/2,G#3,B3,E4},{2,E3 -E3 -}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,C7}{1/2,C6,E6}{1/2,C#7}{1/2,C#6,E6},{3/2,C7 -C#7}1/2,{1/2,A3}{1/2,C4,E4,A4}{1/2,A3}{1/2,C#4,E4,A4},{2,A3 -A3 -}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,D7}{1/2,D6,F6}{1/2,E7}{1/2,E6,G6},{3/2,D7 -E7}1/2,{1/2,D3}{1/2,F3,A3,D4}{1/2,D3}{1/2,G3,C4},{2,D3 -D3 -}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,F7}{1/2,F6,A6}{1/2,A5,A6}{1/2,D6,F#6},{3/2,F7 -A6}1/2,{1/2,F3}{1/2,A3,C4,F4}{1/2,D3,D4}{1/2,F#3,A3},{2,F3 -D4 -}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,Bb5,Bb6}{1/2,D6,G6}{1/2,B5,B6}{1/2,E6,G#6},{3/2,Bb6 -B6}1/2,{1/2,G2,G3}{1/2,Bb2,D3}{1/2,E2,E3}{1/2,G#2,B2},{2,G3 -E3 -}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,C6,C7}{1/2,E6,A6}{1/2,C#6,C#7}{1/2,E6,A6},{3/2,C7 -C#7}1/2,{1/2,A2,A3}{1/2,C3,E3}{1/2,A2,A3}{1/2,C#3,E3},{2,A3 -A3 -}}}{_tempo(179/60) _volume(113) _chan(1){2,{1/2,D6,D7}{1/2,F6,A6}{1/2,E6,E7}{1/2,G6,C7},{3/2,D7 -E7}1/2,{1/2,D2,D3}{1/2,F2,A2}{1/2,C2,G2,C3} 1/2 ‚{1/2,D3} 3/2 }}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,F6,A6,C7,F7}{1/2,F6,F7}{1/2,E6,E7}{1/2,D6,D7},{1/2,F2,A2,C3,F3}{1/2,F2,F3}{1/2,E2,E3}{1/2,D2,D3}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,C6,C7}{1/4,D6,D7}{1/4,E6,E7}{1/2,F6,F7}{1/2,A6,A7},{1/2,C2,C3}{1/4,D2,D3}{1/4,E2,E3}{1/2,F2,F3}{1/2,A2,A3}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,G6,G7}{1/2,B4,D5,G5,B5}{C5,E5,G5,C6},{1/2,G2,G3}{1/2,G3,B3,D4,G4}{C3,E3,G3,C4}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,Bb5,Bb6}{1/2,Bb5,Bb6}{1/2,A5,A6}{1/2,G5,G6},{1/2,Bb2,Bb3}{1/2,Bb2,Bb3}{1/2,A2,A3}{1/2,G2,G3}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,C6,C7}{1/4,D6,D7}{1/4,E6,E7}{1/2,F6,F7}{1/2,A6,A7},{1/2,F2,F3}{1/4,G2,G3}{1/4,A2,A3}{1/2,Bb2,Bb3}{1/2,D3,D4}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,C6,C7}{1/2,E5,G5,C6,E6}{F5,A5,C6,F6},{1/2,C3,C4}{1/2,C4,E4,G4,C5}{F3,A3,C4,F4}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,F3,F4}{1/2,F3,F4}{1/2,E3,E4}{1/2,D3,D4},{1/2,F1,F2}{1/2,F1,F2}{1/2,E1,E2}{1/2,D1,D2}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,C3,C4}{1/4,D3,D4}{1/4,E3,E4}{1/2,F3,F4}{1/2,A3,A4},{1/2,C1,C2}{1/4,D1,D2}{1/4,E1,E2}{1/2,F1,F2}{1/2,A1,A2}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,G3,G4}{1/2,B4,D5,G5,B5}{C5,E5,G5,C6},{1/2,G1,G2}{1/2,G3,B3,D4,G4}{C3,E3,G3,C4}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,Bb3,Bb4}{1/2,Bb3,Bb4}{1/2,A3,A4}{1/2,G3,G4},{1/2,Bb1,Bb2}{1/2,Bb1,Bb2}{1/2,A1,A2}{1/2,G1,G2}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,C4,C5}{1/4,D4,D5}{1/4,E4,E5}{1/2,F4,F5}{1/2,A4,A5},{1/2,F1,F2}{1/4,G1,G2}{1/4,A1,A2}{1/2,Bb1,Bb2}{1/2,D2,D3}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,C4,C5}{1/2,E4,G4,C5,E5}{1/2,F4,A4,C5,F5}{1/2,G4,C5,E5,G5},{1/2,C2,C3}{1/2,C3,E3,G3,C4}{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,A4,C5,F5,A5}{1/2,C5,E5,G5,C6}{1/2,C5,F5,A5,C6}{1/2,E4,G4,C5,E5},{1/2,F2,A2,C3,F3}{1/2,C3,E3,G3,C4}{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,F4,A4,C5,F5}{1/2,G4,C5,E5,G5}{1/2,A4,C5,F5,A5}{1/2,C5,E5,G5,C6},{1/2,F2,A2,C3,F3}{1/2,C3,E3,G3,C4}{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,C5,F5,A5,C6}{1/2,E5,G5,C6,E6}{1/2,F5,A5,C6,F6}{1/2,E5,G5,C6,E6},{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,F5,A5,C6,F6}{1/2,E5,G5,C6,E6}{1/2,F5,A5,C6,F6}{1/2,E5,G5,C6,E6},{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}{1/2,F2,A2,C3,F3}{1/2,C2,E2,G2,C3}}}{_tempo(7/3) _volume(113) _chan(1){9/4,{1/2,F5,A5,C6,F6} 1/4 {1/4,A4,C5,F5,A5}{1/2,A4,C5,F5,A5} 1/4 {1/4,C5,F5,A5,C6} 1/4 ‚{1/2,F2,A2,C3,F3} 1/4 {1/4,F3,A3,C4,F4}{1/2,F3,A3,C4,F4} 1/4 {1/4,C3,F3,A3,C4} 1/4 }}{_tempo(7/3) _volume(113) _chan(1){9/4, 1/4 {1/2,C5,F5,A5,C6} 1/4 {1/4,F4,A4,C5,F5}{1/2,F4,A4,C5,F5} 1/4 {1/4,A4,C5,F5,A5}, 1/4 {1/2,C3,F3,A3,C4} 1/4 {1/4,A2,C3,F3,A3}{1/2,A2,C3,F3,A3} 1/4 {1/4,F2,A2,C3,F3}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,A4,C5,F5,A5} 1/4 {1/4,F4,A4,C5,F5}{1/2,F4,A4,C5,F5} 1/4 {1/4,A4,C5,F5,A5},{1/2,F2,A2,C3,F3} 1/4 {1/4,A2,C3,F3,A3}{1/2,A2,C3,F3,A3} 1/4 {1/4,F2,A2,C3,F3}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,A4,C5,F5,A5} 1/4 {1/4,C5,F5,A5,C6}{1/2,C5,F5,A5,C6} 1/4 {1/4,F5,A5,C6,F6},{1/2,F2,A2,C3,F3} 1/4 {1/4,C2,F2,A2,C3}{1/2,C2,F2,A2,C3} 1/4 {1/4,F1,A1,C2,F2}}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,F5,A5,C6,F6} 1/2 -,{1/2,F1,A1,C2,F2} 1/2 -}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,A4,C5,F5,A5} 1/2 -,{1/2,C3,F3,A3,C4} 1/2 -}}{_tempo(7/3) _volume(113) _chan(1){2,{1/2,F3,A3,C4,F4} 1/2 -,{1/2,F1,A1,C2,F2} 1/2 -}}

Return to humanity

Examples will hope­ful­ly con­vince read­ers that the Bol Processor for­mat is able to emu­late detailed scores in com­mon Western music nota­tion, and even fix some irreg­u­lar­i­ties in their tim­ings… Let us admit a long way from its ini­tial ded­i­ca­tion to the beau­ti­ful poet­ry cre­at­ed by drum play­ers in India!

These are indeed inter­pre­ta­tions of musi­cal scores. In order to remem­ber the addi­tion­al val­ue cre­at­ed by human artists play­ing real instru­ments, we may end up lis­ten­ing to the same Beethoven’s Fugue played by Alban Berg Quartett:

Beethoven’s Fugue in B flat major (opus 133). Source:

A multicultural model of consonance

A frame­work for tun­ing just-intonation scales via two series of fifths

For more than twen­ty cen­turies, musi­cians, instru­ment mak­ers and musi­col­o­gists fig­ured out scale mod­els and tun­ing pro­ce­dures for the cre­ation of music embody­ing the con­cept of “con­so­nance”. There was a shared notion of the octave and the major fifth (inter­val “C” to “G”) being the build­ing blocks of these mod­els, and the har­mon­ic major third (inter­val “C” to “E”) late­ly played a sig­nif­i­cant role in European baroque and clas­si­cal music.

Computer-controlled elec­tron­ic instru­ments open new avenues for the imple­men­ta­tion of micro­tonal­i­ty includ­ing just-intonation frame­works divid­ing the octave in more than 12 grades ( Throughout cen­turies, Indian art music claimed its adher­ence to a divi­sion of 22 inter­vals (the ṣruti-swara sys­tem) the­o­rized in Nāṭyaśāstra, a Sanskrit trea­tise dat­ing back between 400 BCE to 200 CE. Since con­so­nance (saṃvādī) is the basis of both ancient Indian and European tonal sys­tems, we felt the urge for a the­o­ret­i­cal frame­work encom­pass­ing all models.

Unfortunately, the top­ic of “just into­na­tion” is exposed in an alto­geth­er con­fus­ing and reduc­tive man­ner (read Wikipedia) due to musi­col­o­gists’ focus on inte­ger ratios aimed at reflect­ing the dis­tri­b­u­tion of high­er par­tials in peri­od­i­cal sounds. While these spec­u­la­tive mod­els of into­na­tion may respond to beliefs in the mys­ti­cal prop­er­ties of nat­ur­al num­bers — as claimed by Pythagoreanists — they were rarely checked against non-directed musi­cal prac­tice. Instrument tuners most­ly rely on their own audi­to­ry per­cep­tion of inter­vals rather than resort­ing to num­bers, despite the avail­abil­i­ty of “elec­tron­ic tuners”…

Interestingly, the ancient Indian the­o­ry of nat­ur­al scales does not rely on arith­metics. This should be sur­pris­ing giv­en that in Vedic times mathematicians/philosophers had laid out the foun­da­tions of cal­cu­lus and infin­i­tes­i­mals which much lat­er were export­ed from Kerala to Europe and borrowed/appropriated by European schol­ars — read C.K. Raju’s Cultural Foundations of Mathematics: the nature of math­e­mat­i­cal proof and the trans­mis­sion of the cal­cu­lus from India to Europe in the 16th c. CE. This epis­te­mo­log­i­cal para­dox was an incen­tive to decrypt the mod­el depict­ed by the author(s) of Nāṭyaśāstra via a thought exper­i­ment: the two-vina exper­i­ment (

Earlier inter­pre­ta­tions of this mod­el, mim­ic­k­ing the Western habit of deal­ing with inter­vals as fre­quen­cy ratios, failed to explain the inter­val­ic struc­ture of ragas in Hindustani clas­si­cal music. In fact, the implic­it mod­el of Nāṭyaśāstra is a “flex­i­ble” one because the size of the major third (or equiv­a­lent­ly the pramāņa ṣru­ti) is not stat­ed in advance. Read Raga into­na­tion ( and lis­ten to exam­ples to grasp the artic­u­la­tion between the the­o­ry and prac­tice of into­na­tion in this context.

In Europe, the har­mon­ic major third was final­ly accept­ed as a “celes­tial inter­val” after the Council of Trent (1545-1563) putting an end to the ban­ish­ment of poly­phon­ic singing in reli­gious gath­er­ings. Along with the devel­op­ment of fixed-pitch key­board instru­ments, this gave way to the elab­o­ra­tion of the­o­ret­i­cal mod­els and tun­ing pro­ce­dures attempt­ing to include this inter­val in “pure into­na­tion”. In the­o­ry, this is not fea­si­ble on a chro­mat­ic (12-grade scale) but it can be fig­ured out and applied to Western har­mo­ny if more grades (29 to 41) are per­mit­ted. However, choos­ing enhar­mon­ic posi­tions suit­able for a har­mon­ic con­text remains an uncer­tain venture.

Once again, the Indian mod­el came to the res­cue because it can be extend­ed to pro­duce a con­sis­tent series of twelve “opti­mal­ly con­so­nant” chro­mat­ic scales in com­pli­ance with chord inter­vals in Western har­mo­ny. Each scale con­tains 12 grades, which is more than the notes of chords it is applic­a­ble for. Sound exam­ples are pro­vid­ed to illus­trate this process (

Tuning mechan­i­cal key­board instru­ments (church organ, harp­si­chord, pianoforte) for 12-grade scales made it nec­es­sary to dis­trib­ute unwant­ed dis­so­nance (the syn­ton­ic com­ma) in an accept­able man­ner over series of fifths and fourths. Many tem­pered tun­ing pro­ce­dures were designed, dur­ing the 16th to 19th cen­turies, with empha­sis on either “per­fect fifths” or “pure major thirds”, in response to the con­straints of spe­cif­ic musi­cal repertoires.

These tech­niques have been doc­u­ment­ed in detail by organ play­er and instru­ment design­er Pierre-Yves Asselin, along with meth­ods for achiev­ing the tun­ing on a mechan­i­cal instru­ment such as the harp­si­chord. His book Musique et tem­péra­ment (soon avail­able in English) was a guide­line for imple­ment­ing a sim­i­lar approach in the Bol Processor ( This frame­work will make it pos­si­ble to lis­ten to baroque and clas­si­cal works, using Csound instru­ments, with the very tun­ings their com­posers had been favor­ing — accord­ing to his­tor­i­cal sources.

Creation of just-intonation scales

The fol­low­ing is the pro­ce­dure for export­ing just-intonation scales from mur­ccha­na-s of Ma-grama stored in “-cs.12_scales”.

Read Just into­na­tion: a gen­er­al frame­work for explanations.

The scale model

From left to right: 1st-order descending-third series, “Pythagorean” series and 1st-order ascending-third series (Asselin 2000 p. 61)

As indi­cat­ed on page Just into­na­tion: a gen­er­al frame­work, just-intonation chro­mat­ic scales can be derived from a basic frame­work made of two cycles of per­fect fifths (fre­quen­cy ratio 3/2).

These pro­duce the 22-shru­ti frame­work of Indian musi­col­o­gists (read Raga into­na­tion) or the series named “Pythagorean” and “1st-order ascending-third” (“LA-1”, “MI-1” etc.) in the approach of Western musi­col­o­gists (see pic­ture on the side).

We found that the “1st-order descending-third cycle” (“LAb+1”, “MIb+1” etc.) in which all notes are high­er by a syn­ton­ic com­ma may not be required for the cre­ation of just-intonation chords.

These cycles of fifths are rep­re­sent­ed graph­i­cal­ly (scale “2_cycles_of_fifths” in Csound resource “-cs.tryTunings”):

There are a few dif­fer­ences between this 29-grade divi­sion of the octave and the Indian frame­work, notably the cre­ation of “DO-1” and “FA-1”, two posi­tions low­er by one syn­ton­ic com­ma than “DO” (“C” = “Sa” in the Indian con­ven­tion) and “FA” (“F” = “Ma”). Interestingly, these posi­tions appear in ancient texts under the names “cyu­ta Sa” and “cyu­ta Ma”. Other addi­tion­al posi­tions are “REb-1”, “MIb-1”, “SOLb-1”, “LAb-1” and “SIb-1”.

The rule we fol­low when pro­duc­ing chro­mat­ic scales via trans­po­si­tions of Ma-grama is that only posi­tions dis­played on this graph should be con­sid­ered valid. When export­ing a minor or major chro­mat­ic scale from a trans­po­si­tion of Ma-grama, it may occur that a note posi­tion is not part of this frame­work. In all cas­es of this pro­ce­dure, the invalid posi­tion is one syn­ton­ic com­ma too low. Therefore the export­ed scale will be “aligned” rais­ing all its posi­tions by one comma.

The term “Pythagorean series” is con­fus­ing because any cycle of per­fect fifths is Pythagorean by def­i­n­i­tion. Whether a posi­tion in a scale “is” or “is not” Pythagorean depends on the start­ing note of the series that was announced as “Pythagorean”. In Asselin’s work the start­ing point of the series in the cen­tral col­umn is “FA”. In the Indian sys­tem, basic frame­works (Ma-grama and Sa-grama) start from “Sa” (“C” or “do”) and the Pythagorean/harmonic sta­tus of a posi­tion is deter­mined by fac­tors of its fre­quen­cy ratio with respect to “Sa”. If a fac­tor “5” is found in the numer­a­tor or the denom­i­na­tor, the posi­tion is har­mon­ic, or Pythagorean in the reverse case.

Thus, for instance, “DO#” in Asselin’s “Pythagorean” series (two per­fect fifths above “SI”) is eval­u­at­ed as a har­mon­ic posi­tion (marked in green) on the Bol Processor graph­ic and its ratio is 16/15. In real­i­ty, “DO#” in Asselin’s series has a fre­quen­cy ratio 243/128 * 9/16 = 2187/1024 = 1.068 which is very close to 16/15 = 1.067. “DO#-1” in Asselin’s series is two per­fect fifths above “SI-1” which yields a fre­quen­cy ratio 15/8 * 9/16 = 135/128 = 1.054 which is close to 256/243 = 1.053 and marked “Pythagorean” on the Indian scheme. Thus, “DO#” and “DO#-1” have exchanged their prop­er­ties because each of them is the super­po­si­tion of two very close posi­tions belong­ing to dif­fer­ent series.

Ignoring schis­ma dif­fer­ences to take the sim­plest ratios cre­ate this con­fu­sion. Therefore, we keep pre­fer­ring com­ma indi­ca­tions — e.g. “FA” and “FA-1” — to iden­ti­fy posi­tions, in which the first instance belongs to the series termed “Pythagorean” in Asselin’s work.

Transposition table

This table sum­ma­rizes a quick pro­ce­dure for cre­at­ing all mur­ccha­na-s of the Ma-grama chro­mat­ic scale and export minor and major chro­mat­ic scales therefrom.

Open the “Ma_grama” scale in the “-cs.12_scales” Csound resource and select the Murcchana pro­ce­dure. To cre­ate “Ma01″, move note “F” to note “C” and click TRANSPOSITION.

F moved toMurcchanaMinor scaleRaiseMajor scaleIdentical

For exam­ple, this is the “Ma04mur­ccha­na obtained by plac­ing “F” (M1 on the Indian scale mod­el) of the move­able wheel on “Eb” (G1 of the out­er crown):

The result­ing scale “Ma04″ is:

The “Ma04” scale pro­duced as a trans­po­si­tion of the “Ma-grama” chro­mat­ic scale

Scale adjustment

In the last col­umn of the table, “Adjust” indi­cates the frac­tion by which the ratios of notes may need to be mul­ti­plied so that no posi­tion is cre­at­ed out­side the Pythagorean and har­mon­ic cycles of fifths accord­ing to the Indian sys­tem. Practically this is the case when the fre­quen­cy ratio con­tains a mul­ti­ple of 25 in either its numer­a­tor or denom­i­na­tor, as this indi­cates that the posi­tion has been con­struct­ed by at least two suc­ces­sive major thirds (up or down). 

A warn­ing is dis­played when this is the case, and a sin­ple click on ADJUST SCALE fix­es positions:

In this exam­ple, the warn­ing sig­nals an out-of-range posi­tion of “B” (50/27) on the “Ma10″ scale. Also note that “F#” has a mul­ti­ple of 25 in its numerator.

After click­ing ADJUST SCALE, the “Ma10″ scale is final­ized with “B” at posi­tion 15/8. This has been done by rais­ing all notes by a syn­ton­ic com­ma (81/80) :

This pro­ce­dure is men­tioned in Indian musi­col­o­gy under the name of sadja-sadharana telling that all notes of the scale are raised by one shru­ti — here, a syn­ton­ic com­ma (Shringy & Sharma 1978). In this mod­el, it is also invoked for scales “Ma11″ and “Ma12″. The result is (as expect­ed) a cir­cu­lar mod­el because “Ma13″ is iden­ti­cal to “Ma01″ as shown by the scale com­para­tor at the bot­tom of page “-cs.12_scales”.

This cir­cu­lar­i­ty is a prop­er­ty of the set of mur­ccha­na-s which has no influ­ence on export­ed minor and major scales because their posi­tions will be aligned in com­pli­ance with the basic rule exposed in the first section.

Exporting and aligning minor scales

The “Ma04mur­ccha­na pro­duces “Cmin” by export­ing notes fac­ing marks on the inner wheel.

The “Cmin” chro­mat­ic scale export­ed from the “Ma04” transposition

As explained on page Just into­na­tion: a gen­er­al frame­work, the ton­ic and dom­i­nant notes of every minor chord should belong to the “minus-1” posi­tion. In this exam­ple, “C” and “G” are one com­ma low­er in a “C minor” chord than in a “C major” chord (match­ing “DO-1” and “SOL-1” on the “2_cycles_of_fifths” scale) , a fact which had been pre­dict­ed and exper­i­men­tal­ly checked by Pierre-Yves Asselin (2000 p. 137).

All chro­mat­ic minor scales export­ed from mur­chana-s of Ma-grama are cor­rect­ly posi­tioned with respect of enhar­mon­ic posi­tions of main notes in just-intonation chords. This can eas­i­ly be checked com­par­ing ratios with the ones asso­ci­at­ed with the Western series on “2_cycles_of_fifths” (top of this page). This con­firms that a tun­ing sys­tem using only two series of per­fect fifths is con­ve­nient for the con­struc­tion of a just-intonation framework.

Exporting and aligning major scales

The “Ma04mur­ccha­na pro­duces “Ebmaj” by export­ing notes fac­ing marks on the inner wheel and rais­ing “F”:

The “Ebmaj” chro­mat­ic scale export­ed from the “Ma04” transposition

According to a rule exposed on page Just into­na­tion: a gen­er­al frame­work, the basic note of every major chord should be both in the high posi­tion and in the Pythagorean series (blue mark­ings). This is true of “Eb major” chord extract­ed from the “Ebmaj” chro­mat­ic scale, yet not with scales “F#maj”, “Bmaj” and “Emaj” dis­played in bold style on the table.

Let us for instance look at “Emaj” export­ed with­out pre­cau­tion from “Ma09″:

Scale “Emaj” export­ed from “Ma09”, before its alignment

Note “E” has a fre­quen­cy ratio 5/4 which is labeled “MI-1” on scale “2_cycles_of_fifths” (top of this page). Since “MI-1” belongs to a har­mon­ic series, it can­not be tak­en as a the ton­ic of a “E major chord”. The Pythagorean “MI” (ratio 81/64) should be used instead.

After its align­ment — rais­ing all notes by 1 syn­ton­ic com­ma — the final “Emaj” scale is obtained:

Scale “Emaj” export­ed from “Ma09”, after its alignment

This align­ment of export­ed major scales is done auto­mat­i­cal­ly by the Bol Processor when export­ing a major chro­mat­ic scale.


Asselin, P.-Y. Musique et tem­péra­ment. Paris, 1985, repub­lished in 2000: Jobert. Soon avail­able in English.

Shringy, R.K.; Sharma, P.L. Sangita Ratnakara of Sarngadeva: text and trans­la­tion, vol. 1, 5: 7-9. Banaras, 1978: Motilal Banarsidass. Source in the Web Archive.

Raga intonation

Tanpura: the drone of Indian musi­cians (man­u­fac­tured in Miraj)

This arti­cle demon­strates the the­o­ret­i­cal and prac­ti­cal con­struc­tion of micro­ton­al scales for the into­na­tion of North Indian ragas, using tools avail­able with Bol Processor (BP3) + Csound.

It comes as a com­ple­ment to pages Microtonality and Just into­na­tion, a gen­er­al frame­work and The Two-vina exper­i­ment. Nonetheless, its under­stand­ing does not require a pre­lim­i­nary study of these relat­ed pages.

This exer­cise on raga into­na­tion demon­strates the abil­i­ty of BP3 to deal with sophis­ti­cat­ed mod­els of micro-intonation and sup­port a fruit­ful cre­ation of music embod­ied by these models.

Theory versus practice

To sum­ma­rize the back­ground, the frame­work for con­struct­ing “just-intonation” scales is a deci­pher­ing of the first six chap­ters of Nāṭyaśāstra, a Sanskrit trea­tise on music, dance and dra­ma dat­ing back to a peri­od between 400 BCE and 200 CE. For con­ve­nience we call it “Bharata’s mod­el” although there is no his­tor­i­cal record of a sin­gle author bear­ing this name.

Using exclu­sive infor­ma­tion dri­ven from the text and its descrip­tion of the Two-vina exper­i­ment pro­vides an infi­nite set of valid inter­pre­ta­tions of the ancient the­o­ry as shown in A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra (Bel 1988). Among these, the one advo­cat­ed by many musi­col­o­gists — influ­enced by Western acoustics and scale the­o­ries — states that the fre­quen­cy ratio of the har­mon­ic major third would be 5/4. This is equiv­a­lent to fix­ing the fre­quen­cy ratio of the syn­ton­ic com­ma to 81/80.

Even though this inter­pre­ta­tion yields a con­sis­tent mod­el for just-intonation har­mo­ny — read Just into­na­tion, a gen­er­al frame­work — it would be far-fetched to stip­u­late that the same holds for raga into­na­tion. Accurate mea­sure­ments of raga per­for­mance using our Melodic Movement Analyzer in the ear­ly 1980s revealed that melod­ic struc­tures inferred from sta­tis­tics (using selec­tive tona­grams, read below) often dif­fer sig­nif­i­cant­ly from scales pre­dict­ed by the “just-intonation” inter­pre­ta­tion of Bharata’s mod­el. Part of the expla­na­tion may be the strong har­mon­ic attrac­tion effect of drones (tan­pu­ra) played in the back­ground of per­for­mances of raga.

Talking about gra­ma-s (scale frame­works) in the ancient Indian the­o­ry, E.J. Arnold wrote (1982 p. 40):

Strictly speak­ing the gra­mas belong to that aspect of nada (vibra­tion) which is ana­ha­ta (“unstruck”). That means to say that the “gra­ma” can nev­er be heard as a musi­cal scale [as we did on page Just into­na­tion, a gen­er­al frame­work]. What can be heard as a musi­cal scale is not the gra­ma, but any of its mur­ccha­nas.

As soon as elec­tron­ic devices such as the Shruti Harmonium (1979) and the Melodic Movement Analyzer (1981) became avail­able, the chal­lenge of research on raga into­na­tion was to rec­on­cile two method­olo­gies: a top-down approach check­ing hypo­thet­i­cal mod­els against data, and a data-driven bottom-up approach.

The “micro­scop­ic” obser­va­tion of melod­ic lines (now ren­dered easy by soft­ware like Praat) con­firmed the impor­tance of note treat­ment (orna­men­ta­tion, alankara) and time-driven dimen­sions of raga which are not tak­en into account by scale the­o­ries. For instance, long dis­cus­sions have been held on the ren­der­ing of note “Ga” in raga Darbari Kanada (Bel & Bor 1984; van der Meer 2019) and typ­i­cal treat­ment of notes in oth­er ragas (e.g. Rao & Van der Meer 2009; 2010). The visu­al tran­scrip­tion of a phrase of raga Asha makes it evident:

A brief phrase of raga Asha tran­scribed by the MMA and in Western con­ven­tion­al notation
Non-selective tona­gram of raga Sindhura sung by Ms. Bhupender Seetal

In order to extract scale infor­ma­tion from this melod­ic con­tin­u­um, a sta­tis­ti­cal mod­el was imple­ment­ed to dis­play the dis­tri­b­u­tion of pitch across one octave. The image shows the tona­gram of a 2-minute sketch (cha­lana) of raga Sindhura taught by Pandit Dilip Chandra Vedi.

The same record­ing of Sindhura on a selec­tive tonagram

The same melod­ic data was processed again after a fil­ter­ing of 3 win­dows attempt­ing to iso­late “sta­ble” parts of the line. The first win­dow, typ­i­cal­ly 0.1 sec­onds, would elim­i­nate irreg­u­lar seg­ments, the sec­ond one (0.4 s.) would dis­card seg­ments out­side a rec­tan­gle of 80 cents in height, and the third one was used for aver­ag­ing. The out­come is a “skele­ton” of the tonal scale dis­played as a selec­tive tona­gram.

These results often would not match scale met­rics pre­dict­ed by the “just-intonation” inter­pre­ta­tion of Bharata’s mod­el. Proceeding fur­ther in this data-driven approach, we pro­duced the (non-selective) tona­grams of 30 ragas (again cha­lana-s) to com­pute a clas­si­fi­ca­tion based on their tonal mate­r­i­al. Dissimilarities between pairs of graphs (cal­cu­lat­ed with Kuiper’s algo­rithm) were approx­i­mat­ed as dis­tances, from which a 3-dimensional clas­si­cal scal­ing was extracted:

A map of 30 North-Indian ragas con­struct­ed by com­par­ing tona­grams of 2-minute sketch­es (cha­lana-s) of sung per­for­mances (Bel 1988b)

This exper­i­ment sug­gests that con­tem­po­rary North-Indian ragas are amenable to mean­ing­ful auto­mat­ic clas­si­fi­ca­tion on the sole basis of their (time-independent) inter­val­ic con­tent. This approach is anal­o­gous to tech­niques of human face recog­ni­tion able to iden­ti­fy relat­ed images with the aid of lim­it­ed sets of features.

Microtonal framework

The “flex­i­ble” mod­el derived from the the­o­ret­i­cal mod­el of Natya Shastra (read The Two-vina exper­i­ment) dis­cards the asser­tion of a pre­cise fre­quen­cy ratio for the har­mon­ic major third clas­si­fied as anu­va­di (aso­nant) in ancient lit­er­a­ture. This amounts to admit­ting that the syn­ton­ic com­ma (pramāņa ṣru­ti in Sanskrit) might take any val­ue between 0 and 56.8 cents.

Let us look at graph­ic rep­re­sen­ta­tions (by the Bol Processor) to illus­trate these points.

The basic frame­work of musi­cal scales, accord­ing to Indian musi­col­o­gy, is a set of 22 tonal posi­tions in the octave named shru­ti-s in ancient texts. Below is the frame­work dis­played by Bol Processor (micro­ton­al scale “gra­ma”) with a 81/80 syn­ton­ic com­ma. The names of posi­tions “r1_”, “r2_” etc fol­low the con­straints of low­er­case ini­tials and append­ing a under­line char­ac­ter to dis­tin­guish octave num­bers. Positions “r1” and “r2” are two options for locat­ing komal Re (“Db” or “re bemol”) where­as “r3” and “r4” des­ig­nate shud­dha Re (“D” or “re”) etc.

The “gra­ma” scale dis­play­ing 22 shruti-s accord­ing to the mod­el of Natya Shastra

The 22 shru­ti-s can be lis­tened to on page Just into­na­tion, a gen­er­al frame­work, keep­ing in mind (read above) that this is a frame­work and not a scale. No musi­cian would ever attempt to play or sing these posi­tions as “notes”!

What hap­pens if the val­ue of the syn­ton­ic com­ma is mod­i­fied? Below is the same frame­work with a com­ma of 0 cent. In this case, any “har­mon­ic posi­tion” — one whose frac­tion con­tained a mul­ti­ple of 5 — slides to its near­est Pythagorean neigh­bour (only mul­ti­ples of 3 and 2). The result is a “Pythagorean tun­ing”. On top of the cir­cle the remain­ing gap is a Pythagorean com­ma. Positions are slight­ly blurred because of mis­match­es linked with a very small inter­val (the schis­ma).

The “gra­ma scale” of 22 shruti-s with a syn­ton­ic com­ma of 0 cent.

The fol­low­ing is the frame­work with a syn­ton­ic com­ma of 56.8 cents (its upper limit):

The “gra­ma scale” of 22 shruti-s with a syn­ton­ic com­ma of 56.8 cents.

In this rep­re­sen­ta­tion, “har­mon­ic major thirds” of 351 cents would most like­ly sound “out of tune” because the 5/4 ratio yields 384 cents. In fact, “g2” and “g3” are both dis­tant by a quar­ter­tone between Pythagorean “g1” (32/27) and Pythagorean “g4” (81/64). Nonetheless, the inter­nal con­sis­ten­cy of this frame­work (count­ing per­fect fifths in blue) makes it still eli­gi­ble for the con­struc­tion of musi­cal scales.

Between these lim­its of 0 and 56.8 cents, the graph­ic rep­re­sen­ta­tion of scales and their inter­nal tonal struc­ture remain unchanged if we keep in mind that the size of major-third inter­vals is decid­ed by the syn­ton­ic comma.

Construction of scale types

Manuscript of the descrip­tion of Zarlino’s “nat­ur­al” scale

The mod­el extract­ed from Bharata’s Natya Shastra is not an evi­dent ref­er­ence for pre­scrib­ing raga into­na­tion because this musi­cal genre start­ed its exis­tence a few cen­turies later.

Most of the back­ground knowl­edge required for the fol­low­ing pre­sen­ta­tion is bor­rowed from Bose (1960) and my late col­league E. James Arnold who pub­lished A Mathematical mod­el of the Shruti-Swara-Grama-Murcchana-Jati System (Journal of the Sangit Natak Akademi, New Delhi 1982). Arnold stud­ied Indian music in Banaras and Delhi dur­ing the 1970s and the ear­ly 1980s.

Bose was con­vinced (1960 p. 211) that the scale named Kaishika Madhyama is equiv­a­lent to a “just-intonation” seven-grade scale of Western musi­col­o­gy. In oth­er words, he took for grant­ed that the 5/4 fre­quen­cy ratio (har­mon­ic major third) should be equiv­a­lent to the 7-shru­ti inter­val, but this state­ment had no influ­ence on the rest of his analysis.

Arnold (right) and Bel (left) demon­strat­ing shruti-s at the inter­na­tion­al East-West music con­fer­ence, Bombay 1983

Arnold (1982 p. 17) imme­di­ate­ly used inte­ger ratios to design inter­vals with the fixed syn­ton­ic com­ma (81/80), but as sug­gest­ed above this has no impact on his mod­el with respect to its struc­tur­al descrip­tion. He insist­ed on set­ting up a “geo­met­ri­cal mod­el” rather than a spec­u­la­tive descrip­tion based on num­bers as many authors (e.g. Alain Daniélou) had attempt­ed it. The most inno­v­a­tive aspect of Arnold’s study has been the use a cir­cu­lar slid­ing mod­el to illus­trate the match­ings of inter­vals in trans­po­si­tion process­es (mur­ccha­na-s) — see The Two-vina exper­i­ment.

Indeed it would be more con­ve­nient to keep express­ing all inter­vals in num­bers of shru­ti-s in com­pli­ance with the ancient Indian the­o­ry, but a machine needs met­ri­cal data to draw graph­ics of scales. For this rea­son we show graphs using a 81/80 syn­ton­ic com­ma, keep­ing in mind the option of mod­i­fy­ing this val­ue at a lat­er stage.

Sa-grama and Ma-grama accord­ing to Natya Shastra. Red and green seg­ments indi­cate perfect-fifth con­so­nance. Underlined note names indi­cate ‘flat’ positions.

The 22-shru­ti frame­work offers the pos­si­bil­i­ty of con­struct­ing 211 = 2048 chro­mat­ic scales, among which only 12 are “opti­mal­ly con­so­nant”, i.e. con­tain­ing only one wolf major fifth (small­er by 1 syn­ton­ic com­ma = 22 cents).

The build­ing blocks of the tonal sys­tem accord­ing to tra­di­tion­al Indian musi­col­o­gy are two seven-grade scales named Ma-grama and Sa-grama. Bose wrote (1960 p. 13): the Shadja Grāma devel­oped from the ancient tetra­chord in which the hymns of the Sāma Veda were chant­ed. Later on anoth­er scale, called the Madhyama Grāma, was added to the sec­u­lar musi­cal sys­tem. The two scales (Dorian modes, accord­ing to Western ter­mi­nol­o­gy) dif­fer by the posi­tion of Pa (“G” or “sol”) which may dif­fer by a syn­ton­ic com­ma (pramāņa ṣru­ti). In the Sa-grama, inter­val Sa-Pa is a per­fect fifth (13 shru­ti-s) where­as it is a wolf fifth (12 shru­ti-s) in the Ma-grama. Conversely, inter­val Pa-Re is a per­fect fifth in Ma-grama and a wolf fifth in Sa-grama.

Bharata used the Sa-grama to expose his thought exper­i­ment (The Two vinas) aimed at deter­min­ing the sizes of shru­ti-s. Then he intro­duced two addi­tion­al notes: kakali Nishada (komal Ni or “Bflat”) and antara Gandhara (shud­dh Ga or “E”) to get a nine-grade scale from which “opti­mal­ly con­so­nant” chro­mat­ic scales could be derived from modal trans­po­si­tions (mur­ccha­na). The process of build­ing these 12 chro­mat­ic scales, name­ly “Ma01″, “Ma02″… “Sa01″, “Sa20″ etc. is explained on page Just into­na­tion, a gen­er­al frame­work.

Selecting notes in each chro­mat­ic scale yields 5 to 7-note melod­ic types. In the Natya Shastra these melod­ic types were named jāti. These may be seen as ances­tors of ragas even though their lin­eages and struc­tures are only spec­u­lat­ed (read on). The term thāṭ (pro­nounce ‘taat’) trans­lat­ed as “mode” or “par­ent scale” — has lat­er been adopt­ed, each thāṭ being called by the name of a raga (see Wikipedia). Details of the process, ter­mi­nol­o­gy and sur­veys of sub­se­quent musi­co­log­i­cal lit­er­a­ture will be found in pub­li­ca­tions by Bose and oth­er scholars.

The con­struc­tion of the basic scale types is explained by Arnold (1982 p. 37-38). The start­ing point is the chro­mat­ic Ma-grama in its basic posi­tion — name­ly “Sa_murcchana” in the “-cs.12_scales” Csound resource file. This scale can be visu­al­ized, using Arnold’s slid­ing mod­el, by plac­ing the S note of the inner wheel on the S of the out­er crown :

The Ma-grama chro­mat­ic scale in its basic posi­tion named “Sa_murcchana’

This yields the fol­low­ing intervals:

The Ma-grama chro­mat­ic scale in its basic posi­tion and with notes labeled in English

“Optimal con­so­nance” is illus­trat­ed by two fea­tures: 1) there is only one wolf fifth (red line) in the scale (between D and G), and 2) every note is con­nect­ed with anoth­er one by a per­fect fifth (blue line). This con­so­nance is of pri­or impor­tance to Indian musi­cians. Consonant inter­vals are casu­al­ly placed in melod­ic phras­es to enhance the “fla­vor” of their notes, and no wolf fifth should exist in the scale.

Note that the Ma-grama chro­mat­ic scale has all its notes in their low­er enhar­mon­ic position.

The Ma-grama chro­mat­ic scale has been renamed “Sa_murcchana” in this occur­rence because ‘S’ of the mov­ing wheel is fac­ing ‘S’ of the fixed crown. The names of notes have been (in a sin­gle click) con­vert­ed to the Indian con­ven­tion. Note that key num­bers also have been (auto­mat­i­cal­ly) fixed to match exclu­sive­ly labeled notes. In this way, the upper “sa” is assigned key 72 instead of 83 in the “Ma01″ scale showed on page Just into­na­tion, a gen­er­al frame­work. The tonal con­tent of this “Sa_murchana” is exposed on this table:

Tonal con­tent of “Sa_murcchana”
Scale type named “kaphi1”

Selecting only “unal­tered” notes in “Sa_murcchana” — sa, re, gak, ma, pa, dha, nik — yields the “kaphi1″ scale type named after raga Kaphi (pro­nounced ‘kafi’). This may be asso­ci­at­ed to a D-mode (Dorian) in Western musicology.

This scale type is stored under the name “kaphi1″ because there will be one more ver­sion of the Kaphi scale type.

In “Sa_murcchana” the selec­tion of notes can dif­fer in two ways:

  • Select antara Gandhara (name­ly “ga”) in replace­ment of the scale’s Gandhara (name­ly “gak”), there­by rais­ing it by 2 shru­ti-s. This yields a vikrit (mod­i­fied) scale type, name­ly “khamaj1″ asso­ci­at­ed with raga Khamaj.
  • Select both antara Gandhara and kakali Nishada (name­ly “ni” in replace­ment of “nik” raised by 2 shru­ti-s) which cre­ates the “bilaval1″ scale type asso­ci­at­ed with raga Bilaval.
A scale type named “bilaval3” match­ing Zarlino’s “nat­ur­al” scale

This “bilaval1″ scale type is one among three ver­sions of Bilaval cre­at­ed by the mur­ccha­na pro­ce­dure. Although it match­es the scale of white keys on a Western key­board instru­ment, it is not the com­mon “just into­na­tion” dia­ton­ic scale because of a wolf fifth between “sa” and “pa”.

An alter­nate Bilaval scale type named “bilaval3″ (extract­ed from “Ni1_murcchana”, see below) does match Giozeffo Zarlino’s “nat­ur­al” scale — read Just into­na­tion: a gen­er­al frame­work. This should not be con­fused with Zarlino’s mean­tone tem­pera­ment dis­cussed on page Microtonality.

An incom­plete­ly con­so­nant scale type

A fourth option: rais­ing “nik” to “ni” and keep­ing “gak”, would pro­duce a scale type in which “ni” does not have any con­so­nant rela­tion with anoth­er note of the scale. This option is there­fore dis­card­ed from the model.

Every mur­ccha­na of the Ma-grama chro­mat­ic scale pro­duces at least three scale types by select­ing unal­tered notes, antara Gandhara or both antara Gandhara and kakali Nishada.

Practically, to cre­ate for instance “Ni1_murcchana”, open the “Sa_murcchana” page and enter “nik” (i.e. N3) as the note to be placed on “sa”.

Raga scale types are stored in the “-cs.raga” Csound resource file. Images are avail­able in a sin­gle click and scale struc­tures are com­pared on the main page.

The entire process is sum­ma­rized in the fol­low­ing table (Arnold 1982 p. 38):

StepMa-grama chro­mat­ic
mur­ccha­na start­ing from
Shuddha gra­maVikrit gra­ma (antara)Vikrit gra­ma
(antara + kakali)
Scale types of the extend­ed grama-murcchana series (Arnold 1982)

Usage of this table deserves a graph­ic demon­stra­tion. Let us for instance cre­ate scale type “kalyan1″ based on the “Ma1_murcchana”. The table says that both “antara and kakali” should be select­ed. This means “antara Gandhara” which is “ga” in replace­ment of “gak” in the Ma-grama scale, and “kakali Nishada” which is “ni” in replace­ment of “nik” in the Ma-grama scale. This process is clear on the mov­able wheel model:

Selecting notes to cre­ate the “kalyan1” scale type from the “Ma1_murcchana” of chro­mat­ic Ma-grama. “M1” is placed on “S”. Then the stan­dard inter­vals are picked up from the Ma-grama mov­ing wheel, replac­ing G1 with G3 and N1 with N3 as indi­cat­ed in the table.

To exe­cute this selec­tion and export the “kalyan1″ scale type, fill the form on page “Ma1_murcchana” as indi­cat­ed on the picture.

Below is the result­ing scale type.

The “kalyan1” scale type

Keep in mind that note posi­tions expressed as inte­ger fre­quen­cy ratios are just a mat­ter of con­ve­nience for read­ers acquaint­ed with Western musi­col­o­gy. It would be more appro­pri­ate to fol­low the Indian con­ven­tion of count­ing inter­vals in num­bers of shru­ti-s. In this exam­ple, the inter­val between “sa” and “ma” raised from 9 shru­ti-s (per­fect fourth) to 11 shru­ti-s (tri­tone).

Arnold’s mod­el is an exten­sion of the mur­ccha­na sys­tem described in Natya Shastra because it accepts mur­ccha­na-s start­ing from notes which do not belong to the orig­i­nal (7-grade) Ma-grama, tak­en from its “chro­mat­ic ver­sion”: Dha1, Re1, Ma3, Ni3, Ga3. This exten­sion is nec­es­sary for cre­at­ing scale types for Todi, Lalit and Bhairao which include aug­ment­ed sec­onds.

In his 1982 paper (p. 39-41) Arnold con­nect­ed his clas­si­fi­ca­tion of scale types with the tra­di­tion­al list of jāti-s, the “ances­tors of ragas” described in Sangita Ratnakara of Śārṅgadeva (Shringy & Sharma, 1978). Seven jāti-s are cit­ed (p. 41), each of them being derived from a mur­ccha­na of Ma-grama on one of its shud­dha swara-s (basic notes). 

Every jāti is assigned a note of ten­sion release (nyasa swara). In con­tem­po­rary ragas, the nyasa swara is often found at the end of a phrase or a set of phras­es. In Arnold’s inter­pre­ta­tion, the same should define the mur­ccha­na from which the melod­ic type (jāti) is born. Since, in fact, the names of the shud­dha jatis are tied to their nyasa swaras, this too sug­gests that they should be tied to the mur­ccha­nas belong­ing from those nyasa swaras (Arnold 1982 p. 40).

Performance times asso­ci­at­ed with murcchana-s of the Ma-grama, accord­ing to Arnold (1985)

In oth­er pub­li­ca­tions (notably Arnold & Bel 1985), Arnold used the cycle of 12 chro­mat­ic scales to sug­gest that enhar­mon­ic posi­tions of the notes might express ten­sions or release states bound to the chang­ing ambi­ence of the cir­ca­di­an cycle, there­by pro­vid­ing an expla­na­tion of per­for­mance times assigned to tra­di­tion­al ragas. Low enhar­mon­ic posi­tions would be asso­ci­at­ed with dark­ness and high­er ones with day light. In this way, ragas con­struct­ed with the aid of the Sa mur­ccha­na of Ma-grama chro­mat­ic scale (all low posi­tions, step 1) might be inter­pret­ed near mid­night where­as the ones mix­ing low and high posi­tions (step 7) would car­ry the ten­sions of sun­rise and sun­set. Their suc­ces­sion is a cycle because, in the table shown above, it is pos­si­ble to jump from step 12 to step 1 by low­er­ing all note posi­tions by one shru­ti. This cir­cu­lar­i­ty is implied by the process named sadja-sadharana in musi­co­log­i­cal lit­er­a­ture (Shringy & Sharma 1978).

A list of 85 ragas with per­for­mance times pre­dict­ed by the mod­el is avail­able in Arnold & Bel (1985). This hypoth­e­sis is indeed inter­est­ing — and it does hold for many well-known ragas — but we could nev­er embark on a sur­vey of musi­cians’ state­ments about per­for­mance times that might have assessed its validity.


Given scale types stored in the “-cs.raga” Csound resource file, Bol Processor + Csound can be used to check the valid­i­ty of scales by play­ing melodies of ragas they are sup­posed to embody. It is also inter­est­ing to use these scales in musi­cal gen­res unre­lat­ed with North Indian raga and dis­tort them in any imag­in­able direction…

Choice of a raga

Todi Ragini, Ragamala, Bundi, Rajasthan, 1591
Public domain

We will take the chal­lenge of match­ing one among the four “todi” scales with two real per­for­mances of raga Todi.

Miyan ki todi is present­ly the most impor­tant raga of the Todi fam­i­ly and there­fore often sim­ply referred to as Todi […], or some­times Shuddh Todi. Like Miyan ki mal­har it is sup­posed to be a cre­ation of Miyan Tansen (d. 1589). This is very unlike­ly, how­ev­er, since the scale of Todi at the time of Tansen was that of mod­ern Bhairavi (S R G M P D N), and the name Miyan ki todi first appears in 19th cen­tu­ry lit­er­a­ture on music.

Joep Bor (1999)

This choice is a chal­lenge for sev­er­al rea­sons. Among them, the four vari­ants of “todi” scales have been dri­ven from a (ques­tion­able) exten­sion of the grama-murcchana sys­tem. Then, notes “ni” and “rek”, “ma#” and “dhak” are close to the ton­ic “sa” and the dom­i­nant “pa” and might be “attract­ed” by the ton­ic and dom­i­nant, there­by dis­rupt­ing the “geom­e­try” of the­o­ret­i­cal scales in the pres­ence of a drone.

Finally, and most impor­tant, the per­former’s style and per­son­al options are expect­ed to come in con­tra­dic­tion with this the­o­ret­i­cal mod­el. As sug­gest­ed by Rao and van der Meer (2010 p. 693):

[…] it has been observed that musi­cians have their own views on into­na­tion, which are hand­ed down with­in the tra­di­tion. Most of them are not con­scious­ly aware of aca­d­e­m­ic tra­di­tions and hence are not in a posi­tion to express their ideas in terms of the­o­ret­i­cal for­mu­la­tions. However, their ideas are implic­it in musi­cal prac­tice as musi­cians visu­al­ize tones, per­haps not as fixed points to be ren­dered accu­rate­ly every time, but rather as tonal regions or pitch move­ments defined by the gram­mar of a spe­cif­ic raga and its melod­ic con­text. They also attach para­mount impor­tance to cer­tain raga-specific notes with­in phras­es to be intoned in a char­ac­ter­is­tic way.

We had already tak­en the Todi chal­lenge with an analy­sis of eight occur­rences using the Melodic Movement Analyzer (Bel 1988). The ana­lyz­er had pro­duced streams of accu­rate pitch mea­sure­ments which were sub­mit­ted to a sta­tis­ti­cal analy­sis after being fil­tered as selec­tive tona­grams (Bel 1984; Bel & Bor 1984). Occurrences includ­ed 6 per­for­mances of raga Todi and 2 exper­i­ments of tun­ing the Shruti Harmonium.

The MMA analy­sis revealed a rel­a­tive­ly high con­sis­ten­cy of note posi­tions show­ing stan­dard devi­a­tions bet­ter than 6 cents for all notes except “ma#” for which the devi­a­tion rose to 10 cents, still an excel­lent sta­bil­i­ty. Matching these results against the grama-murcchana “flex­i­ble” mod­el revealed less than 4 cent stan­dard devi­a­tion of inter­vals for 4 dif­fer­ent scales in which the syn­ton­ic com­ma would be adjust­ed to 6, 18, 5 and 5 cents. In dis­cussing tun­ing schemes we even envis­aged that musi­cians might “solve the prob­lem” of a “ni-ma#” wolf fifth by tem­per­ing fifths over the “ni-ma#-rek-dhak” cycle.

Our con­clu­sion was that no par­tic­u­lar “tun­ing scheme” could be tak­en for grant­ed on the basis of “raw” data. It would be more real­is­tic to study a par­tic­u­lar per­for­mance by a par­tic­u­lar musician.

Choice of a musician

Kishori Amonkar per­form­ing raga Lalit. Credit সায়ন্তন ভট্টাচার্য্য - Own work, CC BY-SA 4.0

Working with the Shruti Harmonium nat­u­ral­ly incit­ed us to meet Kishori Amonkar in 1981. She was a fore­most expo­nent of Hindustani music, hav­ing devel­oped a per­son­al style that claimed to tran­scend clas­si­cal schools (gha­ranas).

Most inter­est­ing, she used to per­form with the accom­pa­ni­ment of a swara man­dal (see pic­ture), a zither which she would tune for each indi­vid­ual raga. We were not equipped for mea­sur­ing these tun­ings with a suf­fi­cient accu­ra­cy. Therefore we brought the Shruti Harmonium to pro­gram inter­vals as per her instructions.

This did not work well for two rea­sons. A tech­ni­cal one: that day, a fre­quen­cy divider LSI cir­cuit was defec­tive on the har­mo­ni­um; until it was replaced some pro­grammed inter­vals were inac­ces­si­ble. A musi­cal one: the exper­i­ment revealed that this accu­rate har­mo­ni­um was unfit to tun­ing exper­i­ments with Indian musi­cians. Frequency ratios need­ed to be typed on a small key­board, a usage too remote from the con­text of per­for­mance. This was a major incen­tive for design­ing and con­struct­ing a “micro­scope for Indian music”, the Melodic Movement Analyzer (MMA) (Bel & Bor 1984).

During the fol­low­ing years (1981-1984) MMA exper­i­ments took our entire time, reveal­ing the vari­abil­i­ty (yet not the ran­dom­ness) of raga into­na­tion. For this rea­son we could not return to tun­ing exper­i­ments. Today, a sim­i­lar approach would be much eas­i­er with the help of Bol Processor BP3… if only the expert musi­cians of that peri­od were still alive!

Choice of a scale type

We need to decide between the four “todi” scale types pro­duced by mur­ccha­na-s of the Ma-grama chro­mat­ic scale. To this effect we may use mea­sure­ments by the Melodic Movement Analyzer (Bel 1988 p. 15). Let us pick up aver­age mea­sure­ments and the ones of a per­for­mance of Kishori Amonkar. These are note posi­tions (in cents) against the ton­ic “sa”.

NoteAverageStandard devi­a­tionKishori Amonkar
The “dhak” between brack­ets is a mea­sure­ment on the low octave

For the moment we ignore “dhak” in the low­er octave as it will be dealt with sep­a­rate­ly. Let us match Kishori Amonkar’s results with the four scale types:

NoteKishori Amonkartodi1todi2todi3todi4
Scale type “todi2”, the best match to a per­for­mance of Kishori Amonkar

There are sev­er­al ways of find­ing the best match for musi­cal scales: either com­par­ing scale inter­vals or com­par­ing note posi­tions with respect to the base note. Due to the impor­tance of the drone we opt for the sec­ond method. The selec­tion is easy here. Version “todi1″ may be dis­card­ed because of “ni”, the same with “todi3″ and “todi4″ because of “ma#”. We are left with “todi2″ which has a very good match­ing, includ­ing with the mea­sure­ments of per­for­mances by oth­er musicians.

Adjustment of the scale

The largest devi­a­tions are on “rek” which was per­formed 7 cents high­er than the pre­dict­ed val­ue and “gak” 6 cents low­er. Even a 10-cent vari­a­tion is prac­ti­cal­ly impos­si­ble to mea­sure on a sin­gle note sung by a human, includ­ing a high-profile singer like Kishori Amonkar; the best res­o­lu­tion used in speech prosody is larg­er than 12 cents.

Any “mea­sure­ment” of the MMA is an aver­age of val­ues along the rare sta­ble melod­ic steps. It may not be rep­re­sen­ta­tive of the “real” note because of its depen­den­cy on note treat­ment: if the approach of the note lies in a range on the lower/higher side, the aver­age will be lower/higher than the tar­get pitch.

Therefore it would be accept­able to declare that the “todi2″ scale type match­es the per­for­mance. Nonetheless, let us demon­strate ways of mod­i­fy­ing the mod­el to reflect the mea­sure­ments more accurately.

First we dupli­cate “todi2″ to cre­ate “todi-ka” (see pic­ture). Note posi­tions are iden­ti­cal in both versions.

Looking at the pic­ture of the scale (or fig­ures on its table) we notice that all note posi­tions except “ma#” are Pythagorean. The series which a note belongs to is marked by the col­or of its point­er: blue for Pythagorean and green for harmonic.

Modified “todi2” scale match­ing the mea­sured “ma#”

This means that mod­i­fy­ing the size of the syn­ton­ic com­ma — in strict com­pli­ance with the grama-murcchana mod­el — will only adjust “ma#”. In order to change “ma#” posi­tion from 590 to 594 cents (admit­ted­ly a ridicule adjust­ment) we need to decrease the size of the syn­ton­ic com­ma by the same amount. This can be done at the bot­tom right of the “todi-ka” page, chang­ing the syn­ton­ic com­ma to 17.5 cents, a mod­i­fi­ca­tion which is con­firmed by the new picture.

A table on the “todi-ka” page indi­cates that the “rek-ma#” inter­val is still a per­fect fifth even though it is small­er by 6 cents.

It may not be evi­dent whether the syn­ton­ic com­ma needs to be increased or decreased to fix the posi­tion of “ma#”, but it is easy to try the oth­er way in case the direc­tion was wrong. 

Final ver­sion of “todi2” adjust­ed to Kishori Amonkar’s per­for­mance in the medi­um octave (4)

Other adjust­ments will depart from the “pure” mod­el. These lead to chang­ing fre­quen­cy ratios in the table of the “todi-ka” page. Raising “rek” from 89 to 96 cents requires a rais­ing of 7 cents amount­ing to ratio 2(7/1200) = 1.00405. This brings the posi­tion of “rek” from 1.053 to 1.057.

In the same way, low­er­ing “gak” from 294 to 288 cents requires a low­er­ing of 6 cents amount­ing to ratio 2(-6/1200) = 0.9965. This brings the posi­tion of “gak” from 1.185 to 1.181.

Fortunately, these cal­cu­la­tions are done by the machine: use the “MODIFY NOTE” but­ton on the scale page.

The pic­ture shows that the infor­ma­tion of “rek” and “gak” belong­ing to Pythagorean series (blue line) is pre­served. The rea­son is that when­ev­er a fre­quen­cy ratio is mod­i­fied by its floating-point val­ue, the machine ver­i­fies whether the new val­ue comes close to an inte­ger ratio of the same series. For instance, chang­ing back “rek” to 1.053 would restore its ratio 256/243. Accuracy bet­ter than 1‰ is required for this matching.

A tun­ing scheme for this scale type is sug­gest­ed by the machine. The graph­ic rep­re­sen­ta­tion shows that “ni” is not con­so­nant with “ma#” as their inter­val is 684 cents, close to a wolf fifth of 680 cents. Other notes are arranged on two cycles of per­fect fifths. Interestingly, rais­ing “rek” by 7 cents brought the “rek-ma#” fifth back to its per­fect size (702 cents).

Again, these are mean­ing­less adjust­ments for a vocal per­for­mance. We are only show­ing how to pro­ceed when necessary.

The “todi2” scale type with “dhak” adjust­ed for the low octave (3)

The remain­ing adjust­ment will be that of “dhak” in the low­er octave. To this effect we dupli­cate the pre­ced­ing scale after renam­ing it “todi_ka_4″, indi­cat­ing that it is designed for the 4th octave. In the new scale named “todi_ka_3″, we raise “dhak3” by 810 -792 = 18 cents.

This rais­es its posi­tion from 1.58 to 1.597. Note that this brings it exact­ly to a posi­tion in the har­mon­ic series since the syn­ton­ic com­ma is 17.5 cents.

In addi­tion, “dhak-sa” is now a har­mon­ic major third — with a size of 390 cents fit­ting the 17.5 cents com­ma. This is cer­tain­ly mean­ing­ful in the melod­ic con­text of this raga, a rea­son why an adjust­ment of the same size had been done by all musi­cians in their per­for­mances or tun­ing experiments.

This case is a sim­ple illus­tra­tion of raga into­na­tion as a trade-off between har­monic­i­ty with respect to the drone and the require­ment of con­so­nant melod­ic inter­vals. It also indi­cates that the Shruti Harmonium could not fol­low musi­cians’ prac­tice because its scale ratios were repli­cat­ed in all octaves.

Choice of a recording

We don’t have the record­ing on which the MMA analy­sis had been done. A prob­lem with old tape record­ings is the unre­li­a­bil­i­ty of speed in tape trans­porta­tion. On a long record­ing, too, the fre­quen­cy of the ton­ic may change a lit­tle due to vari­a­tions of room tem­per­a­ture influ­enc­ing instru­ments — includ­ing tape dilation…

To try match­ing scales a with real per­for­mances and exam­ine extreme­ly small “devi­a­tions” (which have lit­tle musi­cal sig­nif­i­cance, in any) it is there­fore safer to work with dig­i­tal record­ings. This was the case with Kishori Amonkar’s Todi record­ed in London in the ear­ly 2000 for the Passage to India col­lec­tion and avail­able free of copy­right (link on Youtube). The fol­low­ing is based on that recording.

Setting up the diapason

Let us cre­ate the fol­low­ing “-gr.tryRagas” gram­mar:


S --> _scale(todi_ka_4,0) sa4

Adjusting note con­ven­tion in “-se.tryRagas”

In “-se.tryRagas” the note con­ven­tion should be set to “Indian” so that “sa4” etc. is accept­ed even when no scale is specified.

The gram­mar calls “-cs.raga” con­tain­ing the def­i­n­i­tions of all scale types cre­at­ed by the pro­ce­dure described above. Unsurprisingly, it does not play note “sa” at the fre­quen­cy of the record­ing. We there­fore need to mea­sure the ton­ic to adjust the fre­quen­cy of “A4” (dia­pa­son) in “-se.tryRagas” accord­ing­ly. There are sev­er­al ways to achieve this with increas­ing accuracy.

A semi­tone approx­i­ma­tion may be achieved by com­par­ing the record­ing with notes played on a piano or any elec­tron­ic instru­ment tuned with A4 = 440 Hz. Once we have found the key that is clos­est to “sa” we cal­cu­late its fre­quen­cy ratio to A4. If the key is F#4, which is 3 semi­tones low­er than A4, the ratio is r = 2(-3/12) = 0.840. To get this fre­quen­cy on “sa4” we there­fore would need to adjust the fre­quen­cy of the dia­pa­son (in “-se.tryRagas”) to:

440 * r * 2(9/12) = 440 * 2((9-3)/12) = 311 Hz

A much bet­ter approx­i­ma­tion is achieved by extract­ing a short occur­rence of “sa4” at the very begin­ning of the performance:

A short occur­rence of “sa4” in the begin­ning of Kishori Amonkar’s raga Todi

Then select a seem­ing­ly sta­ble seg­ment and expand the time scale to get a vis­i­ble signal:

Expansion of a very brief “sta­ble” occur­rence of “sa4”

This sam­ple con­tains 9 cycles for a dura­tion of 38.5 ms. The fun­da­men­tal fre­quen­cy is there­fore 9 * 1000 / 38.5 = 233.7 Hz. Consequently, adjust the dia­pa­son in “-se.tryRagas” to 233.7 * 2(9/12) = 393 Hz.

The last step is a fine tun­ing com­par­ing by ear the pro­duc­tion of notes in the gram­mar with the record­ing of “sa4” played in a loop. To this effect we pro­duce the fol­low­ing sequence:

S --> _pitchrange(500) _tempo(0.2) Scale _pitchbend(-15) sa4 _pitchbend(-10) sa4 _pitchbend(-5) sa4 _pitchbend(-0) sa4 _pitchbend(+5) sa4 _pitchbend(+10) sa4 _pitchbend(+15) sa4 _pitchbend(+20) sa4

These are eight occur­rences of “sa4” played at slight­ly increas­ing pitch­es adjust­ed by the pitch­bend. First make sure that the pitch­bend is mea­sured in cents: this is indi­cat­ed in instru­ment “Vina” called by “-cs.raga” and Csound orches­tra file “new-vina.orc”.

Listening to the sequence may not reveal pitch dif­fer­ences, but these will appear to a trained ear when super­posed with the recording:

Recording on “sa4” super­posed with a sequence of “sa4” at slight­ly increas­ing pitch­es. Which occur­rence is in tune?
➡ This is a stereo record­ing. Use ear­phones to hear the music and sequence of plucked notes separately

One of the four occur­rences sounds best in tune. Suppose that the best match is on _pitchbend(+10). This means that the dia­pa­son should be raised by 10 cents. Its new fre­quen­cy would there­fore be 393 * 2(10/1200) = 395.27 Hz.

In fact the best fre­quen­cy is 393.22 Hz, which amounts to say­ing that the sec­ond eval­u­a­tion (yield­ing 393 Hz) was fair — and the singers’ voic­es very reli­able! Now we can ver­i­fy the fre­quen­cy of “sa4” on the Csound score:

; Csound score
f1 0 256 10 1 ; This table may be changed
t 0.000 60.000
i1 0.000 5.000 233.814 90.000 90.000 0.000 -15.000 -15.000 0.000 ; sa4
i1 5.000 5.000 233.814 90.000 90.000 0.000 -10.000 -10.000 0.000 ; sa4
i1 10.000 5.000 233.814 90.000 90.000 0.000 -5.000 -5.000 0.000 ; sa4
i1 15.000 5.000 233.814 90.000 90.000 0.000 0.000 0.000 0.000 ; sa4
i1 20.000 5.000 233.814 90.000 90.000 0.000 5.000 5.000 0.000 ; sa4
i1 25.000 5.000 233.814 90.000 90.000 0.000 10.000 10.000 0.000 ; sa4
i1 30.000 5.000 233.814 90.000 90.000 0.000 15.000 15.000 0.000 ; sa4
i1 35.000 5.000 233.814 90.000 90.000 0.000 20.000 20.000 0.000 ; sa4

These meth­ods could in fact be sum­ma­rized by the third one: use the gram­mar to pro­duce a sequence of notes in a wide range to deter­mine an approx­i­mate pitch of “sa4” until the small range for the pitch­bend (± 200 cents) is reached. Then play sequences with pitch­bend val­ues in increas­ing accu­ra­cy until no dis­crim­i­na­tion is possible.

In a real exer­cise it would be safe to check the mea­sure­ment of “sa4” against occur­rences in sev­er­al parts of the recording.

This approach is indeed too demand­ing on accu­ra­cy for the analy­sis of a vocal per­for­mance, but it will be appre­cia­ble when work­ing with a long-stringed instru­ment such as the rudra veena. We will show it with Asad Ali Kan’s per­for­mance.

Matching phrases of the performance

We are now ready to check whether note sequences pro­duced by the mod­el would match sim­i­lar sequences of the recording.

We first try a sequence with empha­sis on “rek”. The fol­low­ing note sequence is pro­duced by the grammar:

S --> KishoriAmonkar1
KishoriAmonkar1 --> Scale _ {2, dhak3 sa4 ni3 sa4} {7, rek4} _ {2, dhak3 sa4 ni3 dhak3} {2, dhak3 _ ni3 sa4} {5, rek4}
Scale --> _scale(todi_ka_3,0)

Below is the phrase sung by the musi­cians (loca­tion 0′50″) then repeat­ed in super­po­si­tion with the sequence pro­duced by the grammar:

A phrase with empha­sis on “rek” sung by Kishori Amonkar, then repro­duced in super­po­si­tion with the sequence of notes pro­duced by the gram­mar using scale “todi_ka_3”
➡ This is a stereo record­ing. Use ear­phones to hear the music and sequence of plucked notes separately

In this exam­ple, scale “todi_ka_3″ has been used because of the occur­rence of brief instances of “dhak3”. The posi­tion of “rek” is iden­ti­cal in the 3d and 4th octaves. The blend­ing of voice with the plucked instru­ment is remark­able in the final held note.

In the next sequence (loca­tion 1′36″) the posi­tion of “gak4” will be appre­ci­at­ed. The gram­mar is the following:

S --> KishoriAmonkar2
KishoriAmonkar2 --> Scale {137/100, sa4 rek4 gak4 rek4} {31/10, rek4} {18/10, gak4} {75/100,rek4} {44/10, sa4}
Scale --> _scale(todi_ka_4,0)

A phrase tar­get­ing “gak” repeat­ed in super­po­si­tion with the sequence of notes pro­duced by the gram­mar using scale “todi_ka_4”

This time, the scale “todi_ka_4″ was select­ed, even though it had no inci­dence on the into­na­tion since “dhak” is absent.

A word about build­ing the gram­mar: we looked at the sig­nal of the record­ed phrase and mea­sured the (approx­i­mate) dura­tions of notes: 1.37s, 3.1s, 1.8s, 7.5s, 4.4s. Then we con­vert­ed these dura­tions to inte­ger ratios — frac­tions of the basic tem­po whose peri­od is exact­ly 1 sec­ond as per the set­ting in “-se.tryRagas”: 137/100, 31/10 etc.

Signal of the pre­ced­ing record­ed phrase

Below is a pianoroll of the sequence pro­duced by the grammar:

Pianoroll of the note sequence pro­duced by the grammar

No we try a phrase with a long rest on “dhak3” (loca­tion 3′34″) prov­ing that scale “todi_ka_3″ match­es per­fect­ly this occur­rence of “dhak”:

S --> KishoriAmonkar3
KishoriAmonkar3 --> scale(todi_ka_3,0) 11/10 {19/20, ma#3 pa3} {66/10,dhak3} {24/10, ni3 dhak3 pa3 }{27/10,dhak3} 12/10 {48/100,dhak3}{17/10,ni3}{49/10,dhak3}

A phrase rest­ing on “dhak3” repeat­ed in super­po­si­tion with the sequence of notes pro­duced by the gram­mar using scale “todi_ka_3”
Pianoroll of the note sequence pro­duced by the gram­mar with a rest on “dhak3”

Early occur­rence of “ma#4” (loca­tion 11′38″):

S --> KishoriAmonkar4
KishoriAmonkar4 --> _scale(todi_ka_4,0) 4/10 {17/10, ni3}{26/100,sa4}{75/100,rek4}{22/100,gak4}{17/10,ma#4}{16/100,gak4}{34/100,rek4}{56/100,sa4}{12/100,rek4}{84/100,gak4}{27/100,rek4}{12/10,sa4}

Early occur­rence of “ma#4”

Hitting “dhak4” (loca­tion 19′46″):

S --> KishoriAmonkar5
KishoriAmonkar5 --> _scale(todi_ka_4,0) 13/10 {16/10,ma#4}{13/10,gak4}{41/100,ma#4}{72/100,ma#4 dhak4 ma#4 gak4 ma#4}{18/10,dhak4}{63/100,sa4}{90/100,rek4}{30/100,gak4}{60/100,rek4}{25/100,sa4}{3/2,rek4}

Hitting “dhak4”…

With a light touch of “pa4” (loca­tion 23′11″):

S --> KishoriAmonkar6
KishoriAmonkar6 --> _scale(todi_ka_4,0) 28/100 {29/100,ma#4}{40/100,dhak4}{63/100,ni4 sa5 ni4}{122/100,dhak4}{64/100,pa4}{83/100,ma#4}{44/100,pa4}{79/100,dhak4}

A light touch of “pa”

Pitch accu­ra­cy is no sur­prise in per­for­mances by Kishori Amonkar. With a strong aware­ness of “shru­ti-s”, she would sit on the stage pluck­ing her swara man­dal care­ful­ly tuned for each raga.

A test with the rudra veena

Asad Ali Khan play­ing the rudra veena

Asad Ali Khan was one of the last per­form­ers of the rudra veena in the end of the 20th cen­tu­ry and a very sup­port­ive par­tic­i­pant in sci­en­tif­ic research on raga into­na­tion. Pitch accu­ra­cy is such on this instru­ment that we could iden­ti­fy tiny vari­a­tions con­trolled and sig­nif­i­cant in the con­text of the raga. Read for instance Playing with Intonation (Arnold 1985). In order to mea­sure vibra­tions below the range of audi­ble sounds, we occa­sion­al­ly fixed a mag­net­ic pick­up near the last string.

Below are the sta­tis­tics of mea­sure­ments by the Melodic Movement Analyzer of raga Miyan ki Todi inter­pret­ed by Asad Ali Khan in 1981. The sec­ond col­umn con­tains the mea­sure­ments of his tun­ing of the Shruti Harmonium dur­ing an exper­i­ment. Columns on the right dis­play pre­dict­ed note posi­tions accord­ing to the grama-murcchana mod­el with a syn­ton­ic com­ma of ratio 81/80. Again in this raga, “dhak” may take dif­fer­ent val­ues in the peer­for­mance, depend­ing on the octave.

NoteAsad Ali Khan
Asad Ali Khan

Again, the best match would be the “todi2″ scale with a syn­ton­ic com­ma of 17.5 cents. We cre­at­ed two scales, “todi_aak_2″ and “todi_aak_3″ for the 2nd and 3th octaves.

Adjustments of the “todi2” scale for Asad Ali Kan’s per­for­mance on the rudra veena. Low octave on the left and medi­um on the right.

The scale con­struct­ed dur­ing the Shruti Harmonium exper­i­ment is of less­er rel­e­vance because of the influ­ence of the exper­i­menter play­ing scale inter­vals with a low-attracting drone (pro­duced by the machine). In his attempt to resolve dis­so­nance in the scale — which always con­tained a wolf fifth and sev­er­al Pythagorean major thirds — Khan saheb end­ed up with a tun­ing iden­ti­cal to the ini­tial one but one com­ma low­er. This was not a musi­cal­ly sig­nif­i­cant situation!

Tuning scheme for “todi_aak_2”

Scale “todi_aak_2″ (in the low octave) con­tains inter­est­ing inter­vals (har­mon­ic major thirds) which lets us antic­i­pate effec­tive melod­ic move­ments. The tun­ing scheme sum­ma­rizes these relations.

We are now tak­ing frag­ments of Asad Ali Khan’s per­for­mance of Todi (2005) avail­able on Youtube (fol­low this link).

The per­for­mance began in the low octave, there­fore with scale “todi_aak_2″. The fre­quen­cy of Sa was mea­sured at 564.5 Hz with the method explained earlier.

Let us start with a sim­ple melod­ic phrase repeat­ed two times, the sec­ond time in super­po­si­tion with the note sequence pro­duced by the grammar.

A phrase of raga Todi by Asad Ali Khan repeat­ed 2 times, the sec­ond time in super­po­si­tion with the sequence of notes pro­duced by the gram­mar
➡ This is a stereo record­ing. Use ear­phones to hear the music and sequence of plucked notes separately

S --> AsadAliKhan1
AsadAliKhan1 --> _scale(todi_aak_2,0) 45/100 {69/10,sa3} {256/100,dhak2} {78/10,dhak2} {12/10,sa3 ni2 rek3&} {48/10,&rek3} {98/100,sa3 ni2 sa3&} {27/10,&sa3}

This gram­mar con­tains an unusu­al sign ‘&’ used to con­cate­nate sound-objects (or notes) beyond the bor­ders of poly­met­ric expres­sions (between curled brack­ets). This makes it pos­si­ble to play the final “rek3” and “sa3” as con­tin­u­ous notes. This con­ti­nu­ity is clear on the fol­low­ing graph:

The end of the phrase, show­ing “rek3” and “sa3” as con­tin­u­ous notes

It is time to make sure that accu­rate tun­ings and adjust­ments of scales are more than an intel­lec­tu­al exer­cise… After all, the main dif­fer­ence between scales “todi_aak_2″ and “todi_aak_3″ is that “dhak” is 7 cents high­er in “todi_aak_2″, which means a third of a com­ma! To check the effect of the fine tun­ing, lis­ten to the super­im­po­si­tion two times, once with “todi_aak_3″ and the sec­ond time with “todi_aak_2″:

The same “dhak2” with a note pro­duced using “todi_aak_3” and the sec­ond time “todi_aak_2”

To check the dif­fer­ence between these two ver­sions of “dhak2” we can play them in sequence, then superimposed:

S --> _tempo(1/2) _scale(todi_aak_3,0) dhak2 _scale(todi_aak_2,0) dhak2 {_scale(todi_aak_3,0) dhak2, _scale(todi_aak_2,0) dhak2}

The two ver­sions of “dhak2” in sequence then superimposed

With fun­da­men­tal fre­quen­cies 132.837 Hz and 133.341 Hz, the beat fre­quen­cy (of sine waves) would be 133.341 - 132.837 = 0.5 Hz. The per­ceived beat fre­quen­cy is high­er because of the inter­fer­ence between high­er par­tials. This sug­gests that a dif­fer­ence of 7 cents is not irrel­e­vant in the con­text of notes played by a long-stringed instru­ment (Arnold 1985).

More in the low­er octave:

S --> AsadAliKhan2
AsadAliKhan2 --> scale(todi_aak_2,0) _volume(64) _pitchrange(500) _pitchcont 93/100 {81/10,pa2}{38/10,pa2 gak2 pa2 dhak2 pa2 }{19/10,gak2}{43/10, _pitchbend(0) rek2 _pitchbend(-100) rek2&} _volumecont _volume(64) {2, _pitchbend(-100) &rek2} _volume(0) _volume(64) {23/10,ni2__ dhak2}{103/100,sa3&}{4,&sa3} 15/10 _volume(64) {38/10,sa3} _volume(0)

As “sa2” is out of range of the Csound instru­ment “Vina”, it is per­formed here as “rek2” with a pitch­bend cor­rec­tion of one semitone.

Low-octave phrase repeat­ed with attempt­ed super­im­po­si­tion of a note sequence

The ren­der­ing of phras­es in the low octave is very approx­i­ma­tive because of the pre­dom­i­nance of meend (pulling the string). Some effects could be bet­ter imi­tat­ed with the aid of per­for­mance con­trols — see for instance Sarasvati Vina — but this requires a mas­tery of the real instru­ment to design pat­terns of musi­cal “ges­tures” rather than sequences of sound events… Imitating the melod­ic intri­ca­cy of raga is not the top­ic of this page; we are mere­ly check­ing the rel­e­vance of scale mod­els to the “tonal skele­ton” of ragas.

Accidental notes

Raga scales extract­ed from mur­ccha­nas of the Ma-grama chro­mat­ic scale (see above) con­tain exclu­sive­ly notes pre­sum­ably belong­ing to the raga. They can­not accom­mo­date acci­den­tal notes nor the scales used by mix­ing ragas, a com­mon practice.

Let us take for instance a frag­ment of the pre­ced­ing exam­ple which was poor­ly ren­dered by the sequence of notes pro­duced by the gram­mar. (We learn from our mis­takes!) We may feel like replac­ing expres­sion {38/10, pa2 gak2 pa2 dhak2 _ pa2 _} with {38/10, pa2 ga2 pa2 dhak2 _ pa2 _} mak­ing use of “ga2” which does not belong to the “todi_aak_2″ scale. Unfortunately, this pro­duces an error message:

ERROR Pitch class ‘4’ does not exist in _scale(todi_aak_2). No Csound score produced.

This amounts to say­ing that scale “todi2″ con­tains no map­ping of key #64 to “ga” — nor key # 65 to “ma”, see picture.

To solve this prob­lem we may recall that scale “todi2″ has been extract­ed from “Re1_murcchana”. The lat­ter con­tains all grades of a chro­mat­ic scale in addi­tion to the extract­ed ones. Therefore it is suf­fi­cient to replace “_scale(todi_aak_2,0)” with “_scale(Re1_murcchana,0)” in this section:

_scale(Re1_murcchana,0) {38/10, pa2 ga2 pa2 dhak2 _ pa2 _} _scale(todi_aak_2,0) etc.

The scale edi­tor takes care of assign­ing each note a key num­ber based on the chro­mat­ic scale if a stan­dard English, Italian/French or Indian note con­ven­tion is used. In oth­er cas­es this map­ping should be done by hand. Designers of micro­ton­al scales should stay aware of key map­pings if they use cus­tomized names for “notes”.

Another prob­lem aris­es because in “todi_aak_2″ note “dhak” had been raised from 792 to 810 cents, which is not its val­ue in “Re1_murcchana”. This may be fixed by cre­at­ing anoth­er vari­ant of the scale with this cor­rec­tion, or sim­ply use the pitch­bend to mod­i­fy “dhak2” — in which case the same pitch­bend could have been used in the first place to raise “gak2”.

Finally, the best approach to avoid this prob­lem would be to use the source chro­mat­ic scale “Re1_murcchana”, a mur­ccha­na of Ma-grama, to con­struct raga scales even though some grades will nev­er be used.

To conclude…

This whole dis­cus­sion was tech­ni­cal. There is no musi­cal rel­e­vance in try­ing to asso­ciate plucked notes with very sub­tly orna­ment­ed melod­ic move­ments. The last excerpt (2 rep­e­ti­tions) will prove — if at all nec­es­sary — that the into­na­tion of Indian ragas is much more than a sequence of notes in a scale, what­ev­er its accuracy:

S --> AsadAliKhan3
AsadAliKhan3 --> scale(todi_aak_3,0) 94/100 {26/10,sa3}{23/10,sa3 rek3 gak3}{195/100,ma#3}{111/100,rek3}{24/10,rek3 sa3}{33/10,sa3 sa3}{71/100,rek3}{76/100,gak3}{71/100,dhak3 ma#3}{176/100,dhak3}{75/100,sa4}{27/10,dhak3__ sa4}{620/100,sa4 dhak3 ma#3 dhak3 ma#3 gak3 _ ma#3 dhak3 dhak3&}{266/100,&dhak3}{672/100,pa3____ pa3_ pa3 pa3 pa3__}{210/100,pa3 ma#3 pa3 dhak3}{222/100,dhak3}{163/100,gak3 ma#3}{426/100,gak3_ rek3____}{346/100,sa3}

This melod­ic phrase is repeat­ed 2 times to check its super­im­po­si­tion with the sequence of notes pro­duced by the gram­mar
➡ This is a stereo record­ing. Use ear­phones to hear the music and sequence of plucked notes separately

Listen to Asad Ali Khan’s actu­al per­for­mance of raga Todi to appre­ci­ate its expres­sive power!

Trying to fol­low the intri­ca­cy of alankara (note treat­ment) with a sim­plis­tic nota­tion of melod­ic phras­es shows the dis­rup­tion between “model-based” exper­i­men­tal musi­col­o­gy and the real­i­ty of musi­cal prac­tice. This explains why we resort­ed to descrip­tive mod­els (e.g. auto­mat­ic nota­tion) cap­tured by the Melodic Movement Analyzer or com­put­er tools such as Praat, rather than attempt­ing to recon­struct melod­ic phras­es from the­o­ret­i­cal mod­els. Experiments on scales deal with the “skele­tal” nature of into­na­tion, which is a nec­es­sary yet not suf­fi­cient para­me­ter for describ­ing melod­ic types.

All exam­ples shown on this page are avail­able in the sam­ple set shared on GitHub. Follow instruc­tions on Bol Processor ‘BP3’ and its PHP inter­face to install BP3 and learn its basic oper­a­tion. Download and install Csound from its dis­tri­b­u­tion page.

Bernard Bel — Dec. 2020


Arnold, E.J.; Bel, B. L’intonation juste dans la théorie anci­enne de l’Inde : ses appli­ca­tions aux musiques modale et har­monique. Revue de musi­colo­gie, JSTOR, 1985, 71e (1-2), p.11-38.

Arnold, E.J. A Mathematical mod­el of the Shruti-Swara-Grama-Murcchana-Jati System. Journal of the Sangit Natak Akademi, New Delhi 1982.

Arnold, E.J.; Bel, B. A Scientific Study of North Indian Music. NCPA Quarterly Journal, vol. XII Nos. 2 3, Bombay 1983.

Arnold, W.J. Playing with Intonation. ISTAR Newsletter Nr. 3-4, June 1985 p. 60-62.

Bel, B. Musical Acoustics: Beyond Levy’s “Intonation of Indian Music”. ISTAR Newsletter Nr 2, April 1984.

Bel, B. A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra. Note interne, Groupe Représentation et Traitement des Connaissances (CNRS), March 1988a.

Bel, B. Raga : approches con­ceptuelles et expéri­men­tales. Actes du col­loque “Structures Musicales et Assistance Informatique”, Marseille 1988b.

Bel, B.; Bor, J. Intonation of North Indian Classical Music: work­ing with the MMA. National Center for the Performing Arts. Video on Dailymotion, Mumbai 1984.

Bharata. Natya Shastra. There is no cur­rent­ly avail­able English trans­la­tion of the first six chap­ters of Bharata’s Natya Shastra. However, most of the infor­ma­tion required for this inter­pre­ta­tion has been repro­duced and com­ment­ed by Śārṅgadeva in his Sangita Ratnakara (13th cen­tu­ry AD).

Bor, J.; Rao, S.; van der Meer, W.; Harvey, J. The Raga Guide. Nimbus Records & Rotterdam Conservatory of Music, 1999. (Book and CDs)

Bose, N.D. Melodic Types of Hindustan. Bombay, 1960: Jaico.

Rao, S.; Van der Meer, W. The Construction, Reconstruction, and Deconstruction of Shruti. Hindustani music: thir­teenth to twen­ti­eth cen­turies (J. Bor). New Delhi, 2010: Manohar.

Shringy, R.K.; Sharma, P.L. Sangita Ratnakara of Sarngadeva: text and trans­la­tion, vol. 1, 5: 7-9. Banaras, 1978: Motilal Banarsidass. Source in the Web Archive.

Van der Meer, W.; Rao, S. Microtonality in Indian Music: Myth or Reality. Gwalior, 2009: FRSM.

Van der Meer, W. Gandhara in Darbari Kanada, The Mother of All Shrutis. Pre-print, 2019.

A Mathematical Discussion of the Ancient Theory of Scales according to Natyashastra

Bel, B. A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra. Note interne, Groupe Représentation et Traitement des Connaissances (CNRS), Marseille 1988.

A Mathematical Model of the Shruti-Swara-Grama-Murcchana-Jati System

This is a scan of Arnold, E.J. A Mathematical mod­el of the Shruti-Swara-Grama-Murcchana-Jati System. Journal of the Sangit Natak Akademi, New Delhi 1982. This paper is quot­ed in The Two-Vina Experiment.

Melodic types of Hindustan

This a a scan of Bose, N.D. Melodic Types of Hindustan. Jaico, Bombay 1960. This paper is quot­ed in The Two-Vina Experiment.


On elec­tron­ic instru­ments such as the Bol Processor asso­ci­at­ed with Csound, micro­tonal­i­ty is the mat­ter of “micro­ton­al tun­ing”, here mean­ing the con­struc­tion of musi­cal scales out­side the con­ven­tion­al one(s) …
Read More
Just intonation: a general framework
A frame­work for con­struct­ing scales (tun­ing sys­tems) refer­ring to just into­na­tion in both clas­si­cal Indian and Western approach­es …
Read More
The two-vina experiment
A com­pre­hen­sive inter­pre­ta­tion of the exper­i­ment of the two vinas described in Chapter XXVIII.24 of the Natya Shastra …
Read More
Melodic types of Hindustan
A scan of Bose, N.D. Melodic Types of Hindustan. Jaico, Bombay 1960 …
Read More
A Mathematical Model of the Shruti-Swara-Grama-Murcchana-Jati System
A scan of Arnold, E.J. A Mathematical mod­el of the Shruti-Swara-Grama-Murcchana-Jati System …
Read More
A Mathematical Discussion of the Ancient Theory of Scales according to Natyashastra
Bel, B. A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra. Note interne, Groupe Représentation et Traitement …
Read More
Raga intonation
This arti­cle demon­strates the the­o­ret­i­cal and prac­ti­cal con­struc­tion of micro­ton­al scales for the into­na­tion of North Indian ragas …
Read More
Creation of just-intonation scales
The fol­low­ing is the pro­ce­dure for export­ing just-intonation scales from mur­ccha­na-s of Ma-grama stored in “-cs.12_scales”. ➡ Read Just into­na­tion: …
Read More
A multicultural model of consonance
A frame­work for tun­ing just-intonation scales via two series of fifths For more than twen­ty cen­turies, musi­cians, instru­ment mak­ers and …
Read More
Comparing temperaments
Images of tem­pered scales cre­at­ed by the Bol Processor The fol­low­ing are Bol Processor + Csound inter­pre­ta­tions of Bach’s Prelude …
Read More

The two-vina experiment

The first six chap­ters of Natya Shastra, a Sanskrit trea­tise on music, dance and dra­ma dat­ing back to a peri­od between 400 BCE and 200 CE, con­tain the premis­es of a scale the­o­ry which for long caught the atten­tion of schol­ars in India and Western coun­tries. Early inter­pre­ta­tions by Western musi­col­o­gists fol­lowed the “dis­cov­ery” of this text in 1794 by philol­o­gist William Jones. Hermann Helmholtz’s the­o­ry of “nat­ur­al con­so­nance” gave way to many com­par­a­tive spec­u­la­tions based on phe­nom­e­na which Indian authors had ear­li­er observed as inher­ent to the “self-production” (svayamb­hū) of musi­cal notes (Iyengar 2017 p. 8).

Suvarnalata Rao and Wim van der Meer (2009) pub­lished a detailed record of attempts to elu­ci­date the ancien the­o­ry of musi­cal scales in the musi­co­log­i­cal lit­er­a­ture, com­ing back to the notions of ṣru­ti and swara which changed over time up to present-day musi­cal practice.

Accurate set­tings of the Shruti Harmonium (1980)

In the sec­ond part of the 20th cen­tu­ry, exper­i­men­tal work with fre­quen­cy meters led to con­tra­dic­to­ry con­clu­sions drawn from the analy­sis of small sam­ples of music per­for­mance. It was only after 1981 that sys­tem­at­ic exper­i­ments were con­duct­ed in India by the ISTAR team (E.J. Arnold, B. Bel, J. Bor and W. van der Meer) with an elec­tron­ic pro­gram­ma­ble har­mo­ni­um (the Shruti Harmonium) and lat­er a “micro­scope” for melod­ic music, the Melodic Movement Analyser (MMA) (Arnold & Bel 1983, Bel & Bor I985) feed­ing accu­rate pitch data to a com­put­er to process hours of music select­ed from his­tor­i­cal recordings.

After sev­er­al years of exper­i­men­tal work, it had become clear that, even though the into­na­tion of Indian clas­si­cal music is far from a ran­dom process, it would be haz­ardous to assess an inter­pre­ta­tion of ancient scale the­o­ry with the aid of today’s musi­cal data. There at least three rea­sons for this:

  1. There are infi­nite­ly valid inter­pre­ta­tions of the ancient the­o­ry, as we will show.
  2. The con­cept of raga, i.e. the basic prin­ci­ple of Indian clas­si­cal music, appeared first in the lit­er­a­ture cir­ca 900 CE in Matanga’s Brihaddeshi, and it under­went a grad­ual devel­op­ment until 13th cen­tu­ry, when Sharangadeva enlist­ed 264 ragas in his Sangitratnakara.
  3. Drones were not in use at the time of Natya Shastra; the influ­ence of the drone on into­na­tion is con­sid­er­able, if not pre­dom­i­nant, in con­tem­po­rary music performance.

The ancient Indian the­o­ry of scales remains use­ful for its insight into ear­ly melod­ic clas­si­fi­ca­tion (the jāti sys­tem) which lat­er might have engen­dered the raga sys­tem. Therefore, it may be best envis­aged as a topo­log­i­cal descrip­tion of tonal struc­tures. Read Raga into­na­tion for a more detailed account of the­o­ret­i­cal and prac­ti­cal issues.

The top­ic of this page is an inter­pre­ta­tion of the exper­i­ment of the two vinas described in Chapter XXVIII.24 of the Natya Shastra. An analy­sis of the under­ly­ing mod­el has been pub­lished in A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra (Bel 1988) which the fol­low­ing pre­sen­ta­tion will ren­der more comprehensive.

The historical context

Bharata Muni, the author(s) of Natya Shastra must have heard about the­o­ries of musi­cal scales attrib­uted to ancient Greeks. Indian schol­ars were in posi­tion to bor­row the mod­el and expand it con­sid­er­ably because of their deep under­stand­ing of mathematics.

Readers of C.K. Raju — notably his out­stand­ing work Cultural Foundations of Mathematics (2007) — are aware that Indian mathematicians/philosophers are not only famous for invent­ing posi­tion­al nota­tion which took six cen­turies to be adopt­ed in Europe… They also laid out the foun­da­tions of cal­cu­lus and infin­i­tes­i­mals, lat­er export­ed by Jesuit priests from Kerala to Europe and borrowed/appropriated by European schol­ars (Raju 2007 pages 321-373).

The cal­cu­lus first devel­oped in India as a sophis­ti­cat­ed tech­nique to cal­cu­late pre­cise trigono­met­ric val­ues need­ed for astro­nom­i­cal mod­els. These val­ues were pre­cise to the 9th place after the dec­i­mal point; this pre­ci­sion was need­ed for the cal­en­dar, crit­i­cal to monsoon-driven Indian agri­cul­ture […]. This cal­cu­la­tion involved infi­nite series which were summed using a sophis­ti­cat­ed phi­los­o­phy of ratios of inex­pressed num­bers [today called ratio­nal functions…].

Europeans, how­ev­er, were prim­i­tive and back­ward in arith­meti­cal cal­cu­la­tions […] and bare­ly able to do finite sums. The dec­i­mal sys­tem had been intro­duced in Europe by Simon Stevin only at the end of the 16th c., while it was in use in India since Vedic times, thou­sands of years earlier.

C. K. Raju (2013 p. 161- 162)

This may be cit­ed in con­trast with the state­ments of Western his­to­ri­ans, among which:

The his­to­ry of math­e­mat­ics can­not with cer­tain­ty be traced back to any school or peri­od before that of the Greeks […] though all ear­ly races knew some­thing of numer­a­tion […] and though the major­i­ty were also acquaint­ed with the ele­ments of land-surveying, yet the rules which they pos­sessed […] were nei­ther deduced from nor did they form part of any science.

W. W. Rouse Ball, A Short Account of the History of Mathematics. Dover, New York, 1960, p. 1–2.

Therefore, it may seem para­dox­i­cal, giv­en such an intel­lec­tu­al bag­gage, to write an entire chap­ter on musi­cal scales with­out a sin­gle num­ber! In A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra I showed a min­i­mal rea­son: Bharata’s descrip­tion leads to an infi­nite set of solu­tions that should be for­mal­ized with alge­bra rather than a finite set of numbers.

The experiment

The author(s) of Natya Shastra invite(s) the read­er to take two vina-s (plucked stringed instru­ments) and tune them on the same scale.

A word of cau­tion to clar­i­fy the con­text: this chap­ter of Natya Shastra may be read as a thought exper­i­ment rather than a process involv­ing phys­i­cal objects. There is no cer­ti­tude that these two vina-s ever exist­ed — and even that “Bharata Muni”, the author/experimenter, was a unique per­son. Their approach is an instance of a val­i­da­tion (pramāņa) resort­ing to empir­i­cal proof, in oth­er words dri­ven by the phys­i­cal­ly man­i­fest (pratyakşa) rather than inferred from “axioms” con­sti­tu­tive of a the­o­ret­i­cal mod­el. This may be summed up as “pre­fer­ring physics to metaphysics”.

Constructing and manip­u­lat­ing vina-s in the man­ner indi­cat­ed by the exper­i­menter seems an insur­montable tech­no­log­i­cal chal­lenge. This has been a sub­ject of dis­cus­sion among a num­ber of authors — read Iyengar (2017 pages 7-sq.) Leaving aside the pos­si­bil­i­ty of a prac­ti­cal real­iza­tion is not a denial of phys­i­cal real­i­ty, as for­mal math­e­mat­ics would sys­tem­at­i­cal­ly man­date. Calling it a “thought exper­i­ment” is a way of assert­ing the link with the phys­i­cal mod­el. In the same man­ner, using cir­cu­lar graphs to rep­re­sent tun­ing schemes and alge­bra to describe rela­tions between inter­vals are aids to under­stand­ing which do not reduce the mod­el to spe­cif­ic, ide­al­is­tic inter­pre­ta­tions sim­i­lar to spec­u­la­tions on inte­ger num­bers cher­ished by Western schol­ars. These graphs aim at facil­i­tat­ing a com­pu­ta­tion­al design of instru­ments mod­el­ing these imag­ined instru­ments — read Raga into­na­tion and Just into­na­tion, a gen­er­al frame­work.

Let us fol­low Bharata’s instruc­tions and tune both instru­ments on a scale called “Sa-grama” about which the author declares:

The sev­en notes [svaras] are: Şaḍja [Sa], Ṛşbha [Ri], Gāndhāra [Ga], Madhyama [Ma], Pañcama [Pa], Dhaivata [Dha], and Nişāda [Ni].

It is tempt­ing to iden­ti­fy this scale as the con­ven­tion­al Western seven-grade scale do, re, mi, fa, sol, la, si (“C”, “D”, “E”, “F”, “A”, “B”) which some schol­ars have done despite the faulty inter­pre­ta­tion of intervals.

Intervals are notat­ed in shru­ti-s which may, for a start, be tak­en as an order­ing sys­tem rather than a unit of mea­sure­ment. The exper­i­ment will con­firm that a four-shru­ti inter­val is larg­er than a three-shru­ti, a three-shru­ti larg­er than two-shru­ti and the lat­ter larg­er than a sin­gle shru­ti. In dif­fer­ent con­texts the word “shru­ti” des­ig­nates note posi­tions instead of inter­vals between notes. This ambi­gu­i­ty is also a source of confusion.

The author writes:

Śrutis in the Şaḍja Grāma are shown as fol­lows: three [in Ri], two [in Ga], four [in Ma], four [in Pa], three [in Dha], two [in Ni], and four [in Sa].

Bharata enlists 9-shru­ti (con­so­nant) inter­vals: “Sa-Pa”, “Sa-Ma”, “Ma-Ni”, “Ni-Ga” and “Re-Dha”. In addi­tion, he defines anoth­er scale named “Ma-grama” in which “Pa” is one shru­ti low­er than “Pa” in the Sa-grama, so that “Sa-Pa” is no longer con­so­nant where­as “Re-Pa” is con­so­nant because it is made of 9 shru­ti-s.

Intervals of 9 or 13 shru­ti-s are declared “con­so­nant” (sam­va­di). Leaving out the octave, the best con­so­nance in a musi­cal scale is the per­fect fifth with a fre­quen­cy ratio close to 3/2. When tun­ing stringed instru­ments, a ratio dif­fer­ing from 3/2 gen­er­ates beats indi­cat­ing that a string is out of tune.

Sa-grama and Ma-grama accord­ing to Natya Shastra. Red and green seg­ments indi­cate the two chains of per­fect fifths. Underlined note names denote ‘flat’ positions.

If fre­quen­cy ratios are expressed log­a­rith­mi­cal­ly with 1200 cents rep­re­sent­ing one octave, and fur­ther con­vert­ed to angles with a full octave on a cir­cle, the descrip­tion of Sa-grama and Ma-grama scales may be sum­ma­rized in a cir­cu­lar dia­gram (see picture).

Two cycles of fifths have been high­light­ed in red and green col­ors. Note that both the “Sa-Ma” and “Ma-Ni” inter­vals are per­fect fifths, dis­card­ing the asso­ci­a­tion of Sa-grama with the con­ven­tion­al Western scale: the “Ni” should be mapped to “B flat”, not to “B”. Further, the “Ni-Ga” per­fect fifth implies that “Ga” is also “E flat” rather than “E”. The Sa-grama and Ma-grama scales are there­fore “D modes”. For this rea­son, “Ga” and “Ni” appear under­lined on the diagrams.

Authors eager to iden­ti­fy Sa-grama and Ma-grama as a Western scale claimed that when the text says that there are “3 shruti-s in Re” it should be under­stood between Re and Ga. Yet this inter­pre­ta­tion is incon­sis­tent with the sec­ond low­er­ing of the move­able vina (see below).

We must avoid pre­ma­ture con­clu­sions about inter­vals in these scales. The two cycles of fifths are unre­lat­ed except that the “dis­tance” between the “Pa” of Ma-grama and that of Sa-grama is “one-shru­ti”:

The dif­fer­ence which occurs in Pañcama when it is raised or low­ered by a Śruti and when con­se­quen­tial slack­ness or tense­ness [of strings] occurs, will indi­cate a typ­i­cal (pramāņa) Śruti. (XXVIII, 24)

In oth­er words, the size of this pramāņa ṣru­ti is not spec­i­fied. It would there­fore be mis­lead­ing to pos­tu­late its equiv­a­lence with the syn­ton­ic com­ma (fre­quen­cy ratio 81/80). Doing so reduces Bharata’s mod­el to “just into­na­tion”, indeed with inter­est­ing prop­er­ties in its appli­ca­tion to Western har­mo­ny (read page), but with ques­tion­able rel­e­vance to the prac­tice of Indian music. As claimed by Arnold (1983 p. 39):

The real phe­nom­e­non of into­na­tion in Hindustani Classical Music as prac­tised is much more amor­phous and untidy than any geom­e­try of course, as recent empir­i­cal stud­ies by Levy (1982), and Arnold and Bel (1983) show.

The des­ig­na­tion of the small­est inter­val as “pramāņa ṣru­ti ” is of major epis­temic rel­e­vance and deserves a brief expla­na­tion. The seman­tics of “slack­ness or tense­ness” clear­ly belongs to “pratyakṣa pramāṇa”, the means of acquir­ing knowl­edge by per­cep­tu­al expe­ri­ence. More pre­cise­ly, “pramāṇa (प्रमाण) refers to “valid per­cep­tion, mea­sure and struc­ture”” (Wisdom Library), a notion of proof shared by all Indian tra­di­tion­al schools of phi­los­o­phy (Raju 2007 page 63). We will get back to this notion in the conclusion.

An equiv­a­lent way of con­nect­ing the two cycles of fifths would be to define a 7-shru­ti inter­val, for instance “Ni-Re”. If the pramāņa ṣru­ti were a syn­ton­ic com­ma then this inter­val would be a har­mon­ic major third with ratio 5/4. As evoked in Just into­na­tion, a gen­er­al frame­work, the inven­tion of the major third as a con­so­nant inter­val dates back to the ear­ly 16th cen­tu­ry in Europe. In Natya Shastra this 7-shru­ti inter­val had been rat­ed “asso­nant” (anu­va­di).

In all writ­ings refer­ring to the ancient Indian the­o­ry of scales, I occa­sion­al­ly used “pramāņa ṣru­ti” and “syn­ton­ic com­ma” as equiv­a­lent terms. This is accept­able if one keeps in mind that the syn­ton­ic com­ma is allowed to take val­ues oth­er than 81/80. Consequently, the “har­mon­ic major third” should not auto­mat­i­cal­ly be assigned fre­quen­cy ratio 5/4.

Picture above rep­re­sents the two vina-s tuned iden­ti­cal­ly on Sa-grama. Matching notes are marked by yel­low spots. The inner part of the blue cir­cle will be the mov­able vina in the fol­low­ing trans­po­si­tion process­es, and the out­er part the fixed vina.

First lowering

Bharata writes:

The two Vīņās with beams (danḍa) and strings of sim­i­lar mea­sure, and with sim­i­lar adjust­ment of the lat­ter in the Şaḍja Grāma should be made [ready]. [Then] one of these should be tuned in the Madhyama Grāma by low­er­ing Pañcama [by one Śruti]. The same (Vīņā) by adding one Śruti (lit. due to the adding of one Śruti) to Pañcama will be tuned in the Şaḍja Grāma.

In brief, this is a pro­ce­dure for low­er­ing all notes of the mov­able vina by one pramāņa ṣru­ti. First low­er its “Pa” — e.g. make it con­so­nant with “Re” of the fixed vina — to obtain Ma-grama on the mov­able vina. Then read­just its whole scale to obtain Sa-grama. Note that low­er­ing “Re” and “Dha” implies appre­ci­at­ing again the size of a pramāņa ṣru­ti while pre­serv­ing the “Re-Dha” con­so­nant inter­val. The result is as follows:

The two vinas after a low­er­ing of pramāņa ṣru­ti

The pic­ture illus­trates the fact that there are no more match­ing notes between the two vina-s.

Interpreting shruti-s as vari­ables in some metrics

This sit­u­a­tion can be trans­lat­ed to alge­bra. Let “a”, “b”, “c” … “v” be the unknown sizes of shru­ti-s in the scale (see pic­ture on the side). A met­rics “trans­lat­ing” Bharata’s mod­el will be nec­es­sary for check­ing it on sound struc­tures pro­duced by an elec­tron­ic instru­ment — the com­put­er. The scope of this trans­la­tion remains valid as long as no extra asser­tion has been stat­ed which is not root­ed in the orig­i­nal model.

Using sym­bol “#>” to indi­cate that two notes are not match­ing, this first low­er­ing may be sum­ma­rized by the fol­low­ing set of inequations:

s + t + u + v > m 
a + b + c > m 
d + e > m 
f + g + h + i > m 
n + o + p > m 
q + r > m 
Sa #> Ni
Re #> Sa
Ga #> Re
Ma #> Ga
Dha #> Pa
Ni #> Dha

Second lowering

The next step is again a low­er­ing by one shru­ti with a dif­fer­ent procedure.

Again due to the decrease of a Śruti in anoth­er [Vīņā], Gāndhāra and Nişāda will merge with Dhaivata and Ṛşbha respec­tive­ly, when there is an inter­val of two Śrutis between them.

Note that it is no longer pos­si­ble to rely on a low­ered “Pa” to eval­u­ate a pramāņa ṣru­ti for the low­er­ing. The instruc­tion is to low­er the tun­ing of the mov­able vina until either “Re” and “Ga” or “Dha” and “Ni” are merged, which is claimed to be the same because of the final low­er­ing of two shru­ti-s (from the ini­tial state):

The two vina-s after the sec­ond low­er­ing (2 shru­ti-s)

Now we get an equa­tion report­ing that the two-shru­ti inter­vals are equal in size:

q + r = d + e

and five more inequa­tions indi­cat­ing the non-matching of oth­er notes:

f + g + h + i > d + e
a + b + c > d + e
s + t + u + v > d + e
n + o + p > d + e
j + k + l + m > d + e
Ma #> Ga
Re #> Sa
Sa #> Ni
Dha #> Pa
Pa #> Ma

We should keep in mind that the author is describ­ing a phys­i­cal process, not an abstract “move­ment” by which the move­able wheel (or vina) would “jump in space” from its ini­tial to final posi­tion. Therefore we pay atten­tion to things hap­pen­ing and not hap­pen­ing dur­ing the tun­ing of the vina, or rota­tion of the wheel, look­ing at the tra­jec­to­ries of dots rep­re­sent­ing note posi­tions (along the blue cir­cle). Things not hap­pen­ing (non-matching notes) yield inequa­tions required for mak­ing sense of the alge­bra­ic model.

This step of the exper­i­ment con­firms that it is wrong to locate Sa at the posi­tion of Ni for the sake of iden­ti­fy­ing Sa-grama with the Western scale. In this case, match­ing notes would no be Re-Ga and Dha-Ni, but Ga-Ma and Ni-Sa.

Third lowering

Bharata writes:

Again due to the decrease of a Śruti in anoth­er [Vīņā], Ṛşbha and Dhaivata will merge with Şaḍja and Pañcama respec­tive­ly, when there is an inter­val of three Śrutis between them.

The two vinas after the third low­er­ing (3 shruti-s)

This leads to equation

n + o + p = a + b + c

and inequa­tions:

s + t + u + v > a + b + c
f + g + h + i > a + b + c
j + k + l + m > a + b + c
Sa #> Ni
Ma #> Ga
Pa #> Ma

Fourth lowering

The pro­ce­dure:

Similarly the same [one] Śruti being again decreased, Pañcama, Madhyama and Şaḍja will merge with Madhyama, Gāndhāra and Nişāda respec­tive­ly when there is an inter­val of four Śrutis between them.

The two vinas after the fourth low­er­ing (4 shruti-s)

This yields 2 equations:

j + k + l + m = f + g + h + i
s + t + u + v = f + g + h + i

Algebraic interpretation

After elim­i­nat­ing redun­dant equa­tions and inequa­tions, con­straints are sum­ma­rized as follows:

(S1) d + e > m
(S2) a + b + c > d + e
(S3) f + g + h + i > a + b + c
(S4) j + k + l + m = f + g + h + i
(S5) s + t + u + v = f + g + h + i
(S6) n + o + p = a + b + c
(S7) q + r = d + e

The three inequa­tions illus­trate the fact that num­bers of shru­ti-s denote an order­ing of the sizes of inter­vals between notes.

Still, we have 22 unknown vari­ables and only 4 equa­tions. These vari­ables can be “packed” to a set of 8 unknown vari­ables which rep­re­sent the “macro-intervals”, i.e. the steps of the gra­ma-s. In this approach, shru­ti-s are sort of “sub­atom­ic” par­ti­cles which these “macro-intervals” are made of… Now we need only 4 aux­il­iary equa­tions to deter­mine the scale. These may be pro­vid­ed by acoustic infor­ma­tion, with inter­vals mea­sured in cents. First we express that the sum of the vari­ables, the octave, is equal to 1200 cents: 

(S8) (a + b + c) + (d + e) + (f + g + h + i) + (j + k + l) + m + (n + o + p) + (q + r) + (s + t + u + v) = 1200

Then we inter­pret all sam­va­di rela­tion­ships as per­fect fifths (ratio 3/2 = 701.9 cents):

(S9) (a + b + c) + (d + e) + (f + g + h + i) + (j + k + l) + m = 701.9 (Sa-Pa)
(S10) (j + k + l) + m + (n + o + p) + (q + r) + (s + t + u + v) = 701.9 (Ma-Sa)
(S11) (d + e) + (f + g + h + i) + (j + k + l) + m + (n + o + p) = 701.9 (Re-Dha)
(S12) (f + g + h + i) + (j + k + l) + m + (n + o + p) + (q + r) = 701.9 (Ga-Ni)

includ­ing the “Re-Pa” per­fect fifth in Ma-grama:

(S13) m + (n + o + p) + (q + r) + (s + t + u + v) + (a + b + c) = 701.9

S1O, S11 and S12 can all be derived from S9. These equa­tions may there­fore be dis­card­ed. We still need one more equa­tion to solve the sys­tem. At this stage there are many options asso­ci­at­ed with tun­ing pro­ce­dures. As sug­gest­ed above, set­ting the har­mon­ic major third to ratio 5/4 (386.3 cents) would pro­vide the miss­ing equa­tion. This amounts to set­ting vari­able “m” to 21.4 cents (syn­ton­ic com­ma). However, this major third can take any val­ue up to the Pythagorean third (81/64 = 407.8 cents) for which we would get m = 0.

Beyond this range, the two-vina exper­i­ment is no longer valid, but it leaves a great amount of pos­si­bil­i­ties includ­ing the tem­pera­ment of some inter­vals which musi­cians might achieve spon­ta­neous­ly in par­al­lel melod­ic move­ments. A set of solu­tions is exposed in A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra and a few of them have been tried on the Bol Processor to check musi­cal exam­ples for which they might pro­vide ade­quate scales — read Raga into­na­tion.

Extensions of the model

In order to com­plete his sys­tem of scales, Bharata had to intro­duce two new notes in the basic gra­ma-s: antara Gandhara and kakali Nishada. The new “Ga” is defined as “G” raised by 2 shru­ti-s. Similarly, kakali Ni is “N” raised by 2 shru­ti-s.

In order to posi­tion “Ni” and “Ga” cor­rect­ly we must inves­ti­gate the behav­ior of the new scale in all trans­po­si­tions (mur­ccha­na-s), includ­ing those start­ing with “Ga” and “Ni”, and infer equa­tions cor­re­spond­ing to an opti­mal con­so­nance of the scale. We end up with 11 equa­tions for only 10 unknown vari­ables, which means that this per­fec­tion can­not be achieved. One con­straint must be released.

An option is to release con­straints on major thirds, fifths or octaves, lead­ing to a form of tem­pera­ment. For instance, stretch­ing the octave by 3.7 cents gen­er­ates per­fect fifths (701.9 cents) and har­mon­ic major thirds close to equal tem­pera­ment (401 cents) with a com­ma of 0 cents. This tun­ing tech­nique was advo­cat­ed by Serge Cordier (Asselin 2000 p. 23; Wikipedia).

An equal-tempered scale with octave stretched at 1204 cents. (Image cre­at­ed by Bol Processor BP3)

Another option is to come as close as pos­si­ble to “just into­na­tion” with­out mod­i­fy­ing per­fect fifths and octaves. This is pos­si­ble if the com­ma (vari­able “m”) is allowed an arbi­trary val­ue between 0 and 56.8 cents. Limits are imposed by the inequa­tions derived from the two-vina experiment.

These “just sys­tems” are cal­cu­lat­ed as follows:

a + b + c = j + k + l = n + o + p = Maj - C
d + e = h + i = q + r = u + v = L + C
f + g = s + t = Maj - L - C
m = C

where L = 90.25 cents (lim­ma = 256/243), Maj = 203.9 cents (major who­le­tone = 9/8)
and 0 < C < 56.8 (pramāņa ṣru­ti or syn­ton­ic comma)

This leads to the 53-grade scale named “gra­ma” which we use as a frame­work for con­so­nant chro­mat­ic scales eli­gi­ble for pure into­na­tion in Western har­mo­ny when the syn­ton­ic com­ma is sized 81/80. Read Just into­na­tion, a gen­er­al frame­work:

The “gra­ma” scale used for just into­na­tion, with a syn­ton­ic com­ma of 81/80. Pythagorean cycle of fifths in red, har­mon­ic cycle of fifths in green.

In BP3, the just-intonation frame­work has been extend­ed so that any val­ue of the syn­ton­ic com­ma (or the har­mon­ic major third) can be set on a giv­en scale struc­ture. This fea­ture is demon­strat­ed on page Raga into­na­tion.

The relevance of circular representations

Circular rep­re­sen­ta­tion of tāl Pañjābi, catuśra­jāti
[16 counts] from a Gujarati text in Devanagari script
(J. Kippen, pers. communication)

It is safe to clas­si­fy the two-vina exper­i­ment as thought exper­i­ment because of the unlike­li­hood that it could be worked with mechan­i­cal instru­ments. Representing it on a cir­cu­lar graph (a move­able wheel inside a fixed crown) achieves the same goal with­out resort­ing to imag­i­nary devices.

Circular rep­re­sen­ta­tions belong to Indian tra­di­tions of var­i­ous schools, among which the descrip­tion of rhyth­mic cycles (tāl-s) used by drum play­ers. These graphs are meant to out­line the rich inter­nal struc­ture of musi­cal con­struc­tions that can­not be reduced to “beat count­ing” (Kippen 2020).

For instance, the image above was used to describe the ţhekkā (cycle of quasi-onomatopoeic syl­la­bles rep­re­sent­ing the drum strokes) of tāl Pañjābi which reads as follows:

Unfortunately, ear­ly print­ing press tech­nol­o­gy may have ren­dered uneasy the pub­li­ca­tion and trans­mis­sion of these aids to learning.

If con­tem­po­raries of Bharata ever used sim­i­lar cir­cu­lar rep­re­sen­ta­tions for reflect­ing on musi­cal scales, we guess that arche­o­log­i­cal traces might not be iden­ti­fied prop­er­ly as their draw­ings could be mis­tak­en for yantra-s, astro­log­i­cal charts and the like!

Return to epistemology

Bharata’s exper­i­ment is a typ­i­cal exam­ple of the pref­er­ence for facts inferred from empir­i­cal obser­va­tions over a pro­claimed uni­ver­sal log­ic aimed at estab­lish­ing “irrefragable demonstrations”.

Empirical proofs are uni­ver­sal, not meta­phys­i­cal proofs; elim­i­nat­ing empir­i­cal proofs is con­trary to all sys­tems of Indian phi­los­o­phy. Thus ele­vat­ing meta­phys­i­cal proofs above empir­i­cal proofs, as for­mal math­e­mat­ics does, is a demand to reject all Indian phi­los­o­phy as infe­ri­or. Curiously, like Indian phi­los­o­phy, present-day sci­ence too uses empir­i­cal means of proof, so this is also a demand to reject sci­ence as infe­ri­or (to Christian metaphysics).

Logic is not uni­ver­sal either as Western philoso­phers have fool­ish­ly main­tained: Buddhist [qua­si truth-functional] and Jain [three-valued] log­ics are dif­fer­ent from those cur­rent­ly used in for­mal math­e­mat­i­cal proof. The the­o­rems of math­e­mat­ics would change if those log­ics were used. So, impos­ing a par­tic­u­lar log­ic is a means of cul­tur­al hege­mo­ny. If log­ic is decid­ed empir­i­cal­ly, that would, of course, kill the phi­los­o­phy of meta­phys­i­cal proof. Further, it may result in quan­tum log­ic, sim­i­lar to Buddhist logic […].

C. K. Raju (2013 p. 182-183)
Yuktibhāşā’s proof of the “Pythagorean” the­o­rem.
Source: C. K. Raju (2007 p. 67)

The two-vina exper­i­ment can be likened to the (more recent) phys­i­cal proof of the “Pythagorean the­o­rem”. This the­o­rem (Casey 1885 p. 43) was known in India and Mesopotamia long before the time of its leg­endary author (Buckert 1972 p. 429, 462). In the Indian text Yuktibhāşā (ca. 1530 CE), a fig­ure of a right-angle tri­an­gle is drawn on a palm leaf with squares on its two sides and its hypothenuse. Then the fig­ure is cut and rotat­ed in a way high­light­ing that the areas are equal.

Clearly, the proof of the “Pythagorean the­o­rem” is very easy if one is either (a) allowed to make mea­sure­ments, or, equiv­a­lent­ly (b) allowed to move fig­ures about in space.

C. K. Raju (2013 p. 167)

This process takes place on sev­er­al steps of mov­ing fig­ures in a way sim­i­lar to mov­ing scales (or fig­ures rep­re­sent­ing scales) in the two-vina exper­i­ment. The 3 single-shru­ti tonal inter­vals may be likened to the areas of the 3 squares in Yuktibhāşā. The fol­low­ing remark would there­fore apply to Bharata’s procedure:

The details of this ratio­nale are not our imme­di­ate con­cern beyond observ­ing that draw­ing a fig­ure, car­ry­ing out mea­sure­ments, cut­ting, and rota­tion are all empir­i­cal pro­ce­dures. Hence, such a demon­stra­tion would today be reject­ed as invalid sole­ly on the ground that it involves empir­i­cal pro­ce­dures that ought not to be any part of math­e­mat­i­cal proof.

C. K. Raju (2007 p. 67)

Bernard Bel — Dec. 2020


Arnold, E. J. A Mathematical mod­el of the Shruti-Swara-Grama-Murcchana-Jati System. New Delhi, 1982: Journal of the Sangit Natak Akademi.

Arnold, E.J.; Bel, B. A Scientific Study of North Indian Music. Bombay, 1983: NCPA Quarterly Journal, vol. XII Nos. 2 3.

Asselin, P.-Y. Musique et tem­péra­ment. Paris, 1985, repub­lished in 2000: Jobert. Soon avail­able in English.

Bel, B.; Bor, J. Intonation of North Indian Classical Music: work­ing with the MMA. Video on Dailymotion. Bombay, 1984: National Center for the Performing Arts.

Bel, B.; Bor, J. NCPA/ISTAR Research Collaboration. Bombay, 1985: NCPA Quarterly Journal, vol. XIV, No. 1, p. 45-53.

Bel, B. A Mathematical Discussion of the Ancient Theory of Scales accord­ing to Natyashastra. Note interne. Marseille, 1988a : Groupe Représentation et Traitement des Connaissances (CNRS).

Bel, B. Raga : approches con­ceptuelles et expéri­men­tales. Actes du col­loque “Structures Musicales et Assistance Informatique”. Marseille, 1988b.

Bharata. Natya Shastra. There is no cur­rent­ly avail­able English trans­la­tion of the first six chap­ters of Bharata’s Natya Shastra. However, most of the infor­ma­tion required for this inter­pre­ta­tion has been repro­duced and com­ment­ed by Śārṅgadeva in his Sangita Ratnakara (13th cen­tu­ry CE), trans­lat­ed by Dr R. K. Shringy, vol.I. Banaras 1978: Motilal Banarsidass.

Bose, N. D. Melodic Types of Hindustan. Bombay, 1960: Jaico.

Burkert, W. Lore and Science in Ancient Pythagoreanism. Cambridge MA, 1972: Harvard University Press.

Casey, J. The First Six Books of the Elements of Euclid, and Propositions I.-XXI. of Book VI. London, 1885: Longmans. Free e-book, Project Gutenberg.

Iyengar, R. N. Concept of Probability in Sanskrit Texts on Classical Music. Bangalore, 2017. Invited Talk at ICPR Seminar on “Science & Technology in the Indic Tradition: Critical Perspectives and Current Relevance”, I. I. Sc.

Kippen, J. Rhythmic Thought and Practice in the Indian Subcontinent. In R. Hartenberger & R. McClelland (Eds.), The Cambridge Companion to Rhythm (Cambridge Companions to Music, p. 241-260). Cambridge, 2020: Cambridge University Press. doi:10.1017/9781108631730.020

Levy, M. Intonation in North Indian Music. New Delhi, 1982: Biblia Impex.

Raju, C. K. Cultural foun­da­tions of math­e­mat­ics : the nature of math­e­mat­i­cal proof and the trans­mis­sion of the cal­cu­lus from India to Europe in the 16th c. CE. Delhi, 2007: Pearson Longman: Project of History of Indian Science, Philosophy and Culture : Centre for Studies in Civilizations.

Raju, C. K. Euclid and Jesus: How and why the church changed math­e­mat­ics and Christianity across two reli­gious wars. Penang (Malaysia), 2013: Multiversity, Citizens International.

Rao, S.; Van der Meer, W. The Construction, Reconstruction, and Deconstruction of Shruti. Hindustani music: thir­teenth to twen­ti­eth cen­turies (J. Bor), Manohar, New Delhi 2010.

Shringy, R.K.; Sharma, P.L. Sangita Ratnakara of Sarngadeva: text and trans­la­tion, vol. 1, 5: 7-9. Banaras, 1978: Motilal Banarsidass. Source in the Web Archive.