
Two algorithms for the instanciation
of structures of musical objects

Bernard Bel

Abstract

This is an extended and revised1 version of the paper: Symbolic and Sonic
Representations of Sound-Object Structures published in M. Balaban, K. Ebcioglu & O.
Laske (Eds.) “Understanding Music with AI: Perspectives on Music Cognition”, AAAI
Press (1992, pp.64-109).

A representational model of discrete structures of musical objects at the symbolic and
sonological levels is introduced.  This model is being used for the design of computer
tools for rule-based musical composition in which the low-level musical objects are not
notes, but “sound-objects”, thereby meaning arbitrary sequences of messages dispatched to
a real-time digital sound processor.

“Polymetric expressions” are string representations of concurrent processes that can easily
be handled by formal grammars.  These expressions may not contain all the information
needed for synchronizing the whole structure of sound-objects, i.e. determining their strict
ordering on (symbolic) time.  In response to this, the notion of “symbolic tempo” is
introduced: ordering all objects in a structure is possible once their symbolic tempos are
known.  Rules for assigning symbolic tempos to objects are therefore proposed.  These
form the basis of an algorithm interpreting incomplete polymetric expressions.  The
relevant features of this interpretation are commented.

An example is given to illustrate the advantage of using (incomplete) polymetric
representations instead of conventional music notation or event tables when the complete
description of the musical piece and/or its variants calls for difficult computations of
durations.

Given a strict ordering of sound-objects summarized in a “phase table” representing the
complete polymetric expression, the next step is to calculate the dates at which messages
should be dispatched.  This requires a description of “sound-object prototypes” along with
their metric/topological properties, and various parameters related to the musical
performance (e.g. “smooth” or “striated” time, tempo, etc.).  These properties are
discussed in detail and a time-polynomial constraint-satisfaction algorithm for the time-
setting of sound-objects in a polymetric structure is introduced.  Typical examples
computed by this algorithm are shown and discussed.
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Two algorithms for the instantiation of structures of
musical objects

Bernard Bel

[…] not only do individuals and groups give different verbal meanings to music; they also conceive
its structures in ways that do not permit us to regard musical parameters as objective acoustical
facts.  In music, thirds, fourths, fifths, and even octaves, are social facts, whose syntactical
behaviour can differ as much as that of si, see, and sea, beau, bow, and bo, or buy, bye, by and bai.

[Blacking 1984, p.364]

Pierre Schaeffer, the father of musique concrète [Schaeffer 1966], introduced a
taxonomy of musical objects on the basis of their distinctive features.  Musical objects
may also be called sonemes, i.e. equivalence classes on acoustic musical events, each
musical event being in turn an acoustic variant of the soneme.  The musical object
approach certainly contributed to significant developments of electroacoustic music.
Nevertheless, composers who had been in search for a higher degree of freedom in sound
manipulation felt the need to explore the potential of digital sound synthesis:

I felt that electronic music yielded dull sounds that could only be made lively through manipulations
which, to a large extent, ruined the control the composer could have over them.  On the other hand,
musique concrète did open an infinite world of sounds to music — but the control and manipulation
one could exert upon them was rudimentary with respect to the richness of the sounds, which
favored an aesthetics of collage.

[Risset 1989:67]

Followers of musique concrète have now replaced audio tape with sampling techniques
and scissors with various kinds of sequencers, notators or tools for computer-aided
composition.  As far as digital sound synthesis is concerned, most digital sound
processors offer an access to real-time external control through communication devices
such as MIDI2.  Therefore, both “musical object” and “sound model” designers [Borin et
al. 1990] are now operating in environments enabling a control on both sound structures
and acoustical parameters.  Nevertheless, most of the music software available on the
market is specialized either for the manipulation of structures (mainly cut-and-paste
operations) or sounds (digital filtering or controlling parameters in a sound processor).

The present study is an attempt to deal with musical objects that may be handled both at
the symbolic level and at the level of “elementary actions”.  The nature of these actions is
not specified because it depends on the hardware/software configuration of the sound
processor and, to a lower extent, on the communication device used for the real-time
control of the processor.  The motivation of our project, therefore, has been the

2 Musical Instrument Digital Interface.
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implementation of efficient procedures handling musical objects as “lists of messages” (at
a macro or micro-level) unrelated to music notation conventions.  Some information about
the task environment of this work is given in §2.

The representation of time and musical structures is discussed in §3.

In §5 and §6.1 we introduce polymetric expressions, string representations of
universes of concurrent processes, along with an algorithm that infers the missing time
information in incomplete expressions.  An application to music in conventional notation
is discussed in §9.

In §10-ff we take into account that the terminal symbols of a polymetric expression
may be arbitrary labels assigned to sound-objects.  A sound-object may be viewed as
an instance of some predefined sound-object prototype.  Each prototype contains (1)
a sequence of (time-stamped) messages destined to a sound processor and (2) a list of
(inheritable) sonic properties.  These properties are defined in §12-13.

In §10 a time-setting algorithm is informally introduced.  This algorithm calculates
the accurate positioning of all sound-objects in a sound-object structure, given the
definitions of their prototypes.  Its main operation is the resolution of a system of
constraints resulting from the sonic properties of sound-objects, the nature of time
(smooth or striated) and its structure (e.g. a metronomic or irregular beat).  The time-
setting algorithm is analyzed in §16 and examples of its output are commented in §18.

1. Related work

In  the same way computational linguists, e.g. [Jakobson 1963; Chomsky & Halle 1968],
have attempted to deal with phonological models of natural language, the work presented
here is part of the design of a sonological component of musical (formal) grammars:

Supposed sonological segments of music are composed of sound-objects realizing certain syntactical
structures.

It is reasonable to assume that no unambiguous one-to-one correlation of such segments with
acoustical (i.e., physical) sound properties exists.  On the level of the sonic representation —
mediating between the acoustical and the sonological levels — one therefore expects to find a
representation of properties which are acousmatic3 (independent of sound sources in the physical
sense) as well as asyntactic (independent of syntactical classes of musical formatives).

[Laske 1972:30]

The aim of this work is to introduce “performance parameters” into musical pieces
generated by computations on abstract symbols.  Our basic assumption is that these
parameters should be determined altogether by (1) the musical structure, (2) interpretation
rules, and (3) the properties of sound-objects.

The notion of symbolic time introduced in part A is close to Jaffe’s [1985] basic time
and to virtual time in the Formula musical programming environment [Anderson et
Kuivila 1989:11-23].

3 The term acousmatic refers to sounds whose physical source is either unknown or is intentionally
neglected; the term is taken over from Pierre Schaeffer’s Traité des Objets Musicaux, […] 1966:61.
[Original footnote]
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The sonological interpretation [Laske 1972:24] of a musical item may first be
handled by a rewriting system whose terminal alphabet is a finite set of sound-object
labels.4  Rules in this system reflect the sonological properties of sound-objects.  The
second part of this paper deals with a second step of the sonological interpretation: the
inference of missing precedence/simultaneity relations in structures of sound-objects.  The
intuitive interpretation of superimpositions (see §5.1), leading to the concept of
symbolic tempo (see §6.1), may be viewed as a kind of semantic interpretation of
time structures.

Sonic properties5 of sound-objects are features unrelated with the syntactic structure
of musical pieces in which they appear.  The only properties considered in this paper are
the ones controlling the time-scaling of sound-objects (i.e. metrical properties) and
acceptable mutual relations of their time-span intervals (i.e. topological properties).
Starting from a complete representation of a sound-object structure, these sonic properties
are taken into account for determining the accurate timing of sound-objects, as shown in
§12-13-16.

Our approach may be viewed as a compromise between top-down (goal-driven) and
bottom-up (data-driven) compositional strategies in music.  In the former, rules and
procedures are used to compute the final sound output on the basis of information entirely
imbedded in its symbolic description.  In the latter, a structure may “emerge” from some
specific arrangement of elementary acoustic events.  The top-down strategy is the main
one available in conventional score editors and MIDI composition tools.  A bottom-up
strategy for the design of discrete structures, which inspired this work, has been proposed
by Stroppa (see §10, [Duthen & Stroppa 1990]).

Since the algorithms described here are neither related to a particular musical system
nor to sound generation techniques or data-communication standards, they could as well
be applied to the time-setting of processes outside the domain of computer music.  There
is formally no difference between a message destined to a sound processor and one
controlling a laser beam, a robot, etc.  Nevertheless, for the sake of clarity, the concepts
and terminology will be introduced in reference to a musical environment.

2. The task environment of this study

The algorithms presented below have been implemented in a computer environment for
design-based (stipulatory) or improvisational rule-based composition [Laske
1989, pp.51,53] called Bol Processor BP2, in which it is possible to design sets of
musical items by way of rewriting rules.6

Several operational modes are available in BP2, from the one that leaves all decisions
to the machine (stochastic improvisation) to the one that forces the composer to take
stepwise decisions.

The interaction of modules is summarized in the block diagram of Fig.1.

4 See for instance context-sensitive substitutions, §3 and appendix 3 in [Bel 1991a].
5 The expression “sonic properties” is borrowed from [Laske 1972:27] but it is used here in a more

restrictive sense.  In Laske’s view [op.cit.:30], a sound-object itself is a set of sonic properties.
6 ibidem.
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Item(s)

Display

Interpreter

Grammar(s) Sound-object 
prototypes

Editor MIDI input

Keyboard and/or graphic 
input.

MIDI musical 
instrument(s)

Sound 
processor(s)

MIDI output

Inference 
engine

Other BP2, sequencer, etc.…

Fig.1  A block diagram of BP2

Three fields are used for storing a grammar, items generated by the grammar (on the basis
of decisions taken by the inference engine) and “sound-object prototypes” loaded from a
MIDI musical instrument (and edited manually).  The terminal alphabet of the grammar is
the set of labels of sound-objects.  The interpreter works in three stages:

1) The item generated by the grammar is interpreted as a polymetric expression.
The output is a complete expression (i.e. a bidimensional array of terminal
symbols).  (See §3.2, §7.2)

2) The expression is interpreted as a sound-object structure, using information
about the structure of time and object prototype definitions.  The main output is
an array containing the performance parameters of objects in the structure: their
start/clip dates, time-scale ratios, etc.  (See §11)

3) MIDI messages are dispatched in real time to control the generation of sound-
objects by the sound processor.  (See the time-setting function in the appendix,
§3)

The block diagram indicates that an external control can be exerted on the inference
engine, grammars, and the interpretation module.  Specific MIDI messages may be
assigned to changes of rule weights, tempo, and the nature of time (striated/smooth).
Other messages may be used for synchronizing events in the performance or assigning
computation time limits.  These features are used in improvisational rule-based
composition.
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Several BP2’s may be linked together and with other devices such as MIDI
sequencers.  Messages on the different MIDI channels may be used for making machines
communicate or controlling several sound processors.  Therefore it must be kept in mind
that “sound-objects” do not necessarily produce sounds.  Depending on the
implementation they may contain any kind of control/synchronization message as well.

3. The basic representation issues

3.1    Representation of discrete sound-object structures

Let us assume that “a”, “b”, “c”, “e”, “f”, “g” and “-” are labels of arbitrary sound-
objects.  Label “-” may be reserved to silences, which are viewed as particular objects.

The picture below represents a structure of two sequences which, in first
approximation, may be notated

S1 = a b c a      and       S2 = e - f g

Structure
of time

D Symbolic
dates

S1

θ2 Rhythmic
structure

θ1

(sec.)

R

Physical dates0

S2

φ

a b c a NIL e - f g NIL

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

Fig.2  A representation of sequences S1 and S2

In Fig.2 a set of strictly ordered symbolic dates D = {t1,t2,…} is introduced along

with θi , an injective mapping of each Si into D.  By convention, each θi is a monotonous
increasing function: sequentiality implies that all objects appearing in a sequence are
ordered in increasing symbolic dates.  Each mapping θi may in turn be viewed as a
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restriction to Si of a general mapping θ which we call the rhythmic structure7 of the
sound-object structure.  The utility of “NIL” markers will be shown later.

Mappings of sequences to the set of symbolic dates introduce information about the
ordering of any pair of events belonging to either sequence.  In this way, a structure of
sound-objects is described symbolically.  Here, for instance, S1 and S2 are partly
overlapping.

The set of symbolic dates D  is then mapped to physical time, i.e. the set of real

numbers R .  We call this mapping Φ the structure of time.8  In the example shown

above, Φ is a multivocal mapping, which means, for instance, that each sound-object “a”

and “e” at symbolic date t3 would be performed twice.  Ιn the rest of this paper only
strictly increasing (univocal) mappings will be considered, i.e.:

∀i,j ∈ N,     ti < tj <=> Φ(ti) < Φ(tj)  .

In this case, if we consider Dist(ti,tj) = |Φ(tj) - Φ(ti)| (the absolute value of the

difference), Dist is a distance on D.  Besides, since

∀i,j,k ∈ N,   Dist(ti,tj) + Dist(tj,tk) ≥ Dist(ti,tk)

(D,Dist) is also a metric  space.  (D,Dist) is Euclidian  (metronomic time) if the
additional property holds:

∀i,j,k,l ∈ N,   j - i = l - k  => Φ(tj) - Φ(ti) = Φ(tl) - Φ(tk)

The composition of the two mappings (Φ .θ) is the in-time structure of the musical
item, i.e. the mapping that permits its actual performance.  Structure of time and in-time
structures are two concepts borrowed from Xenakis [1963; 1972:57].  We find these
concepts essential as they deal with sets of physical dates not necessarily structured as a
Euclidian space.

3.2    Phase diagram

Both sequences of this example may be represented together in a single array (the
phase diagram), the columns of which are labelled and ordered on symbolic dates:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

_ _ a _ b c a _ _ NIL _ _ _ _

_ _ _ e _ - _ _ f _ g NIL _ _

The array contains empty sound-objects “_” which may denote the prolongation of the
preceding sound-object.  These should not be confused with silences “-”.

7 This term is justified in [Bel 1990a:114].
8 This was called structure temporelle by Xenakis [1963:190-1,200]
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Using the information displayed in the array, S1 and S2 may be properly notated:

S1  =  a _ b c a _ _ S2  =  e _ -_ _ f _ g

In general, there are several possible equivalent phase diagrams representing the same
sound-object structure.  An equivalent diagram would be for instance:

_ _ _ e _ c a _ _ NIL _ _ _ _

_ _ a _ b - _ _ f _ g NIL _ _

At this stage, we call symbolic duration of a sound-object the relative position of
the next non-empty sound-object or “NIL” marker.  A complete definition taking into
account the “dilation ratio” will be proposed in §11.  For example, in S2 the symbolic
durations of objects “e”, “-”, “f” and “g” are two, three, two and one respectively.  In S1,
there are two consecutive occurrences of “a” with respective durations two and three.

If for example “a”, “b”, etc. would represent notes, assuming that “b” is a quarter note
would imply that “e” is a half-note and “-” a dotted half-note rest.

3.3    Out-time objects

Sound-objects have strictly positive symbolic durations.  In some cases it is useful to
dispose of “flat” objects with null durations which we call out-time objects.  These
may be defined from sound-objects whose actions are executed “simultaneously” or in a
very short sequence (see appendix, §2).  In the BP2 environment, a typical application of
out-time objects is the exchange of parameters or synchronization messages.

Given a sound-object labelled “a”, the corresponding out-time object is labelled
“<<a>>”.  Using this convention, a string like

<<a>> b

represents a structure in which out-time object “<<a>>” starts at the same symbolic date
as sound-object “b”.

4. Smooth vs. striated time

Pierre Boulez introduced the notions of smooth time (“temps lisse”) and striated time
(“temps strié”) to characterize two typical situations in music performance.  Striated time
is filled with (regular or irregular) pulse, whereas smooth time does not imply any
counting:

[…] dans le temps lisse, on occupe le temps sans le compter; dans le temps strié, on compte le
temps pour l’occuper.  […]  ce sont les lois fondamentales du temps en musique.

[Boulez 1963, p.107]

A particular case of striated time is the metronomic pulse.  Examples of smooth time
are common outside Baroque music, e.g. the slow melodic introductions in raga music.

In computer-generated music, these notions are bound to the structure of time (the Φ
mapping): in striated time, Φ is known in advance, whereas in smooth time it is
determined at the time of performance.  Therefore, a striated structure of time is a set
of physical dates defining reference streaks on which sound-objects should be
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positioned (e.g. see §18.3.2), whereas a smooth structure of time is a set of dates
determined by the sound-objects themselves (e.g. see §18.3.1).  In both cases, however,
a synchronization between different voices must be maintained.

5. The synchronization problem

We call synchronization problem the task of mapping all sound-objects in a structure
to a set of symbolic dates.  This mapping is the rhythmic structure θ of the musical piece
(see §3.1).

Imbedding the complete rhythmic structure in the definitions of musical sequences
introduces a rigidity that goes against the versatility of rewriting systems, as discussed in
§5.1.  In response to this, incomplete representations can be envisaged so long as a
method is available for inferring the missing time information.  A method for
“synchronizing” incomplete descriptions sound-object structures, thereby completing their
sonological interpretation, will be proposed in §7-8.

5.1    Rhythmic structures in a formal grammar — example

Suppose that we wish to superimpose two sequences A and B defined by rules:

A —> a b c
A —> d e f g
B —> h i

in which “a”, “b”, … “i” are labels of sound-objects.  Alternate definitions of “A” indicate
that it may contain either three or four objects.  To start with, we do not know how to
interpret the exact superimposition of two sequences: combining “abc” and “hi” may for
example yield the following phase diagrams:

a b c a b c a _ b _ c _ a _ b c etc...
h i _ _ h i h _ _ i _ _ h i _ _

 (1)  (2) (3) (4)

Prolongational symbols “_” could also be replaced with silences “-”.  However, since
silences do not explicitly appear in the grammar, we may postulate that creating them is
not a valid choice.  Further we discard interpretations (1) and (4) in which equal symbolic
durations are not maintained within the same string “h i”.  Finally, it is reasonable to
expect a synchronization of both the start and clip points of the synchronized sequences.
Therefore there is no reason to start “a” before “h” as in interpretation (2).

Finally, the most intuitively appealing interpretation of a superimposition (in the
absence of any additional information) is the one shown in (3).  A notation of
superimpositions is now introduced: {A,B} (equivalently, {B,A}) is the superimposition
of sequences “A” and “B”.  We call “{A,B}” a polymetric expression whose
arguments are “A” and “B”.  Nested expressions will be introduced in §5.2.

Using this notation, a grammar yielding all acceptable superimpositions of “A” and “B”
would be:

S —> {A1,B1}
S —> {A2,B2}
A1 —> a _ b _ c _ B1 —> h _ _ i _ _
A2 —> d e f g B2 —> h _ i _
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Once a string like “{d e f g, h _ i _}” has been produced, it is necessary to check that it
contains equally many terminal symbols in both arguments, failing to which the phase
diagram cannot be constructed.

Evidently it is cumbersome to be forced to give two possible versions of “B”, the more
so because they point to identical ratios of symbolic durations: “B2” is similar to “B1” in
every respect.  Ideally, the following grammar should be used:

S —> {A,B}
A —> a b c
A —> d e f g
B —> h i

expecting that there will be a method for interpreting a production like

{a b c, h i}

i.e. an incomplete polymetric expression, as

{a _ b _ c _ , h _ _ i _ _ }

i.e. a complete polymetric expression (see formal definition §7.2).

5.2    Event universe

An event universe (E,<,=,&) is a set structured with three relations:

1) a strict ordering which we name “before” and notate ‘<’;

2) an equivalence relation which we name “matches” and notate ‘=’;

3) a strict ordering which we name “then” and notate ‘&’;

with the following consistency conditions:

∀(e1,e2,e3) ∈ E3,

e1 & e2  =>   e1 <  e2 ;

e1 & e2   and  e2 = e3   =>  e1 & e3 ;

e1 < e2   =>   not (e1 = e2 ) ;

e1 < e2  and  e2 = e3   =>  e1 < e3 .

It is easy to prove that: e1 < e2  and  e1 = e3   =>  e3 < e2 .

Informally, the “<” ordering denotes a precedence between events while the “&”
ordering denotes sequentiality.

The word “event” may be used to denote a time point, a time interval, or any other
entity on which these relations may be applied meaningfully.  In this study, events denote
sound-objects ordered by their symbolic dates.9

Let there be a (bi-coloured) graph G such that:

e1 < e2    or     e1 = e2   => G(e1,e2)

9 In [Bel 1990b] the pair containing a sound-object label and a symbolic date is called a time-object.
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In general, G is not a complete graph, which amounts to say that there are events in the
universe that cannot be compared through “<” or through “=”.  We call this an
incomplete universe.  Solving the synchronization problem, therefore, amounts to
inferring enough “<” and “=” relations so that there transitive closure may yield a
complete graph G.

When G is a complete graph we may build a partition using the equivalence relation
“=”.  Classes of this partition are strictly ordered with “<”.  The index of each class under
this order may be used as a symbolic date of events collected in the class, as defined in
§3.1.

Conversely, if all events have been assigned symbolic dates it is easy to build a unique
complete graph G.

5.3    A graphic representation

1) Each event is represented as a labelled edge:

 
e

Fig.3

2) Relations ei = ej and e = e (reflexivity) are represented:

e

ei

ej

Fig.4

3) Relation ei < ej is represented:

ei

ej

Fig.5

4) Relation ei & ej is represented:

ei
ej

Fig.6

(or equivalently):
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ei

ej

Fig.7

5) We decide to represent only a subset of relations so that the transitive closure
may yield all known relations.  For instance, a sequence may always be shown
as a unilinear graph from which a complete graph may be inferred:

e1

e2

e3

e4

e1

e2

e3

e4

Fig.8

6. A method for synchronizing concurrent processes

In this paragraph we introduce the concept polymetric structure and the rules used for
inferring “complete” polymetric expressions (see §7), i.e. to solve the synchronization
problem.

Theorem

Any complete event universe E may be partitioned in sequences:

E = S1 ∪… ∪ Sk

such that each Si is totally ordered with “&”.
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Proof

A “&” relation between any pair of events may be found provided that “dummy” events
are introduced for the sake of synchronization.  Let there be for example two events

ei

ej

Fig.9

mapped to the following time-span intervals:

Physical time
.ej

ei

Fig.10

We create λ1 and λ2  such that:

ei  &  l1  ,    ej  &  l2 ,   ej  <  l1  ,   l1  <  l2  ,

which yields the following representation

λ1

λ2

ei

ej

Fig.11

in which a complete information on sequentiality is contained.  Events ei and ej are now
part of sequences. ■

6.1    Polymetric expressions

Our interest is to deal with an event universe described in terms of sequences, with
certain restrictions on explicit time relations which make it possible to use a bracketed
string notation.  The bracketed expression may later be computed to yield a complete
representation.

Each sequence Si of the event universe is notated as a string:

Si = ei1 … eip    such that     eij <  eik  <=>  j < k

In this representation, events ei1,…, eip are labels of sound-objects (as in §3.2).
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Under certain conditions an event universe may be notated as a polymetric
expression. [Bel 1990b, chapter VII.].  For example, the following (incomplete)
universe

λ1

λ2

λ3

λ4 λ7r s y z

k l m n o p q

c d e f g h i j

a b

Fig.12  A polymetric structure

leads to the (nested) polymetric expression:

c { d { e f g, a b } h, k l { m n, r s } o { p q, y z } } i j

which is an extension of the notation introduced in §5.1.

Conversely, a polymetric expression denotes a universe called a polymetric
structure.

Events λ1, λ2, … are not indicated in the polymetric expression because the closing
bracket is sufficient to mark the end of a sequence.  Other equivalent expressions may be
written since the order of arguments between brackets is arbitrary.

The “precedence” relation is not shown on Fig.3.  It is easy to infer, for instance, that
“d” precedes “r”, but no such relation can be proved between “f” and “n”.  Both the
graphic representation and the polymetric expression are therefore incomplete.

The polymetric expression representing the event universe of Fig.12 is easy to write
because it describes a universe partitioned in sequences.  Each sequence is an argument of
the expression.  Nevertheless, there are (incomplete) event universes that do not lend
themselves to a polymetric representation even though they are partitioned in sequences.
Fig.13 is an example.  The necessary properties enabling a polymetric representation of an
incomplete event universe are listed in [Bel 1990b:109].
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λ1

λ2

λ3

λ4

λ5

λ6

λ7r s y z

k l m n o p q

w x

t u v

c d e f g h i j

a b

Fig.13  An arbitrary event universe

In spite of this, any complete event universe, i.e. one in which all precedence
relations are known, may be represented with a polymetric expression.  (See §7.1 or [Bel
1990b:110])  Therefore, in this study only (possibly incomplete or inconsistent)
polymetric structures will be considered.

6.2    Inferring missing relations

The problem is to find a general approach to the synchronization problem in an event
universe represented with a polymetric expression.  In the universe shown Fig.12, for
instance, we hope to know the relative ordering of sound-objects “g” and “n”.  Evidently,
if these objects were (metric) time intervals stringed together in sequences, then
computing durations would solve the problem.  This is the traditional numerical approach.
Allen [1983] has proposed a more flexible representation, starting from the formalization
of all possible topological configurations of time-span intervals, from which it is possible
to infer the list of plausible temporal relations between any pair of objects.10   We estimate,
though, that reasoning on time-span intervals at such an abstract level of the musical
representation is too restrictive.  In §16 it will be shown how to deal with time-span
intervals in a realistic sense.

6.3    Symbolic tempo

The concept of “tempo” is introduced here in response to the bias against time-span
intervals.  This concept is purely abstract even though, at a lower level, it has implications
on the locations of sound-objects on the physical time axis (see §10, §15.2).

10  Similar representations of time relations in music have been suggested by Vecchione [1984] and
Oppo [1984].

—  14  —



Two algorithms for the instantiation of structures of musical objects

Let E be an event universe.  We call symbolic tempo any mapping V of E to the set
of strictly positive rational numbers Z+ that fulfills the property:

Consistency property

Let “<” denote the “precedence” relation and “=” the “simultaneity” relation.

Let there be two sequences

ei … ei+p   and  ej … ej+p

such that   ei  =  ej   (i.e. starting on simultaneous events)

Then:

i+p-1

∑
l = i

1
Vel

=
j+q-1

∑
l = j

1
Vel

<=> ei+p = ej+q

i+p-1

∑
l = i

1
Vel

<
j+q-1

∑
l = j

1
Vel

<=> ei+p < ej+q

The preceding relations make sense intuitively if one equates 
1

Vei
 to the symbolic

duration of ei.  It can be proved that if all tempos are known then the synchronization
problem can be solved using these relations.  [Bel 1990b, theorem VII.2]  The problem,
therefore, is to define a set of rules for tempo assignment and a procedure for propagating
tempos that makes it possible to maintain the consistency of the event universe.

6.4    Tempo assignment

6.4.1 Explicit tempo marker

We use the syntactic form “/n” to indicate that the next event in a sequence is assigned
an integer tempo n.  For example,

/n   ei

means that

V(ei) = n

This notation indicates infomally that the symbolic durations of objects following “/n” are
divided by n.

Using empty sound-objects “_” it is possible to apply this notation to non-integer
tempos.  For example, the tempos of “a” and “b” in the sequence

/3 a _ _ _  /3  b _

are 3/4 and 3/2 respectively, which means, conversely, that the respective symbolic
durations of “a” and “b” are 4/3 and 2/3.

6.4.2       Default assignment

The default tempo of the first event in a sequence is 1.
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6.4.3       Tempo propagation after a divergence

If e0 e1  is a sequence and there exist events e2, …, ek such that e1 = e2 = … = ek ,
then V(e1)  = V(e0) by default.

e0 e1

e2

ek

Fig.14  A divergence in a polymetric structure

This means that when “entering” the polymetric structure

… e0 {e1…,e2…,…,ek…}…

the default tempo of the first argument is V(e0).

This means that when “entering” the polymetric structure

… e0 {e1…, e2…, …, ek…}…

the default tempo of the first argument is V(e1) = V(e0).

This rule will be illustrated in §7.3, in which the consistency condition will be used to
determine the tempos of other sequences.  Consistency may also impose a tempo
V(e1) ≠ V(e0) whenever one of the arguments of the polymetric expression contains an
explicit tempo marker.

6.4.4       Tempo propagation after a convergence

ejne jm

i1e ipe

j(m-1)e

Fig.15  Divergence and convergence in a polymetric structure

V(ejn)  =  V(ej(m-1))

Informally, the tempo “after” a polymetric expression is the same one as “before” the
expression.

6.4.5       Tempo propagation in a sequence

If  ei ej  is a sequence and there is no k such that ej = ek  , then

V(ej) = V(ei)
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7. Interpreting and representing polymetric expressions

The interpretation algorithm has been introduced in [Bel 1990a] and explained in detail in
[Bel 1990b, chapter VIII].  This and the following paragraph summarize its main features.

7.1    Polymetric representation of a complete universe

In §5.2 it was stated that in a complete event universe it is possible to assign each event
a symbolic date.  Therefore it is possible to represent the universe as a phase diagram
whose columns are labelled with symbolic dates, as illustrated in §3.2.  Conversely, a
given phase diagram may lead to a polymetric expression.  For example, Fig.7 is an
interpretation of the diagram shown in §3.2.

e - f g λ2

a b c a λ1

Fig.16  A complete event universe11

This universe does not fulfil the conditions yielding a polymetric representation, as
indicated in  [Bel 1990b:109-110].  Yet it can be replaced with equivalent ones fulfilling
these conditions.  For example, a silence may be appended to S1, yielding the new phase
diagram

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

_ _ a _ b c a _ _ - _ NIL _ _

_ _ _ e _ - _ _ f _ g NIL _ _

i.e. the complete polymetric expression:

{ a _ b c a _ _ - _ , _ e _ - _ _ f _ g }

11  Note that this graph contains less information than the phase diagram.  It would be unchanged if for
instance the column labelled “t8” were deleted; additional columns containing only “_” could also be
inserted at will.
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Another way of representing the universe of Fig.16 as a polymetric expression consists
of splitting the sound-object “f”.  For this we use a concatenation symbol notated “&”, by
way of which two segments of the same sound-object may appear in different
arguments.12   Thus we get for example

{ a _ b c a _ _ ,  _ e _ - _ _  f& }  &f   g

or equivalently:

a& { &a b c a _&,  e _ - _ _ } { &a, f& }  &f  g

etc…   Each expression implies a particular surface structure, here taken to mean
“segmentation”.  The latter one is illustrated in Fig.17:

.e — f& &f g

a& &a b c a& &a

Fig.17  A segmentation of sound-objects yielding a polymetric expression

Since it is not possible to determine the surface structure of an arbitrary sound-object
structure, the input of the polymetric interpretation algorithm is a well-formed polymetric
expression, not a phase diagram.13

7.2    Complete polymetric expressions

Let Vt be a set of labels of sound-objects.  A syntactic definition of complete
polymetric expressions over Vt  is proposed now.

12  See for instance notes “B6” and “G#5” in the musical example of §9.  The limitation of this
notation (ambiguity) is discussed in [Bel 1990c].

13  This was implied by the last sentence of §5.2.
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Definition

1) ∀ xi ∈ Vt,

xi ,  x i&,  &xi  and “_”  are complete polymetric expressions of identical
symbolic durations.  (See §11 the definition of the symbolic duration of a single object
xi .)

2) Given a list of complete polymetric expressions P1,…, Pimax  of symbolic
duration n,

∀i ∈ [1, imax-1],

{Pi}  and  {P1,…, Pi+1} are complete polymetric expressions of symbolic
duration n.

3) If P1 and P2 are two complete polymetric expressions of respective symbolic
durations n1 and n2 , then P1 P2  is a complete polymetric expression of symbolic
duration (n1+n2).

4) If P is a complete polymetric expression of symbolic duration n,

∀k ∈ N  with  k ≥ 1,

/k  P    is a complete polymetric expression of symbolic duration  
n
k .

7.3    Interpreting a polymetric expression

The basic idea of the interpretation algorithm is illustrated here on simple examples of
polymetric expressions.14   In §5.1 the method for superimposing two sequences of
different lengths was informally introduced.  Given the incomplete expression

{ a b, c d e }

the tempo propagation rule in §6.4.3 yields a set of equivalent complete expressions

{a _ _ b _ _ , c _ d _ e _ }
{a _ _ _ _ _  b _ _ _ _ _ , c _ _ _ d _ _ _ e _ _ _ }

{a _ _ _ _ _ _ _ _ b _ _ _ _ _ _ _ _ , c _ _ _ _ _ d _ _ _ _ _ e _ _ _ _ _ }

etc…

with respective durations six, twelve, eighteen, that may be notated

/m {a _ _ b _ _ , c _ d _ e _ }

where m is an arbitrary strictly positive integer denoting the tempo of the polymetric

structure.  The symbolic duration of the whole structure is 
6
m 

.

14  The interpretation of a nested expression is illustrated in [Bel 1990b], pp.123-6.
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To determine m we use the rule in §6.4.3, i.e., informally, the default tempo of a
polymetric structure is the one of its first argument taken separately.  The first argument is

a b

with default tempo one (see rule in §6.4.2), which may be indicated by an explicit tempo
marker:

{/1 a b, c d e }

According to the definition in §7.2, the symbolic duration of the structure must be two.
Therefore m = 3 and the correct interpretation is:

/3 {a _ _ b _ _ , c _ d _ e _ }

The rule in §6.4.3 cannot be used if at least one argument in the expression contains an
explicit tempo marker, e.g. in the expression

{a b {/3 a b c, d e}, f g h i j k}

Therefore, the interpretation algorithm performs the transformations

{a b /6 {a _ b _ c _ , d _ _ e _ _ }, f g h i j k}
{/6 a _ _ _ _ _ b _ _ _ _ _ {a _ b _ c _ , d _ _ e _ _ }, f g h i j k}

{/6 a _ _ _ _ _ b _ _ _ _ _ {a _ b _ c _ , d _ _ e _ _ }, /6 f _ _ g _ _ h _ _ i _ _ j _ _ k _ _ }

yielding the complete polymetric expression

/6 { a _ _ _ _ _ b _ _ _ _ _ {a _ b _ c _ , d _ _ e _ _ }, f _ _ g _ _ h _ _ i _ _ j _ _ k _ _ }

and a possible phase diagram:

a _ _ _ _ _ b _ _ _ _ _ a _ b _ c _ NIL

_ _ _ _ _ _ _ _ _ _ _ _ d _ _ e _ _ NIL

f _ _ g _ _ h _ _ i _ _ j _ _ k _ _ NIL

7.4    Polymetric representation of a sequence

Introducing a string of empty objects as the first argument of a polymetric expression is
a good method for suppressing explicit tempo markers in a sequence, as will be shown in
the example:

a b c _  /3 d _ e
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This sequence may be notated

a b c _  /3 {_ _ _ , d _ e}

which is equivalent to

a b c _ /3 {3, d _ e}

using the convention that any string of n empty objects “_” which does not follow a non-
empty object may be replaced with integer n itself.  The following transformation

a b c _ {3/3, d _ e}
a b c _ {1, d _ e}
a b c _ { _ , d _ e}

is valid even though it leads to an incomplete polymetric expression.

An advantage of this notation is visible when the expression is used in a grammar, as
for example:

S —> /2 A   /3 A
A —> a b c _ { 1 , d _ e}

… [other rules]

An intuitive meaning of this grammar is that the musical item denoted by variable “A”
should be performed twice.  The tempos of the successive occurrences will be two and
three.

The unique production of this grammar is

/2 a b c _ { 1 , d _ e} /3 a b c _ { 1 , d _ e}

which the interpretation algorithm will transform as follows:

/6 a _ _ b _ _ c _ _ _ _ _ { 3 , d _ e}  a  _ b _ c _ _ _ { 2 , d _ e}
/6 a _ _ b _ _ c _ _ _ _ _ { 3 , d _ e}  a  _ b _ c _ _ _ /6 { 2 , d _ e}

/6 a _ _ b _ _ c _ _ _ _ _ { 3 , d _ e}  a  _ b _ c _ _ _ /18 { 6 , d _ _ _ e _ }
/6 a _ _ b _ _ c _ _ _ _ _ { 3 , d _ e}  a  _ b _ c _ _ _ /9 { 3 , d _ e}

/6 a _ _ b _ _ c _ _ _ _ _ d _ e  a  _ b _ c _ _ _ /9 d _ e

It can be seen that for example the symbolic duration of sound-object “d” is 2/6, i.e. 1/3,
in its first occurrence, and 2/9 in its second occurrence.  Thus the tempo has been
multiplied, as expected, by 3/2.  The same remark applies to all sound-objects.

7.5    Undetermined rests

It is possible to insert (one single) undetermined rest, notated “…”, in an argument of a
polymetric expression.  The idea is that this rest may have different durations depending
on other arguments of the expression, therefore it should be calculated by the
interpretation algorithm.  For example,

{/3 a … b, /2 c d}

should be interpreted

{/3 a - b, /2 c d}

since the duration of the structure is determined by the second argument of the expression.
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Let us now consider

{a {b c, d e f}, /2 … g h i j }

in which the duration of the first argument is 3.  Let x be the duration of the undetermined
rest.  We may write

3 = x + duration(g) + duration(h) + duration(i) + duration(j)

knowing that the durations of “g”, “h”, etc. are 1/2 because of the explicit tempo marker
“/2”.  Therefore,

3 = x + 1/2 + 1/2 + 1/2 + 1/2

yields x = 1 = 2/2.  The final interpretation is:

{/1 a {/1 b c, d e f}, /2 - _ g h i j }

In both preceding examples the undetermined duration was easy to compute because of
explicit tempo markers.  In general, let

pmax
qmax

be the symbolic duration of the polymetric structure, with pmax,qmax ∈ N* .  Let a be
the rank of the argument containing an undetermined rest, and

def[a] =
p[a]
q[a]

the sum of the durations of all determined substructures in argument a

Since argument a does not contain an explicit tempo marker, its tempo m is
undetermined.  If we call

pgap[a]
qgap[a]

the duration of the undetermined rest (with pgap[a],qgap[a] ∈ N), then the symbolic
duration of argument ais:

pgap[a]
qgap[a]

+
p[a]

m . q[a]

This duration must be equal to the one of the polymetric structure itself.  The minimum
value of m that yields pgap[a] ≥ 0 is:

m = Integer part of
p[a].qmax
q[a].pmax

If m = 0 the interpretation algorithm returns an error message “not enough time for
inserting a rest”.  In other cases, the value calculated in this way is the one corresponding
to the most “evident” solution.  [Bel 1990b, p.119]

An undetermined rest is used in the example of §9.
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8. Minimal and dilated notations of a polymetric structure

The primary motivation of “rescaling” polymetric expressions is to save memory and yield
the simplest phase diagram of a sound-object structure.  The dilation ratio defined in
§8.2 is used to encode sound-objects and calculate their time-scale ratios as shown in §15.

8.1    Simplifying a sequence

Simplifying a sequence means trying to suppress empty objects in its notation.  For
example,

/6 a _ _  b _ _ c _ d _     is simplified     /2 a b  /3 c d

/5  a _ _ b _ _ c _ _ _ _ d _ _ _     is simplified     /5 a _ _ b _ _  /1 c  /5 d _ _ _

8.2    Dilation ratio

In the second example above it was not possible to suppress all empty objects.
However, let us multiply all tempi by the same scale factor s, for instance s = 24.  The
“dilated” sequence becomes:

 /120 a _ _  b _ _  /24 c  /120 d _ _ _     which is simplified    /40 a b   /24 c   /30  d

It is easy to figure out that the lowest acceptable value of s is twelve, yielding a minimal
notation:

/20 a b   /12 c    /15 d

Let Prod be the lowest common multiple (LCM) of all tempi (20, 12, 15), i.e. sixty.
The number of empty objects appended to each occurrence of “a” or “b” is:

60
20

- 1 = 2

The same operation yields four empty objects after “c” and three after “d”, hence the
dilated notation of this sequence:

a _ _ b _ _ c _ _ _ _ d _ _ _

This notation is used for setting the columns of the phase diagram.  Compared with the
original notation, it multiplies all durations by a ratio of five that we call the dilation
ratio.  It is easy to prove that the dilation ratio is:

Ratio =
Prod

s

8.3    Simplifying a polymetric expression

The preceding operations remain valid for a polymetric expression provided that the
scale factor s is the same in all its arguments.  If s1,…, si,…, simax are the scale factors
of minimal notations of arguments A1,…, Ai,…, Aimax, then any s which is a common
multiple of the si  is valid.

While interpretating a polymetric expression the algorithm attempts to find a minimal
notation, therefore it changes scales to avoid generating empty objects “_”.  A minimal
polymetric expression is one in which all arguments of the expression are minimal.
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The interpretation  of the following expression

{i {a b, c d e}, j k}

has been given as an illustration of the interpretation algorithm.  [Bel 1990b, pp.124-6]
The result is

{/6 i  {/6 a b, /9 c d e}, /4 j k}

in which

Prod = LCM (6,9,4) = 36

and the dilation ratio is:

Ratio =
Prod

s
=

36
6

= 6

Therefore, the dilated expression is

{i _ _ _ _ _ {a _ _ _ _ _b _ _ _ _ _ , c _ _ _ d _ _ _ e _ _ _ }, j _ _ _ _ _ _ _ _ k _ _ _ _ _ _ _ _ }

yielding for instance the phase diagram:

i _ _ _ _ _ a _ _ _ _ _ b _ _ _ _ _ NIL

_ _ _ _ _ _ c _ _ _ d _ _ _ e _ _ _ NIL

j _ _ _ _ _ _ _ _ k _ _ _ _ _ _ _ _ NIL

8.4    Polymetric structures with out-time objects

A sequence of out-time objects is viewed as a prefix of the sequence starting on the
next sound-object (or the ‘NIL’ marker if there is no next object).  For example,

{i {a <<h>> b, c d e}, j <<f>> <<g>> k <<l>>}

i.e. in dilated notation

{i_ _ _ _ _ {a_ _ _ _ _<<h>> b_ _ _ _ _ ,c_ _ _ d_ _ _ e_ _ _}, j_ _ _ _ _ _ _ _ <<f>>
<<g>> k_ _ _ _ _ _ _ _  <<l>>}

yields the following phase diagram:

i _ _ _ _ _ a _ _ _ _ _ b _ _ _ _ _ NIL

_ _ _ _ _ _ _ _ _ _ _ _ <<h>> NIL

_ _ _ _ _ _ c _ _ _ d _ _ _ e _ _ _ NIL

j _ _ _ _ _ _ _ _ k _ _ _ _ _ _ _ _ NIL

_ _ _ _ _ _ _ _ _ <<f>> NIL

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

<<g>>

_

NIL

_ _ _ _ _ _ _ _ <<l>> NIL
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9. Polymetric interpretation of a conventional musical score

This example is taken from the COMPOSE Tutorial  and Cookbook [Ames 1989:2].  See
the musical score in Fig.18.

Fig.18  A musical score

This score may be represented with the pitch-versus-time15  diagram of Fig.19.

B6

G#5

E6

C6
A5

F5 E5
G5

Bb4

F#3
G#3

Pitch

Time

1 2

Fig.19  The pitch/time diagram

In COMPOSE the score is stored as an event table similar to Fig.20.  [Ames 1989:3]

15  In this paragraph we deal with symbolic, not physical, time, although the presumed structure of
time is a metronomic pulse.

—  25  —



Two algorithms for the instantiation of structures of musical objects

Period

0.667
0.667
0.667
0.5
1.25
0
2.25

Duration

0.667
1.333
0.667
0.5
3.5
2.25
0.25

Pitch

R [rest]
F#3
F5, A5
G#3, E5, G5
Bb4
C6, E6
G#5, B6

Fig.20  The event table

In Ame’s terminology, “period” stands for the time elapsed from the on-setting of an
event (note, rest or chord) to the on-setting of the next event.  Both periods and durations
are measured with a time unit which is the duration of a quarter note.

If the piece, or a variation of it, has been generated by a grammar, its deep structure
should be visible at some level of the representation.  Here we propose one of the many
possible structural analyses of Ame’s example:

S

A

B
A1

A2

A3

A32A31A12A11

Fig.21  A possible hierarchy

As suggested by this tree, some rests (e.g., A11) may be viewed as part of the structure
while others are just functioning as delays.
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The tree-structure in Fig.21 could be the parsing tree of a production by the context-
free grammar:

S —> {A , … B}
A —> {2, A1, - - A2} {4, A3}
A1 —> A11 A12 or equivalently A1 —> {A11  A12}
A3 —> A31 A32 or A3 —> {A31  A32}
A11 —> - or A11 —> {-}
A12 —> {2, F#3}
A2 —> {F5, A5}
A31 —> {1/2, G#3, E5, G5}
A32 —> {3/2, Bb4&} {2, &Bb4}
B —> {1/4, G#5&, C6, E6, B6&} {2, &G#5, &B6}
… etc. [Other rules]

Using only the rules listed above yields the unique production

{{2, {- {2, F#3}}, 2 {F5, A5}} {4, {1/2, G#3, E5, G5} {3/2, Bb4&} {2, &Bb4}}, … {1/4,
G#5&, C6, E6, B6&} {2, &G#5, B6}}

displaying the surface structure of this particular production (see §7.1).

In this expression, “G#5&” and “&G#5” denote two segments of the same object
“G#5” (see §7.1).  The expression contains an undetermined rest “…” (see §7.5)
produced by the first rule in the grammar.

Time information is redundant in this polymetric expression, yet it is consistent.  The
interpretation algorithm yields the complete polymetric expression which is displayed

{{{-_ _ _ _ _ _ _ {F#3_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ }} , -_ _ _ _ _ _ _  -_ _ _ _ _ _ _ {F5_ _
_ _ _ _ _ , A5_ _ _ _ _ _ _ }}{{G#3_ _ _ _ _ , E5_ _ _ _ _ , G5_ _ _ _ _ }{Bb4_ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ &}{&Bb4_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ }} , -_ _  -_ _  -_ _
-_ _  -_ _  -_ _  -_ _  -_ _  -_ _  -_ _  -_ _  -_ _  -_ _  -_ _  -_ _ {G#5_ _ & , C6_ _ , E6_ _ ,
B6_ _ &}{&G#5_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , &B6_ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ }}

while it is stored in minimal notation by BP2:

{{{/18 -, {/9 F#3}}, /18 - - {F5, A5}}{{/24 G#3, E5, G5} {/8 Bb4&} {/6 &Bb4}},
5/16 {/48 G#5&, C6, E6, B6&} {/6 &G#5, B6}}

Let us for instance examine why it is acceptable to write a rule like

A12 —> {2, F#3}

knowing that, although “F#3” is a half-note on the score, its actual duration is 4/3 units
(i.e. 1.333 as shown on the second line of the event table, Fig.21).  The additional
information allowing a correct interpretation is contained in rules:

A —> {2, A1, - - A2} {4, A3}
A1 —> A11  A12

The first rule indicates that the piece is made of two sections, the first one lasting two
units of (symbolic) time and the second one 4 units.  In the first section, A1 has a two unit
duration while A2 has a 2/3 unit duration like each of the two silences “-”.  Then we
derive:

A1  => A11  A12 =>  A11 {2, F#3}  =>  - {2, F#3}
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In the last expression, “-” and “F#3” share 1/3 and 2/3 of the duration of the sequence
respectively.  Therefore the actual duration of “F#3” is:

2
3

x 2 =
4
3

Representing the piece as a tree-structure (an outcome of some musicological analysis)
makes it easy to relate it to a set of acceptable “variations”, i.e. a language generated by a
grammar.  The initial grammar can be modified to generate this set rather than a unique
piece.  Let us for example decide that in another variation “F#3” should be “slightly
longer”.  We may write:

A12 —> {3, F#3}

so that A1 is now derived as “- {3, F#3}” in which “-” and “F#3” share 1/4 and 3/4 of the
duration of the structure respectively.  Now the duration of “F#3” is:

3
4

x 2 =
3
2

The polymetric interpretation algorithm automatically readjusted the duration of the rest
preceding “F#3”.  To enter the same modification in the event table Fig.21 it would be
necessary to recalculate both the duration of the rest (now 0.5) and the period of “F#3”
(now 0.833).  Understandably, the interpretation algorithm takes care of such
modifications.

A system manipulating a grammar and interpreting its productions as polymetric
expressions is therefore aware of the “structure of the piece”, by which we mean
constraints on synchronization yielding information on durations and start/clip times.  Due
to the structure of the piece indicated in the grammar, the statement “F#3 should be
longer” means that its start time must be earlier while its clip time remains synchronized
with the clip time of chord {F5,A5}.  Therefore, a limitation of the event-list
representation is that it makes synchronization explicit only on start-times.

10. The time-setting problem — an informal introduction

In the rest of this paper we deal with the problem of instanciating the sound-objects of a
complete polymetric structure.  Informally, instanciating a sound-object means
dispatching to the sound processor all the messages that are listed in its prototype (see
appendix).

A naive interpretation of sequences of sound-objects would be to arrange all
corresponding time intervals in a strictly sequential way.  Duthen and Stroppa [1990] have
suggested a more abstract approach, starting from the assumption that any sound-object
may possess one or several time points playing a particular role, e.g. a climax.  These
points are called time pivots.  Further they suggest to construct sound structures using a
set of synchronization rules.  When two objects are synchronized, two pivots — the ones
selected in that particular context — are superimposed while other pivots may be used to
infer the new pivots of the compound object.  Fig.22 represents two sound-objects with
respective pivots (A, B, C, D) and (X, Y, Z) being used to build a compound object,
assuming that there is a rule saying that C and Y should coincide.  Other rules assign
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pivots (I, J, K, L) to the compound object.  Note that some of the new pivots, like L, may
not coincide exactly with lower-level pivots.

A B C D A B C D

X Y ZX Y Z

I J K L

Physical time

Fig.22  Synchronizing two sound-objects à la Stroppa

This approach is attractive but it is hard to implement if the formalism of synchronization
rules remains too general.  Moreover, in our approach, synchronization is primarily a
matter of symbolic time: the partial ordering of objects in a polymetric structure.
Therefore we retained a simplified version of Stroppa’s idea, assigning each object one
single pivot.

Let us for instance consider a polymetric structure {S1,S2,S3} derived as

{a _ b c d _ e , a _ f _ g h _ , j i _ a _ i _ }

yielding the phase diagram:

a _ b c d _ e NIL

a _ f _ g h _ NIL

j i _ a _ i _ NIL

Suppose that all sound-object prototypes labelled “a”, “b”, “c”, …, “i” are defined —
they may have been recorded from a musical instrument as suggested in §2.  As will be
shown below (§12), the definition of each object contains the relative location of its pivot
and metrical properties allowing the calculation of its “time-scale ratio” — informally, a
factor adjusting the duration of the sound-object to the current tempo of performance.

The following is a graphic representation of a possible instance of this polymetric
structure:
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Physical time

S1

S2

S3

a

b c

d

e

f

g

ha

j ai i

Fig.23  A structure of sound-objects

The structure of time is an irregular pulsation represented with vertical lines (time
streaks).  The time-span interval of each sound-object is shown as a rectangle with
arbitrary vertical width and position.  These positions have been chosen to separate
objects on the graphic: it is clear for example that “c”, “f”, “g” and “a” have overlapping
time-span intervals between the third and fourth streaks.  Lengths of rectangles represent
the physical durations of sound-objects.  Out-time objects are not shown in these
examples as they would appear as vertical segments.

Vertical arrows indicate time pivots.  As shown with object “e”, the pivot is not
necessarily a time point within the time-span interval of the sound-object.

This graphic represents the default positioning of objects, with pivots located
exactly on time streaks.  Although it is reasonable that instances of “c”, “f” and “a” are
overlapping between the third and fourth streaks since they belong to distinct sequences
which are performed simultaneously, it may not be acceptable that “f” overlaps “g” in a
single sequence S2; the same with “d” and “e” in sequence S1.  For similar reasons, it
may not be acceptable that the time-span intervals of “j” and “i” are disjoint in sequence S3
while no silence is shown in the symbolic representation.  The philosophy of our
approach is to bind these topological constraints to properties of objects (see §13) instead
of imbedding all the information in a symbolic representation.  Therefore, the symbolic
representation contains no more information than the ordering of pivots.

The topological situations of time-span intervals depend on the structure of time.  For
example, although the two instances of “i” in S3 have identical symbolic durations, their
physical durations (i.e. their time-scale ratios) are different because the “beat offsets” (i.e.
the duration from one streak to the next) are different.
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How could one deal with a constraint such as <<the end of sound-object “f” may not
overlap another sound-object in the same sequence>> ?  If object “g” is relocatable then it
may be delayed (shifted to the right) until the constraint is satisfied.  We call this a local
drift of the object (see §12.1).  Yet the end of “g” will also overlap the beginning of “h”.
Assume that this too is not acceptable and “h” is not relocatable.  One should therefore
look for another solution, for example truncate the beginning of “h” (see §14).  If this and
other solutions are not acceptable then one may try to shift “f” to the left or to truncate its
end.  In the first case it might be necessary to shift or truncate “a” as well.

So far we mentioned a kind of constraint propagation within one single sequence.  In
the time-setting algorithm the three sequences are considered in order S1, S2, S3.
Suppose that the default positioning of objects in S1 satisfies all constraints and no
solution has been found to avoid the overlapping of “f” and “g” in S2.  Another option is
to envisage a global drift to the right of all objects following “f” in S2.  The global drift
is notated ∆ on Fig.24.  All time streaks following the third one are delayed (see dotted
vertical lines).

Physical time

S1

S2

S3

a

b c

d

e

f

g

ha

j ai i

∆

Fig.24   A structure using global drift

This solution is labelled “Break tempo” because its effect is similar to the the organum in
conventional music notation.  Although the global drift increases the delay between the
third and fourth streaks, the physical durations of sound objects are not changed because
their time-scale ratios have been calculated beforehand.
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Now the positioning of objects in S2 is acceptable, but it might have become
inacceptable in S1: there may be a property of “b” or “c” saying that their time-span
intervals cannot be disjoint, so that “c” could be shifted to the left, etc.  Evidently,
whenever a global drift is decided the algorithm must start again from the first sequence.

The process of locating — i.e. “instantiating” — sound-objects, as illustrated in this
example, is the task of the time-setting algorithm which will be partly described in
§16.

11. Encoding a polymetric structure of sound-objects

The essential data structures used by the time-setting algorithm are introduced here.  In
§3.1 we indicated that the structure of time Φ is a strictly increasing function mapping the
set of symbolic dates {ti} to physical time.  Therefore the structure of time is encoded as

an increasing list of physical dates {T(i): i = 1, …, imax} such that T(i) = Φ(ti).

In striated time all T(i) are given as input data.  In smooth time they are calculated only
once the sound-objects have been located in the first sequence.

11.1      Encoding structures of sound-objects

A polymetric structure of sound-objects like

/3 ab { cde, ab } cd

is represented with the following phase diagram (dilation ratio: Ratio = 6, see §8.2):

a _ b _ a _ _ b _ _ c _ d _ NIL

_ _ _ _ c _ d _ e _ NIL

Symbols “a”, “b”, …, designate sound-objects Ek, in which k is an arbitrary index
(k ≥ -1).  Symbol “_” designates the empty sound-object E0.  “NIL” is mapped to a
virtual object E-1 delimitating the end of each sequence.

The strictly positive values of k in this structure may be for instance:

1 2 3 4 5 6

a _ b _ a _ _ b _ _ c _ d _

c _ d _ e _

7 8 9
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All k’s are contained in a bidimensional array called the phase table Seq(nseq,i):

Phase table Seq(nseq,i)

i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nseq = 1 1 0 2 0 3 0 0 4 0 0 5 0 6 0 -1

nseq = 2 0 0 0 0 7 0 8 0 9 0 -1 0 0 0 0

Ek is the k-th sound-object, with k = Seq(nseq,i).  The column index i is the rank of
object Ek in its sequence.  If we call inext the rank of the next non-empty sound-object or
“NIL” marker in the sequence, the symbolic duration of sound-object Ek is:

d(k) =
inext - i
Ratio

in which Ratio is the dilation ratio (see §8.2).

T(i) is the date of the reference streak of objects with rank i in the structure.  If  T(i)
and the complete polymetric expression are known, it is possible to compute
performance parameters, thereby determining the dates of all elementary messages
contained in sound-object prototypes (see appendix).  These parameters are listed in an
array, the instance table, for example:

Instance table

k 1 2 3 4 5 6 7 8 9

j = Obj(k) 1 2 1 2 3 4 3 4 5

d(k) 1/3 1/3 1/2 1/2 1/3 1/3 1/3 1/3 1/3

t1(k),
t2(k), α(k),
etc…

… … …

In this table, d(k) is the symbolic duration of Ek.  Parameters t1(k) and t2(k) are the

physical start/clip dates of the k-th sound-object, and α(k) its time-scale ratio (see
§12.2).  Obj(k) is a pointer allowing object identification in the symbol table:

Symbol table

j = 1 2 3 4 5

symbol a b c d e

Each Ek (with k ≥ 0) may be seen as an instance of an object prototype Epj with
j = Obj(k).  If k = 0 the object is empty (labelled “_”), therefore Ep0 is the empty-object
prototype.  Object prototypes are formally defined in §1 of the appendix.

11.2      Encoding out-time objects

Let <<f>> and <<g>> designate out-time objects.  The polymetric expression
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/3 ab { c <<f>> de, a <<g>> <<f>> b } cd

is interpreted

/3 ab { /3 c <<f>> de, /2 a <<g>> <<f>> b } /3 cd

which yields the dilated expression:

/6 a _ b _ { c_  <<f>> d _ e _  , a _ _ <<g>> <<f>> b _ _ } c _ d _

with Ratio = 1.  The corresponding tables are:

Symbol table

j = 1 2 3 4 5 6 7

symbol a b c d e f g

Instance table

k = 1 2 3 4 5 6 7 8 9 10 11 12

j = Obj(k) 1 2 1 2 3 4 3 4 5 6 7 6

d(k) 1/3 1/3 1/2 1/2 1/3 1/3 1/3 1/3 1/3 0 0 0

t1(k),
t2(k),
α(k), etc…

… … …

Phase table Seq(nseq,i)

i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nseq = 1 1 0 2 0 3 0 0 4 0 0 5 0 6 0 -1

nseq = 2 0 0 0 0 7 0 8 0 9 0 -1 0 0 0 0

nseq = 3 0 0 0 0 0 0 10 11 -1 0 0 0 0 0 0

nseq = 4 0 0 0 0 0 0 0 12 -1 0 0 0 0 0 0

12. Metrical properties of non-empty sound-objects

In this and the next three paragraphs, sonic properties and transformations of
sound-objects are introduced.  These are used by the time-setting algorithm.

A sonic property P of a sound-object Ek is a predicate P(j) defined by the
corresponding sound-object prototype Epj, with j = Obj(k).  In this way, all properties of
a sound-object are “inherited” from the (unique) sound-object prototype bearing the same
label.
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12.1      Time pivot

Once a sound-object Ek (given k = Seq(nseq,i)) has been instantiated by the time-
setting algorithm, its time pivot is located at physical date:

T(i) + ∆(i) + δ(k)

in which δ(k) is the local drift of the object and ∆(i) the global drift of its reference

streak.  If δ(k) ≠ 0 the object has been relocated.  Relocation is only allowed for objects
with a property notated “Reloc” (see §12.3.1).

An object which is assigned a pivot is called a striated sound-object.  An object
which has no definite pivot is a smooth sound-object.  In reality, a smooth object is
assigned a pivot at the beginning of its time-span interval and declared with property
Reloc, so that the pivot location is only a default value.

Physical dates tmin(j) and tmax(j) are the respective start/clip dates of the object
prototype Epj, taking its pivot as the time origin, while Dur(j) = tmax(j)-tmin(j) is its
physical duration (see appendix, §1).

The following is a (non-limitative) list of properties relevant to the positioning of
striated objects.

12.1.1     Pivot in the beginning (PivBeg), in the end (PivEnd)

The pivot coincides with the first (resp. last) message of the sound-object.  Therefore,

Case PivBeg: tmin(j) = 0  ,   tmax(j) = Dur(j)
Case PivEnd: tmin(j) = -Dur(j) ,   tmax(j) = 0

12.1.2     Pivot centered (PivCent)

The pivot is exactly in the middle of the time-span interval of Epj, hence:

tmin(j) = - tmax(j) = -
Dur(j)

2

12.1.3     General case (PivSpec)16

The pivot is at some physical date t0 in reference to the first message.  Therefore:

tmin(j) = - t0 ,  tmax(j) = Dur(j) - t0

Fig.25 shows a sequence of three objects labelled “a”, “e”, “d” with respective
properties PivBeg, PivCent, PivEnd, and physical durations 1.3 s., 0.8 s. and 0.4 s.,
arranged on a metronomic structure of time with period 0.5 s.

16  Other properties relative to pivots may be found in [Bel 1990c].
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

dea

Fig.25  Three typical objects and their pivots

12.2      Scaling objects in time

The physical duration of a non-empty sound-object is generally not the same as the
one of its prototype.  The actual physical duration of Ek is

α(k) . Dur(j)

where α(k) is the time-scale ratio and Dur(j) the duration of sound-object prototype

Epj, given j = Obj(k).  Methods for calculating α(k) are proposed in §15.  The way α(k)
is taken into account for calculating the dates of elementary messages is explained in §3 of
the appendix.

Certain ranges of values of α(k) may not be acceptable.  For instance, some objects
should never be streched while others should not be contracted.  The following properties
define acceptable ranges of α(k).

Elasticity (FixScale, OkRescale, OkExpand, OkCompress)

Case OkRescale: any value of α(k) is acceptable.

Case FixScale: α(k) = 1.

Case OkExpand: α(k) ≥ 1 is acceptable.

Case OkCompress: α(k) ≤ 1 is acceptable.

If the value calculated for α(k) (see §15) is not in an acceptable range, then the value

α(k) = 1 is imposed.

12.3      Relocating objects or streaks

These properties are relevant to the local drift δ(k) of objects and the global drift
∆(i) of streaks.

12.3.1     Relocatability (Reloc)

An object is relocatable if its local drift δ(k) is allowed to take positive or negative
values.  A classical example of relocatable objects on a metronomic structure of time is the
performance of rubato.

12.3.2     Break of tempo (BrkTempo)

There is a break of tempo on sound-object Ek (given k = Seq(nseq,i) with k > 0) if
all streaks following the reference streak of the object are delayed, i.e. the global drift
∆(ii) > ∆(i) for all  ii > i.  An object allowed to break tempo has property BrkTempo.
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13. Topological properties of non-empty sound-objects

These properties are used to check whether or not topological configurations of time-span
intervals are acceptable in a sequence (see informal example in §10).

13.1      Covering the beginning (OverBeg), the end (OverEnd)

The OverBeg property means that the beginning of the time-span interval of an object
may be covered by other objects in the same sequence.  OverEnd is defined similarly.

13.2      Continuity in the beginning (ContBeg), in the end (ContEnd)

A sound-object has property ContBeg if its time-span interval must be connected with
(or overlap) the time-span interval of one of the preceding objects in the sequence.
ContEnd is defined similarly: the time-span interval must be connected with (or overlap)
the one of any object following it in the sequence.

14. Reshaping sound-objects

Many transformations of sound-objects could be imagined, e.g. a non-linear “distorsion”
of the local time of an object (see LocalTimek(t) in §3 of appendix), or even
adding/suppressing messages.  The only transformation we consider here is truncating the
beginning or the end of a sound-object.  Properties allowing this are labelled “TruncBeg”
and “TruncEnd” respectively.

A variable notated “TrBeg(k)” indicates the amount of physical time by which the
beginning of sound-object Ek has been truncated.  Similarly, TrEnd(k) is relative to the
truncating of its end.  Evidently,

0 ≤ TrBeg(k),   0 ≤ TrEnd(k),  and   TrBeg(k) + TrEnd(k) < physical duration of Ek .

Truncating a sound-object does not mean that all elementary messages contained in the
truncated part have been deleted.  Some of them are relocated at the new start/clip dates of
the object, as shown in §3 of the appendix.

15. Calculating time-scale ratios α(k)

The time-scale ratio α(k) of a sound-object Ek depends on its symbolic duration d(k), its
nature (smooth or striated) and the structure of time (smooth or striated).  This paragraph
introduces rules for calculating α(k).

A sound-object prototype Epj may be defined in reference to a metronome beat, the
period of which is notated Tref(j).  If no metronomic reference is used then conventionally
Tref(j) = 0.
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15.1      Calculating α(k) in smooth time

In smooth time it possible to imagine that there is a clock with period Tclock measuring
physical durations.  This case is called measured smooth time.  If no such clock is
available we always take:

α(k) = d(k)

where d(k) is the symbolic duration of Ek (see §11.1) .  The duration of sound-object
prototype Epj is Dur(j).  Empty objects “_” are mapped to prototype Ep0 such that Dur(0)
= 0.

In measured smooth time, α(k) is calculated as follows:

Object type

striated

striated

smooth

smooth

Tref(j)

> 0

> 0

= 0

= 0

Dur(j)

= 0

> 0

> 0

= 0

α(k)

d(k) . Tclock / Tref(j)

d(k) . Tclock / Tref(j)

d(k) . Tclock / Dur(j)

d(k)

Using this table, α(k) cannot be calculated in silences, i.e. non-empty sound-objects
conventionally notated “-” for which both Tref(j) and Dur(j) are undetermined.  A physical
duration is therefore assigned to a silence in reference to the “local period”.  Let Ekprec be
the non-empty sound-object immediately preceding Ek in the sequence.  The local
period is:

P =
t2(kprec) - t1(kprec)

d(kprec)

in which t1(kprec) and t2(kprec) are the respective start/clip physical dates of Ekprec, and
d(kprec) its symbolic duration.  The physical duration of silence Ek will therefore be:

P. d(k)

If a sequence of sound-objects starts with a silence in measured smooth time, the first
silence is ignored because kprec would not be defined.

15.2      Calculating α(k) in striated time

15.2.1     Silences

For all silences, α(k) = 0 in striated time.
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15.2.2     Striated sound-objects

The value proposed for α(k) is:

If d(k) > 0,

α(k) =
T(inext) - T(i)

Tref(j)
, with j = Obj(k) and k = Seq(ligne,i)

where inext is the rank of the next non-empty sound-object or the “NIL” marker in the
sequence,

or, if d(k) = 0    (case of out-time objects),

α(k) = 0

15.2.3     Smooth sound-objects

To calculate α(k), Tref(j) is replaced with Dur(j).  This yields:

If d(k) > 0,

α(k) =
T(inext) - T(i)

Dur(j)
, with j = Obj(k) and k = Seq(ligne,i)

or, if d(k) = 0    (case of out-time objects),

α(k) = 0

The physical duration (see §12.2) of a smooth object Ek is therefore

α(k) . Dur(j) = T(inext) - T(i)

for a sound-object, and zero for an out-time object.

16. The time-setting algorithm

Instantiating (i.e. setting in time) a sound-object structure means determining the
performance parameters α(k), δ(k), t1(k), t2(k), TrBeg(k), TrEnd(k) and ∆(i) for all
sound-objects Ek such that k = Seq(nseq,i) with i = 1,…,imax and nseq = 1,…,nmax.
Variable i is the index of the reference streak of sound-object Ek.  This instantiation is
accomplished by the time-setting algorithm which was informally introduced in §10.

Results on the correctness and complexity of this algorithm have already been
published in [Bel 1990b, chapter IX].  In this paragraph, pseudo-code descriptions of the
main procedures are given with enough details for the design of an implementation in
procedural programming languages.

The space complexity can easily be discussed as the dimensions of all arrays necessary
to the computation ar indicated.  In actual implementations arrays should be replaced with
data-structures best fit to the programming environment.
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16.1      Main loop

Procedure Time_set

Global variables:
nmax = maximum number of sequences
imax = maximum length of a sequence
kmax = maximum number of objects in the structure
Seq[nmax,imax],∆[imax],T[imax], Obj[kmax],t1[kmax],t2[kmax],

t"1[kmax],t"2[kmax],TrBeg[kmax], TrEnd[kmax],α[kmax],δ[kmax]

Input: Seq[],Obj[],T[]

Output: T[],t1[],t2[],TrBeg[],TrEnd[],α[],δ[]

Begin
For (i = 1; i ≤ imax)

∆[i] <— 0;
If(nature_of_time = smooth)
then

T[i] <— 0; /* T[i] is not known in smooth time. */
Endif
i <— i + 1;

Endfor
Calculate_alpha;

Again:
For (nseq = 1; nseq ≤ nmax)

Fix(nseq); /* Calculate t1[], t2[] */
If(Locate(nseq,nature_of_time) = failed)
then

Display "Can’t set time";
/* Here we can restart the algorithm releasing constraints

ContBeg, ContEnd, OverBeg or OverEnd. */
Stop;

Endif
If((nature_of_time = smooth) and (nseq = 1))
then

Interpolate_streaks;
Endif
BTflag <— false;
For (i = 1; i ≤ imax)

Τ[i] <— T[i] + ∆[i];
If (∆[i] ≠ 0)
then

BTflag <— true;
Endif
∆[i] <— 0;
i <— i + 1;

Endfor
If (BTflag and (nseq > 1)) go to Again;
nseq <— nseq + 1;

Endfor
End

Procedure Fix() is invoked to calculate the default start/clip dates t1(k) and t2(k) of
each object as follows:
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Procedure Fix(nseq)

Begin
For (i = 1, i ≤ imax)

k <— Seq[nseq,i];
j <— Obj[k];
If(j = 1) /* Obj[k] is a silence */
then

…; /* Compute with local period, etc. (see §15.1) */
else

t1[k] <— α[k].tmin[j] + T[i];
t2[k] <— α[k].tmax[j] + T[i];

Endif
i <— i + 1;

Endfor
End

The Locate() function called in the main loop relocates the sound-objects found on
each line of the phase diagram.  When it is successful, the following operations are
necessary before the next sequence is processed:

(1)  If time is smooth and nseq = 1, values of ∆(i) must be calculated for all empty
objects with rank i.  This is done by interpolation, as illustrated in §18.3.1.

(2)  T(i) must be updated:

T[i]  <—  T[i] + ∆[i]
∆[i]  <—  0

(3) If nseq ≠ 1 and ∆(i) ≠ 0 for some i, it means that a correction of type {Break
tempo} has been done.  As indicated in the example of §10, the algorithm must
be restarted with the new values of T(i) while current values of α(k) remain
unchanged.  Therefore the main loop is interrupted by a  go to Again.

16.2      Locate() function — flowchart

Each sequence is scanned “from left to right” (i.e. increasing dates).  The following
flowchart shows the detailed operation.
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Fig.26  The Locate() flowchart

The main test in this function is “Situation acceptable?” (see §16.2).  If the situation of
Ek does not fulfill topological constraints, then a first solution set sol_set1 is
calculated.  This set contains possible corrections of Ek aimed at changing its start date
t1(k).  Its clip date t2(k) may also incidently be changed in this process.  Each time the
program jumps at New_choice1, a solution is tried and deleted from the set.  This
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correction is called correction 1.    If sol_set1 is empty, the situation of one of the
preceding sound-objects must be revised (see Decrementation).  Another solution set
sol_set2 is calculated, yielding correction 2, i.e. mainly a modification of the clip
date t2(k).

To facilitate backtracking, sol_set1 is stored as an array indexed on i.

16.3      The Locate() function

While positioning objects temporary values are used for the start/clip dates t1(k) and
t2(k).  These are notated t'1(i), t"1(i), t'2(i) and t"2(i), given k = Seq(line,i).17

We use index 1 for variables dealing with corrections “to the left” of Ek (constraints on
t1(k)), whereas index 2 indicates corrections “to the right” (constraints on t2(k)).  Thus,
δ1(i) and δ2(i) denote temporary local drifts caused by corrections 1 and 2, while the final

value of the local drift is δ(k) = δ1(i) + δ2(i).

d∆0(i) is the temporary value of the global drift ∆(i) of the i-th streak when taking into

account the temporary global drifts of the preceding streaks.  d∆1(i) and d∆2(i) are the

temporary changes of the global drift ∆(i) of the i-th streak caused by corrections 1 and 2

respectively.  The effect of these changes on ∆(i) is shown in §16.4.

t'1(i) is the new value of t1(k) when correction 1 and global drifts have been taken into
account.  In general,

t'1[i] <— t1[k] + ∆[i] + d∆0[i] + shift1[i]

in which shift1(i) represents the amount of correction 1.  Similarly, t'2(i) is the new value
of t2(k).

t"1(i) is the new value of t1(k) once correction 2 has also been taken into account.  In
general,

t"1[i] <— t'1[i] + shift2[i]

in which shift2(i) is the amount of correction 2.  Similarly, t"2(i) is the new value of
t2(k).

For any object Ek we notate Ts(i) the maximum value of t"2(ii) for ii < i, in which
t"2(ii) is the temporary value of t2(kk) for any object Ekk in the same sequence as Ek:

17  Indexing these arrays on i instead of k saves memory space.

—  43  —



Two algorithms for the instantiation of structures of musical objects

.

shift1(i)

k = Seq(nseq,i)

kk = Seq(nseq,ii)

t"2(ii) = Ts(i)

t'1(i)

Fig.27  Finding Ts(i)

In order to locate Ek one must take into account topological properties ContEnd(jj),
OverEnd(jj) and BrkTempo(jj) of Ekk, with jj = Obj(kk).  Therefore the following values
will to be stored:

ContEndPrev[i] <— ContEnd[jj]

OverEndPrev[i] <— OverEnd[jj]

BrkTempoPrev[i] <— BrkTempo[jj]

16.4      Incrementation

The Locate() procedure normally scans the sequence from left to right, i.e. the
phase table Seq(nseq,i) with increasing values of i.  When incrementing i the algorithm
first looks for the next non-empty object:

Incrementation:
/* Apply global drift to the next streak */
d∆0[i+1] <— d∆0[i] + d∆1[i] + d∆2[i];

/* Calculate the rank of the next non-empty sound-object */
For (inext = i+1; i ≤ imax)

d∆0[inext] <— d∆0[i+1];
d∆1[inext] <— d∆2[inext] <— 0;
If (Seq[nseq,inext] ≠ 0) break For;
inext <— inext + 1;

Endfor
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Then the current value of Ts(i) is compared with the (temporary) clip date t"2(i) of the
object with rank i.  If the latter is bigger then Ts(i), ContEndPrev(i), etc., must be
updated:

/* Update Ts */
If (Ts[i] < t"2[i])
then

Ts[inext] <— t"2[i];
ContEndPrev[inext] <— ContEnd[j];
OverEndPrev[inext] <— OverEnd[j];
BrkTempoPrev[inext] <— BrkTempo[j];

else
Ts[inext] <— Ts[i];
ContEndPrev[inext] <— ContEndPrev[i];
OverEndPrev[inext] <— OverEndPrev[i];
BrkTempoPrev[inext] <— BrkTempoPrev[i];

Endif

Now i can be incremented to the next value.  If the end of the sequence is reached then
the solution may be assessed by the user.  If it is accepted then the temporary values of
start/clip dates, local drift, etc., are taken into consideration.  If the solution is not
accepted then other solutions will be searched:

iprev <— i;
i <— inext;
k <— Seq[nseq,i];
If (k = -1)   /* End of sequence “NIL” */
then

If (Solution_accepted)
then

For (i = 1; i ≤ imax)
∆[i] <— ∆[i] + d∆0[i]+ d∆1[i]+ d∆2[i];
k <— Seq[nseq,i];
If (k > 0)
then

t1[k] <— t"1[i];
t2[k] <— t"2[i];
δ[k] <— δ1[i] + δ2[i];

Endif
i <— i + 1;

Endfor
Return(success);

else
… /* Find more solutions (not described here) */

Endif
Endif

The following is the initialisation of all temporary performance parameters of the new
object considered, following which a correction value shift1 is calculated.  Informally,
shift1 is the amount of overlapping between the current object and the rightmost preceding
object in the sequence (see Fig.27).

j <— Obj[k];
TrBeg[k] <— TrEnd[k] <— 0;
t"1[i] <— t'1[i] <— t1[k] + ∆[i] + d∆0[i];
t"2[i] <— t'2[i] <— t2[k] + ∆[i] + d∆0[i];
shift1[i] <— Ts[i] - t"1[i];

Now it is necessary to check that the current location of the sound-object is acceptable.
This assessment is the output of function Situation() which will be examined now.
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If the function returns ‘true’ then incrementation is called again.18   The following
instructions are easy to trace in the flowchart given in §16.2.

If (Situation(i,nseq,shift1,nature_of_time,t"1[i],t"2[i]) = acceptable)
then

shift1 <— 0;
Endif
sol_set1[i] <—

Possible_choices(i,nseq,t'1[i],t'2[i],shift1,Ts[i],nature_of_time,1)
;

If(shift1 = 0)
then

go to Incrementation
Endif
If (sol_set1[i] = empty)
then

Tsm <— Ts[i];
shift2 <— - shift1;
go to Decrementation;

Endif
go to New_choice1;

16.5      Situations

Function Situation() is described now.

Function Situation(i,nseq,shift,nature_of_time,t1,t2)

Begin
If (i = 1) Return(acceptable);
k <— Seq[nseq,i];
j <— Obj[k];
If ((nature_of_time = smooth) and (nseq = 1)) Return(inacceptable);
If ((shift < 0) and (not ContBeg[j]) and (not ContEndPrev[i]))
then

Return(acceptable); /* 1 */
Endif
If (shift = 0)  Return(acceptable); /* 2 */
If (shift > 0)
then

If(j = 1) /* Obj[k] is a silence */
then

Return(acceptable);
Endif
If ((Ts ≤ t2) and OverBeg[j] and OverEndPrev[i])
then

Return(acceptable);
Endif /* 3 */
If ((Ts > t2) and OverBeg[j] and OverEnd[j] and OverEndPrev[i] and

not (ContEnd[j]))
then

Return(acceptable); /* 4 */
Endif

Endif
Return(inacceptable);

End

18  Note that this and other procedures are not recursive.  We used ‘go to’ statements deliberately in the
pseudo-code to connect modules of instructions at the same level.
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The implication of this function is that, in striated time or if nseq > 1, four situations
are possible depending on the position of Ek relative to Ekk:

.

OverBeg(j) and
OverEnd(j) and
(not ContEnd(j))

and
OverEndPrev(i)

(not ContBeg(j))
and

(not ContEndPrev(i))

ConfigurationNr

t'1(i)Ts(i)

Ts(i)

Ts(i)

Ts(i) = t'1(i)

t'1(i)

t'1(i)

shift1 < 0

shift1 = 0

shift1 > 0

shift1 > 0

1

2

3

4

Condition

none

OverBeg(j)
and

OverEndPrev(i)

t'2(i)

t'2(i)

Ts(i) ≤ t'2(i)

Fig.28  The four situations

We call canonic correction 1 the smallest modification of t'1(i) yielding an
acceptable solution.  It is easy to prove that the canonic correction 1 is:

t'1[i]  <—  t'1[i] + shift1[i]

There are three possible transformations yielding this canonic correction:

— Local drift: both the start and clip dates are incremented.

— Global drift (only if shift > 0): same as above, but the reference streak is also
relocated.

— Truncating the beginning (only if shift > 0): only the start date is changed.

16.6      Solution set 1

The same function

Possible_choices(i,nseq,shift,t1,t2,Ts,nature_of_time,side)

may yield a solution set for correction 1 or for correction 2 (see infra) depending on the
setting of the flag side. When it is set to 1 the function yields sol_set1(i), i.e. an
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arbitrarily ordered list of possible changes relative to object Ek that may be used for the
canonic correction 1.

Function 
Possible_choices(i,nseq,shift,t1,t2,Ts,nature_of_time,side)

Begin
sol <— empty;
k <— Seq[nseq,i];
j <— Obj[k];
If ((side = 1) and (nature_of_time = smooth) and (nseq = 1) and (shift

> 0))
then

Return({Break tempo});
Endif
If (Reloc[j] or j = 1) /* j = 1 for a silence. */
then

sol <— sol ∪ {Shift object};
Endif
If ((side = 1) and (i > 1) and (shift > 0) and (BrkTempoPrev[i] or

(nature_of_time = smooth)))
then

sol <— sol ∪ {Break tempo};
Endif
If ((side = 1) and (shift > 0) and TruncBeg[j] and (t2 > Ts))
then

sol <— sol ∪ {Truncate beginning};
Endif
If ((side = 2) and (shift < 0) and TruncEnd[j] and (t1 < (Ts + shift)))
then

sol <— sol ∪ {Truncate end};
Endif
Return(sol);

End

16.7      Correction 1

This correction is performed on the basis of a solution selected in the solution set
sol_set1(i).  The choice may either be decided by the user or by an arbitrary
enumeration of sol_set1(i).
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New_choice1:
If (sol_set1[i] = empty)
then

shift2 <— - shift1;
go to Decrementation;

Endif
sol1 <— Next_choice(sol_set1[i]);
sol_set1[i] <— sol_set1[i] \ {sol1};
t'1[i] <— t1[k] + ∆[i] + d∆0[i] + shift1;
t'2[i] <— t2[k] + ∆[i] + d∆0[i];
d∆1[i] <— 0;
δ1[i] <— 0;
TrEnd[k] <— 0;
If (sol_set1 = Truncate beginning)
then

TrBeg[k] <— shift1;
else

TrBeg[k] <— 0;
t'2[i] <— t'2[i] + shift1;
If (sol1 = Shift object) δ1[i] <— shift1;
If (sol1 = Break tempo) d∆1[i] <— shift1;

Endif
t"1[i] <— t'1[i];
t"2[i] <— t'2[i];
go to Incrementation;

Procedure Next_choice() is not described here.

It can be proved that if sol_set1(i) is not empty for any value of i, then
Locate() returns a straightforward solution, so that in this case the time-complexity of
this procedure is O(n), given n the number of objects in the sequence.

16.8      Solution set 2

If the solution set sol_set1(i) is empty, it is necessary to assert:

shift2 <— - shift1

which means informally: “since t'1(i) cannot be increased by shift1, then try to decrease
Ts(i) by -shift1”.  Here again the correction will be canonic since |shift2| is the minimum
value yielding situation 2 (see Fig.28) for the object with rank i.

Decrementation:
If (i = 1) Return(failed);
Tsm <— Ts[i];
i <— iprev;
For (iprev = i - 1; iprev ≥ 0)

If (Seq[nseq,iprev] > 0) break For;
iprev <— iprev - 1;

Endfor
k <— Seq[nseq,i]; /* k is strictly positive */
j = Obj[k];
If (Ts[i] = Tsm) go to Decrementation;
sol_set2 <—

Possible_choices(i,nseq,shift2,t"1[i],t"2[i],Tsm,nature_of_time,2);
go to New_choice2;

End

—  49  —



Two algorithms for the instantiation of structures of musical objects

The new value of i is iprev, the rank of the preceding non-empty sound-object.  Then Ekk
is searched comparing Ts[i'] with Tsm for each i' < i:

If (Ts[i] = Tsm) go to Decrementation

A new solution set sol_set2 is determined by invoking the function

Possible_choices(i,nseq,shift,t1,t2,Ts,nature_of_time,side)

with shift = shift2, t1 = t"1(i), t2 = t"2(i), Ts = Tsm, and side = 2.

16.9      Correction 2

For this correction  a solution sol2 is selected in sol_set2.

New_choice2:
If(sol_set2 = empty)
then

If(sol_set1[i] ≠ empty)
then

go to New_choice1;
else

If((i > 1) and (Reloc[j] or (shift2 > 0 and 0 < ibreak < i)))
then

go to Decrementation;
else

Return(failed); /* Backtracking possible here */
Endif

Endif
Endif
sol2 <— Next_choice(sol_set2);
sol_set2 <— sol_set2 \ {sol2};
t"1mem <— t"1[i]; t"2mem <— t"2[i];
δ2mem <— δ2[i]; d∆2mem <— d∆2[i];
t"2[i] <— t"2[i] + shift2;
If(sol2 = Truncate end)
then

TrEnd[k] <—  TrEnd[k] - shift2;
else

t"1[i] <— t"1[i] + shift2;
If(sol2 = Shift object) δ2[i] <— δ2[i] + shift2;
If(sol2 = Break tempo) d∆2[i] <— d∆2[i] + shift2;

Endif

shift3 <— Ts[i] - t"1[i];
shift4 <— Alternate_correction1(i,nseq,shift3,t"2[i]);
If(shift4 = 0)
then

go to Incrementation;
else

If(sol_set2 ≠ empty)
then

t"1[i] <— t"1mem; t"2[i] <— t"2mem; /* TrEnd[k] was not 
modified */

δ2[i] <— δ2mem; d∆2[i] <— d∆2mem;
go to New_choice2;

else
shift2 <— - shift4;
go to Decrementation;

Endif
Endif
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The condition

If((i > 1) and (Reloc[j] or (shift2 > 0 and 0 < ibreak < i)))

is the one mentioned on the flowchart (Fig.26) as “backtrack useful”.  It is used to cut the
search space of solutions.  Indeed, trying to modify any object preceding Obj(k) will
certainly not improve the situation unless Obj(k) itself is either relocatable or, in case
shift2 > 0, it is situated to the right of another object that may break the tempo.  In view of
this test the index of the leftmost object in the sequence with property BrkTempo (see
§12.3.2) is stored as ibreak.

16.10    Alternate correction 1

Changing the clip date of sound-object Ek modifies the topological constraints on
objects following Ek in the sequence.  These constraints will be evaluated and taken into
account while further scanning the sequence.  Once a solution has chosen in
sol_set1(i), correction 1 is performed and the following objects in the sequence are
examined.  (See incrementation on the flowchart, Fig.26)

On the other hand, whenever correction 2 modifies the start date of Ek it is necessary to
check that the constraints on all objects preceding Ek in the sequence are still satisfied.  Let
Ekk and shift be defined as in §16.2.  The function Alternate_correction1()
checks the topological situation between Ek and Ekk (as per Fig.28).  In situation 3 it
attempts to truncate the beginning of Ek.  If the correction was successful then ‘0’ is
returned and incrementation starts again (see flowchart).  Otherwise, another solution is
selected for correction 2.  If sol_set2 is empty, then another solution is tried for
correction 1, etc.

Function Alternate_correction1(i,nseq,shift,t2)

Begin
k <— Seq[nseq,i];
j <— Obj[k];
t1 <— t"1[i];
If (shift = 0)  Return(0); /* Situation 2 */
If (shift < 0 and (not ContBeg[j]) and (not ContEndPrev[i]))

Return(0); /* Situation 1 */
If (shift > 0) /* Situation 3 or 4 */
then

If(OverBeg[j] and OverEndPrev[i] and (((t1 + shift) ≤ t2) or (not
ContEnd[j]))  Return(0);

If (TruncBeg[j])
then

If ((t1 + shift) ≤ t2) /* Situation 3 */
then

TrBeg[k] <— TrBeg[k] + shift;
t"1[i] <— t"1[i] + shift;
Return(0);

Endif
Endif

Endif
Return(shift);

End

This function returns 0 in acceptable situations.  In situation 3, if TruncBeg(j) is true it
first truncates the beginning of the object, then it returns 0.  In all other cases it returns the
input value shift3.
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If the returned value shift4 is 0, i is incremented again.  If shift4 ≠ 0 the next solution
in sol_set2 is considered.  Once sol_set2 is empty the algorithm jumps back to
Decrementation.

It is proved [Bel 1990b:164] that correction 2 always improves the situation and that if
there is a solution it will be found after a finite number of steps.

16.11    Multiple corrections

Correction 2 may be performed several times on the same object, first when calling
Decrementation on an object with rank i1 > i, then on an object with rank i2 > i1,
and so on.

It can be proved that for any object the number of type-2 corrections is finite.

17. Complexity of the time-setting algorithm

The following results have been proved in [Bel 1990b:165-168]:

— The Locate() procedure halts after a finite number of steps.

— If, for some value of nseq, Locate() returns a solution with ∆(i) ≠ 0 for
some value of i (i.e. a global drift), then there is a solution in which T(i) may be
replaced with T(i)+∆(i).

— In the worst case the time complexity of the Locate() procedure is O(imax3),
where imax is the number of objects in the sequence.

— If no global drift is created, the time complexity of the time-setting algorithm is
O(nmax.imax3), where nmax is the number of sequences and imax the
maximum length of a sequence.  In the worst case, the time complexity is
O(nmax2.imax3).

18. Typical examples

18.1      Non-empty sound-object prototypes

The table below defines six non-empty striated sound-object prototypes.  Objects “a”
and “a'” are identical as far as messages are concerned, but they differ in their durations
and sonic properties.

The first line in the table is the duration of the object prototype in seconds.  Reference
periods (the metronome value when entering the prototype) are given on the second line.
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a a' b c d e

Dur(j) 1.0 1.5 2.0 4.0 1.0 0.5

Tref(j) 1.0 1.5 1.0 2.0 2.0 1.0

Properties PivBeg
OkRescale
OverBeg
OverEnd
TruncEnd

PivBeg
OkExpand
Reloc
BrkTempo
TruncEnd

PivBeg
OkRescale
Reloc
OverEnd
TruncBeg

PivBeg
OkRescale
OverBeg
OverEnd

PivEnd
OkRescale
OverBeg
OverEnd

PivCent
OkRescale
OverBeg
OverEnd

18.2      Calculating ime-scale ratios α(k) and time-setting a sequence

(This is an application of rules listed in §15)

Consider the polymetric expression

/2 abc /3 de

and its dilated notation

/6 a _ _ b _ _ c _ _ d _ e _

with dilation ratio: Ratio = 6 (see §8.2).  The sequence contains: imax = 14 symbols.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ek a _ _ b _ _ c _ _ d _ e _ NIL

18.2.1     Non-measured smooth time

The solution is

a b c ed

0 0.5 1 1.5 2 2.5 3 3.5 4

Fig.29    /2 a b c /3 d e
(non-measured smooth time, smooth or striated objects)

with α(k) = 0.5 for “a”, “b” and “c”, and 0.33 for “d” and “e”.
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18.2.2     Striated objects in measured smooth time

Let us take Tclock = 1s.  The instance table yields:

d(k)

Dur(j)

Tref(j)

α(k)

physical
duration

a

1/2

(1 s.)

1

0.5

0.5 s.

b

1/2

(2 s.)

1

0.5

1 s.

c

1/2

(4 s.)

2

0.25

1 s.

d

1/3

(1 s.)

2

0.166

0.16 s.

e

1/3

(0.5 s.)

1

0.33

0.16 s.

(Data between brackets have not been used.)

0 0.5 1 1.5 2 2.5 3

d e

a cb

Fig.30     /2 a b c /3 d e
(measured smooth time, striated objects)

18.2.3     Sequence of smooth objects in measured smooth time

Here we suppose for a while that all objects defined in §18.1 are smooth.

d(k)

Dur(j)

α(k)

physical
duration

a

1/2

1 s.

0.5

0.5 s.

b

1/2

2 s.

0.25

0.5 s.

c

1/2

4 s.

0.125

0.5 s.

d

1/3

1 s.

0.33

0.33 s.

e

1/3

0.5 s.

0.66

0.33 s.

0 0.5 1 1.5 2 2.5 3

d ea cb

Fig.31    /2 a b c /3 d e
(measured smooth time, smooth objects)
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18.2.4     Striated objects in striated time

Let us assume a metronomic structure of time with period 3 seconds.  The following is
the table of T(i) in seconds and the corresponding objects in the sequence:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T(i) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Ek a _ _ b _ _ c _ _ d _ e _ NIL

k 1 0 0 2 0 0 3 0 0 4 0 5 0 -1

∆(i) = 0 for every i.  As to “b”, for instance, i = 4, inext = 7, and Tref(j) = 2 s.  Therefore

α 2 =
3 - 1.5

1
= 1.5

The physical duration of this object is:  1.5 x 2 = 3 s.

Positioning objects implies taking into account properties PivBeg for “a”, “b” and “c”,
PivEnd for “d” and PivCent for “e”.  The final lay-out is:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

b

e

c

d

a

Fig.32      /2 a b c /3 d e
i.e.    /6 a _ _ b _ _ c _ _ d _ e _

(metronomic striated time, period 3s., striated objects)

18.3      Time-setting polymetric structures

(See Main loop §16.1)

Consider

/3 ab { cde, ab } cd

which is interpreted

/6 a _ b _ { c_ d _ e _  , a _ _ b _ _ } c _ d _

or equivalently

/6 a _ b _ { a _ _ b _ _  , c_ d _ e _  } c _ d _
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yielding a possible phase diagram (Ratio = 6):

a _ b _ a _ _ b _ _ c _ d _ NIL

_ _ _ _ c _ d _ e _ NIL

18.3.1     Non-measured smooth time, smooth objects

The first sequence (“ababcd”) makes no difficulty.  Then streaks are created by
interpolating the physical durations of non-empty sound-objects in the first sequence.  See
the dotted lines on Fig.33:

a b a b c d

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Fig.33  Interpolating streaks on the first sequence

The next step is the time-setting of the second sequence, using the interpolated streaks:

a b a b c d

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

c d e

Fig.34
/3 ab { cde , ab } cd

i.e.  /6 a _ b _ { a _ _ b _ _ , c _ d _ e _ } c _ d _
(non-measured smooth time, smooth objects)

18.3.2     Striated time

Consider examples:

/3 ab { cde , ab} cd
i.e.    /6 a _ b _ { c _ d _ e _ , a _ _ b _ _ } c _ d _

/3 a'b { cde , a'b} cd
i.e.   /6 a' _ b _ { c _ d _ e _ , a' _ _ b _ _ } c _ d _
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These have similar symbolic representations but different time-settings because of the
properties of sound-objects “a” and “a'”.  With metronomic time, period 3 s., we get:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

b b

c

d

ea

c

d

a

Fig.35
/6 a _ b _ { c _ d _ e _ , a _ _ b _ _ } c _ d _

(metronomic time, period 3  s.)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

a'

b a'

b

c

ded

c

δ

Fig.36
/6 a' _ b _ { a' _ _ b _ _ , c _ d _ e _ } c _ d _

(metronomic time, period 3  s.)

In the latter example, since “a'” does not have property OkCompress it cannot accept α(k)

= 0.66, therefore α(k) is forced to 1.  Object “b” should start before “a'” clips, but “b”
does not have property OverBeg.  Therefore the beginning of “b” is truncated.  Since “a'”
does not have OverBeg, its second instance cannot start before “b” clips.  A local drift of
“a'” solves this constraint.  Now “b” may overlap “a'”, which is not acceptable, therefore
“b” is truncated in its beginning.
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The last example

{b - ba, /2 a'c {de, /3 a - c}}
i.e.     /6 {b _ _ - _ _ b _ _ a _ _ , a' _ _ c _ _ {d _ _ e _ _ , a_ - _ c _ }}

is shown in two performances (Fig.37-38) with respective metronome periods 3 s. and
2 s.  The fact that “a'” does not have the OverEnd property forces a correction 2 (with
negative drift δ) to prevent it from overlapping “c”.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

b

e

- b

a

ca'

d

a c-

Fig.37
/6 { b _ _ - _ _ b _ _ a _ _ , a' _ _ c _ _ { d _ _ e _ _ , a _ - _ c _ }}

(metronomic time, period 3 s.)
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δ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

b

e

- b

a

ca'

d

a c-

-0.5

Fig.38
/6 { b _ _ - _ _ b _ _ a _ _ , a' _ _ c _ _ { d _ _ e _ _ , a _ - _ c _ }}

(metronomic time, period 2 s.)

19. Conclusion

The musical examples in §18 give an indication of the variety of solutions proposed by the
time-setting algorithm (on the basis of properties of sound-objects and different structures
of time) for the performance of a given musical item.  Equally versatile is the interpretation
of polymetric expressions generated by formal string-grammars, as shown in part B.
Both approaches, therefore, contribute to compensate the rigidity of the timing of
computer-generated musical pieces: the synchronization and accurate timings of
concurrent musical processes are handled by the computer on the basis of (possibly
incomplete) information on structures and sound-objects.  This allows a composer to
explore sets of musical productions generated by rewriting rules, either in a systematic
way — assessing every decision of the machine — or in situations involving one or
several computers/sound processors interacting in real-time improvisation.
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Appendix

The formal definitions of object prototypes are given here as a guide-line for the design of
a procedure dispatching elementary messages in real time.  The procedure itself is not
described as it is highly dependant on the implementation.  The main design requirement,
which this formalism helps fulfilling, is a low-level representation of musical items that
does not contain all the information stored in sound-object prototypes, so that in the end
very large sound-objects can be instantiated and performed in real time.

1.    Sound-object prototypes

Let  A = {A1,…,AN} be an arbitrary set of elementary actions or messages
destined to a sound processor, P(A) the set of all subsets of A, and R the set of real
numbers, representing physical time.  In a macro-level description of sound, Ai may be
an instruction label (e.g. a MIDI code), whereas in a micro-level description it may be a
vector of numerical parameters.  Both representations may coexist in the same
implementation.

Let {Epj  |  j = 0, … jmax} designate a finite set of sound-object prototypes
defined as follows:

Definition

The j-th sound-object prototype is a mapping

Epj:        R  ∪ {nil} —>   P(A)

such that Epj(nil) = ∅ , and  Epj(t) ≠ ∅ for a finite set of values of t ∈ R.

Conventionally, the time origin indicates the pivot of the sound-object.  The utility of
the “nil” value will be shown below.
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It is assumed that sound-object prototypes are predefined.  They may be played on an
instrument (see §2) and edited as a list of time-stamped MIDI codes.  They may also be
defined as arbitrary functions mapping time to macro-level or micro-level parameters (see
[Truax 1990:101-102]).19

By convention, Ep0 designates the prototype of the empty sound-object labelled

“_”, with Ep0(t) = ∅  for any  t ∈ R.  Ep1 may designate the silence notated “-”.

Given an arbitrary time origin, the start/clip dates of the prototype are respectively
tmin(j) and tmax(j) such that:

Ep(tmin(j)) ≠ ∅ ,   Ep(tmax(j)) ≠ ∅  ,  and  ∀t ∉ [tmin(j),tmax(j)],  Epj(t) = ∅ .

Therefore, Epj(tmin(j)) contains the very first message of the object and Epj(tmax(j)) its
last message.20   An illustration of the Epj mapping of a sound-object prototype is given in
Fig.39.

Pivot

0

. .
.

A

R

Dur(j)

∅

. .

.

. .
.

.

. ..
.

tmin(j) tmax(j)

.

nil

Fig.39  A sound-object prototype and the Epj mapping

2.      Out-time object prototypes

Given a sound-object prototype Epj, the prototype of the corresponding out-time
object E'pj  is:

E'p j(0) = ∪
t ∈ [tmin,tmax]

Ep j(t)

E'pj(t) = ∅    ∀t  ≠  0

Informally, an out-time object has all its messages at the same date.  In an actual
implementation, the strict ordering of messages may be maintained while the delay from

19  Non-linear mappings generating “chaotic objects” are being implemented in Bol Processor BP2.
20  In smooth sound-objects (see §12.1) the time origin is such that tmin = 0, i.e. the default position

of the pivot is the date of the first message.
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one message to the next is rendered very small.  Fig.40 shows the E'pj mapping of the
out-time object prototype corresponding to the sound-object prototype defined in Fig.39.

0

. .
.

A

R

∅

. .

.

. .
.

.

. ..

..

Fig.40  An out-time object prototype and the E'pj mapping

3.      The time-setting function f(t)

Let t1(k) and t2(k) be the physical start/clip dates of a (non-empty) sound-object Ek.
The object may be truncated, in which case either TrBeg(k) or TrEnd(k) is positive (see
§14).  Its time pivot is located at physical date T(i) + ∆(i) + δ(k), where i is the rank of its
reference streak and k = Seq(nseq,i).

Let imax and nmax be the maximum values of i and nseq in a sound-object structure
(i.e. the dimensions of the phase diagram).  We call time-setting of the sound-object
structure the function

f:           R  —>  P(A)

such that

∀t ∈ R,

f t =
∪

i = 1,imax

nseq = 1,nmax

Ep j LocalTimek t ∪ ∪
i = 1,imax

nseq = 1,nmax

E'p j LocalTime'k t

with j = Obj(k) and k = Seq(nseq,i)
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The first member of f(t) is the set of instances of sound-objects (i.e. Ek with
d(k) > 0), for which local time is defined as follows:

(1) ∀t ∈ [t1(k),t2(k)],

LocalTimekt =
t - T(i) - ∆(i) - δ(k)

α(k)

with j = Obj(k) and k = Seq(nseq,i) ;
(2) ∀t < t1(k),
(2.1) LocalTimek(t) = nil   if  Epj(LocalTimek(t)) is of type ON ;
(2.2) LocalTimek(t) = LocalTimek(t1(k)) otherwise ;

(3) ∀t > t2(k),
(3.1) LocalTimek(t) = nil   if  Epj(LocalTimek(t)) is of type ON ;
(3.2) LocalTimek(t) = LocalTimek(t2(k)) otherwise.

Cases (2) and (3) refer to objects truncated in the beginning and the end respectively.
The “type ON” subsets of A are the ones that contain a message initiating a process in
the sound processor (e.g. a “NoteOn” message in a MIDI implementation).  These are
deleted if found in the truncated part of an object (see cases 2.1 and 3.1).  Other messages
are kept but they are relocated at the start/clip dates of the object (see cases 2.2 and 3.2).
Fig.41 shows a truncated sound-object whose prototype could be the one shown in
Fig.39.

Physical duration

Pivot

. .
.

A

R

TrBeg(k)

∅

. .

.

. .
.

.

. ..
.

t1(k) t2(k) =

.

nil

Type “ON” subset

t1 (k)
0

t2 (k)0

Fig.41  A sound-object truncated in its beginning
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The second member of f(t) is the set of instances of out-time objects (i.e. Ek with
d(k) = 0), for which local time is:

LocalTime'k(t) = t - T(i) - ∆(i) - δ(k) .

Given the time-setting function f(t), all messages referenced by f(t) can be dispatched
in real time to the sound processor.  Instantiating a sound-object is therefore possible as
soon as α(k), t1(k), t2(k), TrBeg(k) and TrEnd(k) have been calculated.  The actual
sequence of messages defining the object prototype may be retrieved from some other part
of the memory — possibly a hard disk.

Since for every t, f(t) is a subset of A, messages are not arranged in a strict sequence.
In a practical implementation an arbitrary ordering of simultaneous elementary actions may
be imposed so that the corresponding messages are dispatched in sequence with a very
small delay.

An additional necessary feature is the management of ON/OFF processes: when a
sound-object structure containing several sequences is instantiated, the same process may
be invoked several times (by several occurrences of the same type ON message) before it
is stopped by a type OFF message.  This can be avoided, either by ignoring redundant
ON messages or by sending an additional OFF message just before triggering again the
process.
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